Showing 1 - 5 results of 5 for search '"посттрансляционная модификация"', query time: 0.50s Refine Results
  1. 1
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 22, № 3 (2023); 98-109 ; Бюллетень сибирской медицины; Том 22, № 3 (2023); 98-109 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-3

    File Description: application/pdf

    Relation: https://bulletin.ssmu.ru/jour/article/view/5315/3443; https://bulletin.ssmu.ru/jour/article/view/5315/3462; Nazário Leão R., Marques da Silva P. Diastolic dysfunction in hypertension. Hipertens. Riesgo Vasc. 2017;34(3):128−139. DOI:10.1016/j.hipert.2017.01.001.; Samuel T.J., Beaudry R., Sarma S., Zaha V., Haykowsky M.J., Nelson M.D. Diastolic stress testing along the heart failure continuum. Curr. Heart Fail. Rep. 2018;15(6):332−339. DOI:10.1007/s11897-018-0409-5.; Bayes-Genis A., Bisbal F., Núñez J., Santas E., Lupón J., Rossignol P. et al. Transitioning from preclinical to clinical heart failure with preserved ejection fraction: a mechanistic approach. J. Clin. Med. 2020Apr.13;9(4):1110. DOI:10.3390/jcm9041110.; Ge H. Is diastolic dysfunction a new windsock in the risk stratification of patients with coronary heart disease? Int. J. Cardiol. 2022Jan.1;346:103−104. DOI:10.1016/j.ijcard.2021.11.037.; Bertacchini F., Agabiti Rosei C., Buso G., Cappellini S., Stassaldi D., Aggiusti C. et al. Subclinical HMOD in hypertension: left ventricular diastolic dysfunction. High Blood Press. Cardiovasc. Prev. 2022Nov.10. DOI:10.1007/s40292-022-00548-z.; Zhou D., Yan M., Cheng Q., Feng X., Tang S., Feng Y. Prevalence and prognosis of left ventricular diastolic dysfunction in community hypertension patients. BMC Cardiovasc. Disord. 2022Juny13;22(1):265. DOI:10.1186/s12872-022-02709-3.; Cianciulli T.F., Saccheri M.C., Papantoniou A., Méndez R.J., Gagliardi J.A., Prado N.G. et al. Use of tissue doppler imaging for the early detection of myocardial dysfunction in patients with the indeterminate form of Chagas disease. Rev. Soc. Bras. Med. Trop. 2020Feb.21;53:e20190457. DOI:10.1590/0037-8682-0457-2019.; Echeverría L.E., Gómez-Ochoa S.A., Rojas L.Z., García-Rueda K.A., López-Aldana P., Muka T. et al. Cardiovascular biomarkers and diastolic dysfunction in patients with chronic chagas cardiomyopathy. Front. Cardiovasc. Med. 2021Nov.29;8:751415. DOI:10.3389/fcvm.2021.751415.; Saraiva R.M., Mediano M.F.F., Quintana M.S.B., Sperandio da Silva G.M., Costa A.R., Sousa A.S. et al. Two-dimensional strain derived parameters provide independent predictors of progression to Chagas cardiomyopathy and mortality in patients with Chagas disease. Int. J. Cardiol. Heart Vasc. 2022Jan.10;38:100955. DOI:10.1016/j.ijcha.2022.100955.; Калюжин В.В., Кулаков Ю.А. Соотношения вегетативных, эмоциональных и соматических нарушений при хроническом описторхозе. Клиническая медицина. 1996;74(6):27−29.; Хардикова С.А., Берендеева Е.П., Калюжин В.В., Белобородова Э.И. Диастолическая дисфункция левого желудочка у больных псориазом на фоне хронического описторхоза до и после антигельминтной терапии. Клиническая медицина. 2009;87(10):29−32.; Калюжин В.В., Тепляков А.Т., Рязанцева Н.В., Вечерский Ю.Ю., Хлапов А.П., Колесников Р.Н. Диастола сердца. Физиология и клиническая патофизиология. Томск: Изд-во ТПУ, 2007: 212.; Ferreira-Martins J., Leite-Moreira A.F. Physiologic basis and pathophysiologic implications of the diastolic properties of the cardiac muscle. J. Biomed. Biotechnol. 2010;2010:807084. DOI:10.1155/2010/807084.; Janssen P.M.L. Myocardial relaxation in human heart failure: Why sarcomere kinetics should be center-stage. Arch. Biochem. Biophys. 2019;661:145−148. DOI:10.1016/j.abb.2018.11.011.; Драпкина О.М., Кабурова О.М. Диастолическая сердечная недостаточность: механизмы развития и перспективы воздействия на них. Журнал сердечная недостаточность. 2012;13(5/73):310−316.; Калюжин В.В., Тепляков А.Т., Калюжин О.В. Сердечная недостаточность. М.: Медицинское информационное агентство, 2018:376.; Лакомкин В.Л., Абрамов А.А., Студнева И.М., Уланова А.Д., Вихлянцев И.М., Просвирнин А.В. и др. Ранние изменения энергетического метаболизма, изоформного состава и уровня фосфорилирования титина при диастолической дисфункции. Кардиология. 2020;60(2):4−9. DOI:10.18087/cardio.2020.3.n531.; Bull M., Methawasin M., Strom J., Nair P., Hutchinson K., Granzier H. Alternative splicing of titin restores diastolic function in an HFpEF-like genetic murine model (TtnΔIAjxn). Circ. Res. 2016;119(6):764−772. DOI:10.1161/CIRCRESAHA.116.308904.; Gevaert A.B., Kataria R., Zannad F., Sauer A.J., Damman K., Sharma K. et al. Heart failure with preserved ejection fraction: recent concepts in diagnosis, mechanisms and management. Heart. 2022;108(17):1342−1350. DOI:10.1136/heartjnl-2021-319605.; Loescher C.M., Hobbach A.J., Linke W.A. Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc. Res. 2022;118(14):2903−2918. DOI:10.1093/cvr/cvab328.; Zhou Y., Zhu Y., Zeng J. Research update on the pathophysiological mechanisms of heart failure with preserved ejection fraction. Curr. Mol. Med. 2023;23(1):54−62. DOI:10.2174/1566524021666211129111202.; Van der Velden J., Stienen G.J.M. Cardiac disorders and pathophysiology of sarcomeric proteins. Physiol. Rev. 2019;99(1):381−426. DOI:10.1152/physrev.00040.2017.; Crocini C., Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys. Rev. 2021;13(5):637−652. DOI:10.1007/s12551-021-00840-7.; Knight W.E., Woulfe K.C. Dysfunctional sarcomeric relaxation in the heart. Curr. Opin. Physiol. 2022;26:100535. DOI:10.1016/j.cophys.2022.100535.; Martin A.A., Thompson B.R., Hahn D., Angulski A.B.B., Hosny N., Cohen H. et al. Cardiac sarcomere signaling in health and disease. Int. J. Mol. Sci. 2022;23(24):16223. DOI:10.3390/ijms232416223.; Rosas P.C., Solaro R.J. Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis. Front. Cardiovasc. Med. 2023Jan.24;9:1060716. DOI:10.3389/fcvm.2022.1060716.; Kass D.A., Bronzwaer J.G., Paulus W.J. What mechanisms underlie diastolic dysfunction in heart failure? Circ. Res. 2004;94(12):1533−1542. DOI:10.1161/01.RES.0000129254.25507.d6.; Rosas P.C., Liu Y., Abdalla M.I., Thomas C.M., Kidwell D.T., Dusio G.F. et al. Phosphorylation of cardiac myosin-binding protein-C is a critical mediator of diastolic function. Circ. Heart Fail. 2015;8(3):582−594. DOI:10.1161/CIRCHEARTFAILURE.114.001550.; Sheng J.J., Feng H.Z., Pinto J.R., Wei H., Jin J.P. Increases of desmin and α-actinin in mouse cardiac myofibrils as a response to diastolic dysfunction. J. Mol. Cell. Cardiol. 2016;99:218−229. DOI:10.1016/j.yjmcc.2015.10.035.; Valero-Muñoz M., Saw E.L., Hekman R.M., Blum B.C., Hourani Z., Granzier H. et al. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front. Cardiovasc. Med. 2022Aug.25;9:966968. DOI:10.3389/fcvm.2022.966968.; Li N., Hang W., Shu H., Zhou N. RBM20, a therapeutic target to alleviate myocardial stiffness via titin isoforms switching in HFpEF. Front. Cardiovasc. Med. 2022Jun.16;9:928244. DOI:10.3389/fcvm.2022.928244.; Lamber E.P., Guicheney P., Pinotsis N. The role of the M-band myomesin proteins in muscle integrity and cardiac disease. J. Biomed. Sci. 2022;29(1):18. DOI:10.1186/s12929-022-00801-6.; Gilbert G., Demydenko K., Dries E., Puertas R.D., Jin X., Sipido K. et al. Calcium signaling in cardiomyocyte function. Cold Spring Harb. Perspect. Biol. 2020;12(3):a035428. DOI:10.1101/cshperspect.a035428.; Denniss A.L., Dashwood A.M., Molenaar P., Beard N.A. Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys. Rev. 2020;12(4):865−878. DOI:10.1007/s12551-020-00736-y.; Benitah J.P., Perrier R., Mercadier J.J., Pereira L., Gómez A.M. RyR2 and calcium release in heart failure. Front. Physiol. 2021;12:734210. DOI:10.3389/fphys.2021.734210.; Rouhana S., Farah C., Roy J., Finan A., Rodrigues de Araujo G., Bideaux P. et al. Early calcium handling imbalance in pressure overload-induced heart failure with nearly normal left ventricular ejection fraction. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865(1):230−242. DOI:10.1016/j.bbadis.2018.08.005.; De Genst E., Foo K.S., Xiao Y., Rohner E., de Vries E., Sohlmér J. et al. Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure. Nat. Commun. 2022;13(1):3018. DOI:10.1038/s41467-022-29703-9.; Maruyama K., Imanaka-Yoshida K. The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. Int. J. Mol. Sci. 2022;23(5):2617. DOI:10.3390/ijms23052617.; Budde H., Hassoun R., Mügge A., Kovács Á., Hamdani N. Current understanding of molecular pathophysiology of heart failure with preserved ejection fraction. Front. Physiol. 2022 July7;13: 928232. DOI:10.3389/fphys.2022.928232.; Zile M.R., Baicu C.F., Gaasch W.H. Diastolic heart failure – abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 2004;350(19):1953−1959. DOI:10.1056/NEJMoa032566/; Калюжин В.В., Тепляков А.Т., Беспалова И.Д., Калюжина Е.В., Черногорюк Г.Э., Терентьева Н.Н. и др. Диастолическая сердечная недостаточность: границы применения термина. Бюллетень сибирской медицины. 2023;22(1):113– 120. DOI:10.20538/1682-0363-2023-1-113-120.; Беленков Ю.Н., Агеев Ф.Т., Мареев В.Ю. Знакомьтесь: диастолическая сердечная недостаточность. Журнал сердечная недостаточность. 2000;1(2):40–44.; Zile M.R. Heart failure with preserved ejection fraction: is this diastolic heart failure? J. Am. Coll. Cardiol. 2003;41(9):1519−1522. DOI:10.1016/s0735-1097(03)00186-4.; Калюжин В.В., Тепляков А.Т., Черногорюк Г.Э., Калюжина Е.В., Беспалова И.Д., Терентьева Н.Н. и др. Хроническая сердечная недостаточность: синдром или заболевание? Бюллетень сибирской медицины. 2020;19(1):134–139. DOI:10.20538/1682-0363-2020-1-134–139.; Mashali M.A., Saad N.S., Canan B.D., Elnakish M.T., Milani-Nejad N., Chung J.H. et al. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J. Mol. Cell. Cardiol. 2021;156:7−19. DOI:10.1016/j.yjmcc.2021.03.007.; Triposkiadis F., Xanthopoulos A., Parissis J., Butler J., Farmakis D. Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail. Rev. 2022;27(1):337−344. DOI:10.1007/s10741-020-09987-z.; Fayol A., Wack M., Livrozet M., Carves J.B., Domengé O., Vermersch E. et al. Aetiological classification and prognosis in patients with heart failure with preserved ejection fraction. ESC Heart Fail. 2022;9(1):519−530. DOI:10.1002/ehf2.13717.; Калюжин В.В., Тепляков А.Т., Беспалова И.Д., Калюжина Е.В., Терентьева Н.Н., Гракова Е.В. и др. Перспективные направления лечения хронической сердечной недостаточности: совершенствование старых или разработка новых? Бюллетень сибирской медицины. 2022;21(3):181−197. DOI:10.20538/1682-0363-2022-3-181-197.; Капелько В.И. Почему расслабление миокарда всегда замедляется при патологии сердца? Кардиология. 2019;59(12):44−51. DOI:10.18087/cardio.2019.12.n801.; Калюжин В.В., Тепляков А.Т., Соловцов М.А. Роль систолической и диастолической дисфункции ЛЖ в клинической манифестации хронической сердечной недостаточности у больных, перенесших инфаркт миокарда. Терапевтический архив. 2002;74(12):15−18.; Капелько В.И. Диастолическая дисфункция. Кардиология. 2011;51(1):79−90.; Bronzwaer J.G., Paulus W.J. Matrix, cytoskeleton, or myofilaments: which one to blame for diastolic left ventricular dysfunction? Prog. Cardiovasc. Dis. 2005;47(4):276−284. DOI:10.1016/j.pcad.2005.02.003.; Münch J., Abdelilah-Seyfried S. Sensing and responding of cardiomyocytes to changes of tissue stiffness in the diseased heart. Front. Cell Dev. Biol. 2021Feb.26;9:642840. DOI:10.3389/fcell.2021.642840.; Капелько В.И. Роль саркомерного белка титина в насосной функции сердца. Успехи физиологических наук. 2022;53(2):39−53. DOI:10.31857/S0301179822020059.; Wadmore K., Azad A.J., Gehmlich K. The role of Z-disc proteins in myopathy and cardiomyopathy. Int. J. Mol. Sci. 2021March17;22(6):3058. DOI:10.3390/ijms22063058.; Van Wijk S.W., Su W., Wijdeveld L.F.J.M., Ramos K.S., Brundel B.J.J.M. Cytoskeletal protein variants driving atrial fibrillation: potential mechanisms of action. Cells. 2022;11(3):416. DOI:10.3390/cells11030416.; Wang Z., Grange M., Pospich S., Wagner T., Kho A.L., Gautel M. et al. Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin. Science. 2022Feb.18;375(6582):eabn1934. DOI:10.1126/science.abn1934.; Granzier H.L., Irving T.C. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 1995;68(3):1027−1044. DOI:10.1016/S0006-3495(95)80278-X.; Fukuda N., Granzier H., Ishiwata S., Morimoto S. Editorial: recent advances on myocardium physiology. Front. Physiol. 2021May26;12:697852. DOI:10.3389/fphys.2021.697852.; Herzog W. What can we learn from single sarcomere and myofibril preparations? Front. Physiol. 2022Apr.27;13:837611. DOI:10.3389/fphys.2022.837611.; Labeit S., Kolmerer B., Linke W.A. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ. Res. 1997;80(2):290−294. DOI:10.1161/01.res.80.2.290.; Azad A., Poloni G., Sontayananon N., Jiang H., Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J. Muscle Res. Cell Motil. 2019;40(2):159−167. DOI:10.1007/s10974-019-09518-w.; Helmes M., Trombitás K., Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ. Res. 1996;79(3):619−626. DOI:10.1161/01.res.79.3.619.; Linke W.A. Titin gene and protein functions in passive and active muscle. Annu. Rev. Physiol. 2018Feb.10 80:389−411. DOI:10.1146/annurev-physiol-021317-121234.; Овчинников А.Г., Потехина А.В., Ожерельева М.В., Агеев Ф.Т. Дисфункция левого желудочка при гипертоническом сердце: современный взгляд на патогенез и лечение. Кардиология. 2017;57(S2):367–382. DOI:10.18087/cardio.2393.; Najafi A., van de Locht M., Schuldt M., Schönleitner P., van Willigenburg M., Bollen I. et al. End-diastolic force pre-activates cardiomyocytes and determines contractile force: role of titin and calcium. J. Physiol. 2019;597(17):4521−4531. DOI:10.1113/JP277985.; Koser F., Loescher C., Linke W.A. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J. 2019;286(12):2240−2260. DOI:10.1111/febs.14854.; Trombitás K., Wu Y., Labeit D., Labeit S., Granzier H. Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am. J. Physiol. Heart Circ. Physiol. 2001;281(4):H1793−H1799. DOI:10.1152/ajpheart.2001.281.4.H1793.; Van Heerebeek L., Borbély A., Niessen H.W., Bronzwaer J.G., van der Velden J., Stienen G.J. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113(16):1966−1973. DOI:10.1161/CIRCULATIONAHA.105.587519.; Katz A.M., Zile M.R. New molecular mechanism in diastolic heart failure. Circulation. 2006;113(16):1922−1925. DOI:10.1161/CIRCULATIONAHA.106.620765.; Калюжин В.В., Тепляков А.Т., Соловцов М.А., Калюжина Е.В., Беспалова И.Д., Терентьева Н.Н. Ремоделирование левого желудочка: один или несколько сценариев? Бюллетень сибирской медицины. 2016;15(4):120−139. DOI:10.20538/1682-0363-2016-4-120-139.; Lewis G.A., Schelbert E.B., Williams S.G., Cunnington C., Ahmed F., McDonagh T.A. et al. Biological phenotypes of heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2017;70(17):2186−2200. DOI:10.1016/j.jacc.2017.09.006.; Neagoe C., Kulke M., del Monte F., Gwathmey J.K., de Tombe P.P., Hajjar R.J. et al. Titin isoform switch in ischemic human heart disease. Circulation. 2002;106(11):1333−1341. DOI:10.1161/01.cir.0000029803.93022.93.; Wu Y., Bell S.P., Trombitas K., Witt C.C., Labeit S., LeWinter M.M. et al. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation. 2002;106(11):1384−1389. DOI:10.1161/01.cir.0000029804.61510.02.; Lahmers S., Wu Y., Call D.R., Labeit S., Granzier H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ. Res. 2004;94(4):505−513. DOI:10.1161/01.RES.0000115522.52554.86.; Weeland C.J., van den Hoogenhof M.M., Beqqali A., Creemers E.E. Insights into alternative splicing of sarcomeric genes in the heart. J. Mol. Cell. Cardiol. 2015Apr.;81:107−113. DOI:10.1016/j.yjmcc.2015.02.008.; Eldemire R., Tharp C.A., Taylor M.R.G., Sbaizero O., Mestroni L. The sarcomeric spring protein titin: biophysical properties, molecular mechanisms, and genetic mutations associated with heart failure and cardiomyopathy. Curr. Cardiol. Rep. 2021;23(9):121. DOI:10.1007/s11886-021-01550-y.; Kötter S., Krüger M. Protein quality control at the sarcomere: titin protection and turnover and implications for disease development. Front. Physiol. 2022Juny30;13:914296. DOI:10.3389/fphys.2022.914296.; Krüger M., Linke W.A. Titin-based mechanical signalling in normal and failing myocardium. J. Mol. Cell. Cardiol. 2009;46(4):490−498. DOI:10.1016/j.yjmcc.2009.01.004.; Anderson B.R., Granzier H.L. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. Prog. Biophys. Mol. Biol. 2012;110(2-3):204−217. DOI:10.1016/j.pbiomolbio.2012.08.003.; Radke M.H., Polack C., Methawasin M., Fink C., Granzier H.L., Gotthardt M. Deleting full length titin versus the titin m-band region leads to differential mechanosignaling and cardiac phenotypes. Circulation. 2019;139(15):1813−1827. DOI:10.1161/CIRCULATIONAHA.118.037588.; Zhu C., Yin Z., Ren J., McCormick R.J., Ford S.P., Guo W. RBM20 is an essential factor for thyroid hormone-regulated titin isoform transition. J. Mol. Cell. Biol. 2015;7(1):88−90. DOI:10.1093/jmcb/mjv002.; Борисов А.А., Гвоздева А.Д., Агеев Ф.Т. Сердечная недостаточность с сохраненной фракцией выброса у пациентов с сахарным диабетом 2 типа: от патогенеза к лечению. Медицинский вестник Юга России. 2021;12(2):6−15. DOI:10.21886/2219-8075-2021-12-2-6-15.; Krüger M., Babicz K., von Frieling-Salewsky M., Linke W.A. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J. Mol. Cell. Cardiol. 2010May;48(5): 910−916. DOI:10.1016/j.yjmcc.2010.02.012.; Zhu C., Yin Z., Tan B., Guo W. Insulin regulates titin pre-mRNA splicing through the PI3K-Akt-mTOR kinase axis in a RBM20-dependent manner. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863(9):2363−2371. DOI:10.1016/j.bbadis.2017.06.023.; Bernal J., Pitta S.R., Thatai D. Role of the renin-angiotensin-aldosterone system in diastolic heart failure: potential for pharmacologic intervention. Am. J. Cardiovasc. Drugs. 2006;6(6):373−381. DOI:10.2165/00129784-200606060-00004.; Останко В.Л., Калачева Т.П., Калюжина Е.В., Лившиц И.К., Шаловай А.А., Черногорюк Г.Э., Беспалова И.Д. и др. Биологические маркеры в стратификации риска развития и прогрессирования сердечно-сосудистой патологии: настоящее и будущее. Бюллетень сибирской медицины. 2018;17(4):264−280. DOI:10.20538/1682-0363-2018-4-264-280.; Cai H., Zhu C., Chen Z., Maimaiti R., Sun M., McCormick R.J. et al. Angiotensin II Influences Pre-mRNA splicing regulation by enhancing RBM20 transcription through activation of the MAPK/ELK1 signaling pathway. Int. J. Mol. Sci. 2019;20(20):5059. DOI:10.3390/ijms20205059.; Rocha R., Almeida-Coelho J., Leite-Moreira A.M., Neves J.S., Hamdani N., Falcão-Pires I. et al. Titin phosphorylation by protein kinase G as a novel mechanism of diastolic adaptation to acute load: PS146. Porto Biomed. J. 2017;2(5):185. DOI:10.1016/j.pbj.2017.07.024.; Michel K., Herwig M., Werner F., Špiranec Spes K., Abeßer M., Schuh K. et al. C-type natriuretic peptide moderates titin-based cardiomyocyte stiffness. JCI Insight. 2020Nov.19;5(22):e139910. DOI:10.1172/jci.insight.139910.; Herwig M., Kolijn D., Lódi M., Hölper S., Kovács Á., Papp Z. et al. Modulation of titin-based stiffness in hypertrophic cardiomyopathy via protein kinase D. Front. Physiol. 2020Apr.15;11:240. DOI:10.3389/fphys.2020.00240.; Murphy S., Frishman W.H. Protein kinase C in cardiac disease and as a potential therapeutic target. Cardiol. Rev. 2005;13(1):3−12. DOI:10.1097/01.crd.0000124914.59755.8d.; Hidalgo C., Hudson B., Bogomolovas J., Zhu Y., Anderson B., Greaser M., Labeit S. et al. PKC phosphorylation of titin’s PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Circ. Res. 2009;105(7):631–638. DOI:10.1161/CIRCRESAHA.109.198465.; Soetkamp D., Gallet R., Parker S.J., Holewinski R., Venkatraman V., Peck K. et al. Myofilament phosphorylation in stem cell treated diastolic heart failure. Circ. Res. 2021;129(12):1125−1140. DOI:10.1161/CIRCRESAHA.119.316311.; Krysiak J., Unger A., Beckendorf L., Hamdani N., von Frieling-Salewsky M., Redfield M.M. et al. Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nat. Commun. 2018Jan.17;9(1):262. DOI:10.1038/s41467-017-02483-3.; Manilall A., Mokotedi L., Gunter S., Le Roux R., Fourie S., Flanagan C.A. et al. Increased protein phosphatase 5 expression in inflammation-induced left ventricular dysfunction in rats. BMC Cardiovasc. Disord. 2022Dec.9;22(1):539. DOI:10.1186/s12872-022-02977-z.; Gömöri K., Herwig M., Budde H., Hassoun R., Mostafi N., Zhazykbayeva S. et al. Ca2+/calmodulin-dependent protein kinase II and protein kinase G oxidation contributes to impaired sarcomeric proteins in hypertrophy model. ESC Heart Fail. 2022;9(4):2585−2600. DOI:10.1002/ehf2.13973.; Bevere M., Morabito C., Mariggiò M.A., Guarnieri S. The oxidative balance orchestrates the main keystones of the functional activity of cardiomyocytes. Oxid. Med. Cell. Longev. 2022Jan.10;2022:7714542. DOI:10.1155/2022/7714542.; Nagueh S.F. Heart failure with preserved ejection fraction: insights into diagnosis and pathophysiology. Cardiovasc. Res. 2021;117(4): 999−1014. DOI:10.1093/cvr/cvaa228.; Røe Å.T., Ruud M., Espe E.K., Manfra O., Longobardi S., Aronsen J.M. et al. Regional diastolic dysfunction in post-infarction heart failure: role of local mechanical load and SERCA expression. Cardiovasc. Res. 2019; 15(4):752−764. DOI:10.1093/cvr/cvy257.; Eisner D.A., Caldwell J.L., Trafford A.W., Hutchings D.C. the control of diastolic calcium in the heart: basic mechanisms and functional implications. Circ. Res. 2020;126(3):395−412. DOI:10.1161/CIRCRESAHA.119.315891.; Granzier H., Labeit S. Cardiac titin: an adjustable multi-functional spring. J. Physiol. 2002;541(Pt2):335−342. DOI:10.1113/jphysiol.2001.014381.; Liu C., Lai Y., Pei J., Huang H., Zhan J., Ying S. et al. Clinical and genetic analysis of KATP variants with heart failure risk in patients with decreased serum ApoA-I levels. J. Clin. Endocrinol. Metab. 2021;106(8):2264−2278. DOI:10.1210/clinem/dgab336.; Liu C., Lai Y., Guan T., Zhan J., Pei J., Wu D. et al. Associations of ATP-sensitive potassium channel’s gene polymorphisms with type 2 diabetes and related cardiovascular phenotypes. Front. Cardiovasc. Med. 2022March23;9:816847. DOI:10.3389/fcvm.2022.816847.; https://bulletin.ssmu.ru/jour/article/view/5315

  2. 2
    Academic Journal

    Contributors: The author is very grateful to Sh.Z. Archuadze (JSC R-Pharm), R.R. Niyazov (Centre of Scientific Advice, OOO) and V.O. Talibov (BMC, Uppsala University) for their advice and valuable comments made during preparation of this article, Автор выражает благодарность и глубокую признательность Ш.З. Арчуадзе (АО «Р-Фарм»), Р.Р. Ниязову (ООО «Центр научного консультирования») и В.О. Талибову (BMC, Uppsala University) за советы и ценные замечания, сделанные в ходе работы над этой статьей

    Source: Regulatory Research and Medicine Evaluation; Том 9, № 2 (2019); 93-100 ; Регуляторные исследования и экспертиза лекарственных средств; Том 9, № 2 (2019); 93-100 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2019-9-2

    File Description: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/229/218; Schiestl M, Zabransky M, Sorgel F. Ten years of biosimilars in Europe: development and evolution of the regulatory pathways. Drug Des De-vel Ther. 2017;11:1509-15. https://doi.org/10.2147/DDDT.S130318; Mielke J, Jilma B, Jones B, Koenig F. An update on the clinical evidence that supports biosimilar approvals in Europe. Br J Clin Pharmacol. 2018;84(7):1415-31. https://doi.org/10.1111/bcp.13586; Warren JB. Generics, chemisimilars and biosimilars: is clinical testing fit for purpose? Br J Clin Pharmacol. 2013;75(1):7-14. https://doi.org/10.1111/j.1365-2125.2012.04323.x; Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24(10):1241-52. https://doi.org/10.1038/nbt1252; Knorre DG, Kudryashova NV, Godovikova TS. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae. 2009;1(3):29-51. PMID: 22649613; Eleryan MG, Akhiyat S, Rengifo-Pardo M, Ehrlich A. Biosimilars: potential implications for clinicians. Clin Cosmet Investig Dermatol. 2016;9:135-42. https://doi.org/10.2147/CCID.S91691; Camacho LH, Frost CP, Abella E, Morrow PK, Whittaker S. Biosimilars 101: considerations for U.S. oncologists in clinical practice. Cancer Med. 2014;3(4):889-99. https://doi.org/10.1002/cam4.258; Waller CF, Vutikullird A, Lawrence TE, Shaw A, Liu MS, Bacz-kowski M, et al. A pharmacokinetics phase 1 bioequivalence study of the trastuzumab biosimilar MYL-1401O vs. EU-trastuzumab and US-trastuzumab. Br J Clin Pharmacol. 2018;84(10):2336-43. https://doi.org/10.1111/bcp.13689; Knight B, Rassam D, Liao S, Ewesuedo R. A phase I pharmacokinetics study comparing PF-06439535 (a potential biosimilar) with bevacizumab in healthy male volunteers. Cancer Chemother Pharmacol. 2016;77(4):839-46. https://doi.org/10.1007/s00280-016-3001-2; Schoergenhofer C, Schwameis M, Firbas C, Bartko J, Derhaschnig U, Mader RM, et al. Single, very low rituximab doses in healthy volunteers — a pilot and a randomized trial: implications for dosing and biosimilarity testing. Sci Rep. 2018;8(1):124. https://doi.org/10.1038/s41598-017-17934-6; Markus R, Liu J, Ramchandani M, Landa D, Born T, Kaur P. Developing the totality of evidence for biosimilars: regulatory considerations and building confidence for the healthcare community. BioDrugs. 2017;31(3):175-87. https://doi.org/10.1007/s40259-017-0218-5; De Mora F. Biosimilar: what it is not. Br J Clin Pharmacol. 2015;80(5):949-56. https://doi.org/10.1111/bcp.12656; https://www.vedomostincesmp.ru/jour/article/view/229

  3. 3
    Academic Journal

    Source: Rheumatology Science and Practice; Vol 55, No 3 (2017); 277-294 ; Научно-практическая ревматология; Vol 55, No 3 (2017); 277-294 ; 1995-4492 ; 1995-4484 ; 10.14412/rsp20173

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2381/1581; Catrina AI, Svensson CI, Malmström V, et al. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Immunol. 2017;13(2):79-86. doi:10.1038/nrrheum.2016.200; Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-38. doi:10.1016/S0140- 6736(16)30173-8; Gerlag DM, Raza K, van Baarsen LGM, et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann Rheum Dis. 2012;71:638- 41. doi:10.1136/annrheumdis-2011-200990; Mankia K, Emery P. Preclinical rheumatoid arthritis. Progress toward prevention. Arthritis Rheum. 2016;68:779-88. doi:10.1002/art.39603; Leandro M. B cells and rheumatoid factors in autoimmunity. Int J Rheum Dis. 2015;18:379-81. doi:10.1111/1756-185X.12690; Dö rner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11:247. doi:10.1186/ar2780; Cantagrel A, Degboe Y. New autoantibodies associated with rheumatoid arthritis recognize posttranslationally modified selfprotein. Joint Bone Spain. 2016;83:11-7. doi:10.1016/j.jbspin.2015.10.003; Aletaha D, Blü ml S. Therapeutic implications of autoantibodies in rheumatoid arthritis. RMD Open. 2016 May 17;2(1):e000009. doi:10.1136/rmdopen-2014-000; Mastrangelo A, Colasanti T, Barbati C, et al. The role of posttranslational protein modifications in rheumatological diseases: focus on rheumatoid arthritis. J Immunol Res. 2015;2015:Article ID 712490, 10 p. doi:10.1155/2015/712490; Darrah E, Andrade F. Citrullination, and carbamylation, and malondialdehyde-acetaldehyde! Oh My! Entering the forest of autoantigen modifications in rheumatoid arthritis. Arthritis Rheum. 2015;67:604-8. doi:10.1002/art.38970; Trouw LA, Rispens T, Toes REM. Beyond citrullination: other post-translation protein modifications in rheumatoid arthritis. Nat Rev Rheumatol. 2017 Published online: 09 March 2017. doi:10.1038/nrrheum.2017.15; Anzilotti C, Pratesi F, Tommasi C, Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev. 2010;9:158-60. doi:10.1016/j.autrev.2009.06.002; Willemze A, Trouw LA, Toes RE, Huizinga TWJ. The influence of ACPA status and characteristics on the course of RA. Nat Rev Rheumatol. 2012;8:114-52. doi:10.1038/nrrheum.2011;204; Klareskof L, Amara K, Malmstrom V. Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2014;26:72-9. doi:10.1097/BOR.0000000000000016; Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007;146:797-808. doi:10.7326/0003-4819-146-11-200706050- 00008; Taylor P, Gartemann J, Hsieh J, Greeden J. A systemic review of serum biomarkers anti-cyclic citrullinated peptide and rheumatoid factor as test for rheumatoid arthritis. Autoimmune Dis. 2011;article ID 815038. doi:10.4061/2011/815038; Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569-81. doi:10.1002/art.27584; Jilani AA, Mackworth-Young CG. The role of citrullinated protein antibodies in predicting erosive disease in rheumatoid arthritis: a systemic literature review and meta-analysis. Int J Rheumatol. 2015;Article ID 728610. doi:10.1155/2015/728610; Kuller LH, Mackey RH, Walitt BT, et al. Determinants of mortality among postmenopausal women in the Women's health initiative who report rheumatoid arthritis. Arthritis Rheum. 2014;66:497-507. doi:10.1002/art.38268; Humphreys J, van Nies JAB, Chupping J, et al. Rheumatoid factor and anti-citrullinated protein antibody positivity, but not level, are associated with increased mortality in patients with rheumatoid arthritis: results from two large independent cohort. Arthritis Res Ther. 2014;16:483. doi:10.1186/s13075-014-0483-3; Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptide as autoantigen in rheumatoid arthritis – relevance to treatment. Autoimmune Rev. 2014;13:1114-20. doi:10.1016/j.autrev.2014.08.012; Malmstrom V, Cartina AI, Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Rheumatol. 2017;13(2):79-86. doi:10.1038/nrrheum.2016.200; Yarwood A, Huizinga TWJ, Worthington J. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford). 2016;55(2):199-209. doi:10.1093/rheumatology/keu323; Ioan-Facsinay A, El-Bannoudi H, Scherer H.U, et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann Rheum Dis. 2011;70:188-93. doi:10.1136/ard.2010.131102; Uysal H, Bockermann R, Nandakumar KS, et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J Exp Med. 2009;206:449-62. doi:10.1084/jem.20081862; Amara K, Steen J, Murray F, et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med. 2013;210:445-55. doi:10.1084/jem.20121486; Aho K, Heliovaara M, Maatela J, et al. Rheumatoid factors antedating clinical rheumatoid arthritis. J Rheumatol. 1991;18:1282-4.; Aho K, Palosuo T, Heliovaara M, et al. Antifilaggrin antibodies within «normal» range predict rheumatoid arthritis in a linear fashion. J Rheumatol. 2000;27:2743-6.; Aho K, von Essen R, Kurki P, et al. Antikeratin antibody and antiperinuclear factor as markers for subclinical rheumatoid disease process. J Rheumatol. 1993;20:1278-81.; Del Puente A, Knowler WC, Pettitt DJ, Bennett PH. The incidence of rheumatoid arthritis is predicted by rheumatoid factor titer in a longitudinal population study. Arthritis Rheum. 1988;31:1239-44. doi:10.1002/art.1780311004; Silman AJ, Hennessy E, Ollier B. Incidence of rheumatoid arthritis in a genetically predisposed population. Br J Rheumatol. 1992;31:365-8. doi:10.1093/rheumatology/31.6.365; Majka DS, Deane KD, Parrish LA, et al. Duration of preclinical rheumatoid arthritis-related autoantibody positivity increases in subjects with older age at time of disease diagnosis. Ann Rheum Dis. 2008;67:801-7. doi:10.1136/ard.2007.076679; Chibnik LB, Mandl LA, Costenbader KH, et al. Comparison of threshold cutpoints and continuous measures of anti-cyclic citrullinated peptide antibodies in predicting future rheumatoid arthritis. J Rheumatol. 2009;36:706-11. doi:10.3899/jrheum.080895; Jorgensen KT, Wiik A, Pedersen M, et al. Cytokines, autoantibodies and viral antibodies in premorbid and postdiagnostic sera from patients with rheumatoid arthritis: case-control study nested in a cohort of Norwegian blood donors. Ann Rheum Dis. 2008;67:860-6. doi:10.1136/ard.2007.073825; Rantapaa-Dahlqvist S, Boman K, Tarkowski A, Hallmans G. Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann Rheum Dis. 2007;66:121-3. doi:10.1136/ard.2006.057331; Nielen MM, van Schaardenburg D, Reesink HW, et al. Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Ann Rheum Dis. 2006;65:535-7. doi:10.1136/ard.2005.040659; Rantapaa-Dahlqvist S, de Jong BAW, Berglin E, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 2003;48:2741-9. doi:10.1002/art.11223; Nielen MMJ, van Schaardenburg D, Reesink HW, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 2004;50:380-6. doi:10.1002/art.20018 9; Koppejan H, Trouw LA, Sokolove J, et al. Role of anti-carbamylated protein antibodies compared to anti-citrullinated protein antibodies in indigenous North Americans with rheumatoid arthritis, their first-degree relatives, and healthy controls. Arthritis Rheumatol (Hoboken, NJ). 2016;68:2090-8. doi:10.1002/art.39664; Brink M, Hansson M, Mathsson L, et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis Rheum. 2013;65:899-910. doi:10.1002/art.37835; Nam JL, Hunt L, Hensor EM, Emery P. Enriching case selection for imminent RA: the use of anti-CCP antibodies in individuals with new non-specific musculoskeletal symptoms – a cohort study. Ann Rheum Dis. 2016 Aug;75(8):1452-6. doi:10.1136/annrheumdis-2015-207871; Rakieh C, Nam JL, Hunt L, et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann Rheum Dis. 2015 Sep;74(9):1659-66. doi:10.1136/annrheumdis-2014-205227; Steenbergen HW, Mangnus L, Reijnierse M, et al. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis.van Ann Rheum Dis. 2016 Oct;75(10):1824-30. doi:10.1136/annrheumdis-2015-208138; Van Zanten A, Arends S, Roozendaal C, et al. Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Ann Rheum Dis. 2017. doi:10.1136/annrheumdid-2016-209991; Hensvold AH, Frisell T, Magnusson PKE, et al. How well do ACPA discrimination and predict RA in the general population: a study based on 125090 population-representative Swedish twins. Ann Rherum Dis. 2017;76:119-25. doi:10.1036/annrgeum dis- 2015-208980; Ten Brinck RM, van Steenbergen HW, Verheul MK, et al. The prognostic value of different auto-antibodies for arthritis development in patients with clinically suspect arthralgia. Presented at: ACR/ARHP Annual Meeting; November 11-16, 2016; Washington D.C. Abstract #1035.; Terao C, Ohmura K, Ikari K, et al. Effects of smoking and shared epitope on the production of anti-citrullinated peptide antibody in a Japanese adult population. Arthritis Care Res. 2014;66:1818- 27. doi:10.1002/acr.22385; Hensvold AH, Magnusson PK, Joshua V, et al. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann Rheum Dis. 2015;74:375-80. doi:10.1136/annrheumdis-2013-203947; Rö nnelid J, Wick MC, Lampa J, et al. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: anti-CP status predicts worse disease activity and greater radiological progression. Ann Rheum Dis. 2005;64:1744-9. doi:10.1136/ard.2004.033571; Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading: mechanism and contribution to autoimmune diseases. Immunol Let. 2015;163:56-68. doi:10.1016/j.imlet.2014.11.001; Van de Stadt LA, de Koning MHMT, van de Stadt RJ, et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 2011;63:3226-33. doi:10.1002/art.30537; Van de Stadt LA, van der Horst AR, de Koning MHMT, et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann Rheum Dis. 2011;70:128-33. doi:10.1136/ard.2010.132662; Suwannalai P, van de Stadt LA, Radner H, et al. Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 2012;64:1323-8. doi:10.1002/art.33489; Van der Woude D, Rantapaa-Dahlqvist S, Ioan-Facsinay A, et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis. 2010;69:1554-61. doi:10.1136/ard.2009.124537; Willemze A, Shi J, Mulder M, et al. The concentration of anticitrullinated protein antibodies in serum and synovial fluid in relation to total immunoglobulin concentrations. Ann Rheum Dis. 2013;72:1059-63. doi:10.1136/annrheumdis-2012-202747; Ioan-Facsinay A, Willemze A, Robinson DB, et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 2008;58:3000-8. doi:10.1002/art.23763; Kokkonen H, Mullazehi M, Berglin E, et al. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther. 2011;13:R13. doi:10.1186/ar3237; Van der Woude D, Syversen SW, van der Voort EI, et al. The ACPA isotype profile reflects long-term radiographic progression in rheumatoid arthritis. Ann Rheum Dis. 2010;69:1110-6. doi:10.1136/ard.2009.116384; Goulabchand R, Vincent T, Batteux F, et al. Impact of autoantibody glycosylation in autoimmune disease. Autoimmune Rev. 2014;13:742-50. doi:10.1016/j.autrev.2014.02.005; Scherer HU, Wang J, Toes RE, et al. Immunoglobulin 1 (IgG1) Fc-glycosylation profiling of anti-citrullinated peptide antibodies from human serum. Proteomics Clin Appl. 2009;3:106-15. doi:10.1002/prca.200800098; Scherer HU, van der Woude D, Ioan-Facsinay A, et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 2010;62:1620-9. doi:10.1002/art.27414; Rombouts Y, Ewing E, van de Stadt LA, et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis. 2015;74:234-41. doi:10.1136/annrheumdis-2013- 203565; Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Ann Rev Immunol. 2007;25:21-50. doi:10.1146/annurev.immunol.25.022106.141702; Stadlmann J, Pabst M, Altmann F. Analytical and functional aspects of antibody sialylation. J Clin Immunol. 2010;30:15-9. doi:10.1007/s10875-010-9409-2; Koning F, Thomas R, Rossjohn J, Toes RE. Coeliac disease and rheumatoid arthritis: simmilar mechanisms, different antigens. Nat Rev Rheumatol. 2015;11:450-61. doi:10.1038/nrrheum.2015.59; Clavel C, Nogueira L, Laurent L, et al. Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 2008;58:678-88. doi:10.1002/art.23284; Sokolove J, Zhao X, Chandra PE, Robinson WH. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcgamma receptor. Arthritis Rheum. 2011;63:53-62. doi:10.1002/art.30081; Sohn DH, Rhodes C, Onuma K, et al. Local joint inflammation and histone citrullination in a murine model of the transition from preclinical autoimmunity to inflammatory arthritis. Arthritis Rheum. 2015;67:2877-87. doi:10.1002/art.39283; Zhu W, Li X, Fang S, et al. Anti-citrullinated protein antibodies induce macrophage subset disequilibrium in RA patients. Inflammation. 2015;38:2067-75. doi:10.1007/s10753-015- 0188-z; Sokolove J, Johnson DS, Lahey LJ, et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheum. 2014;66:813-21. doi:10.1002/art.38307; Laurent L, Anquetil F, Clavel C, et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74:1425-31. doi:10.1136/annrheumdis-2013-204543; Anquetil F, Clavel C, Offer G, et al. IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anticitrullinated protein autoantibodies. J Immunol. 2015;194:3664-74. doi:10.4049/jimmunol.1402334; Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5:178ra40. doi:10.1126/scitranslmed.3005580; Sur Chowdhury C, Giaglis S, Walker UA, et al. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther. 2014;16:R122. doi:10.1186/ar4579; Trouw LA, Haisma EM, Levarht EW, et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 2009;60:1923-31. doi:10.1002/art.24622; Harre U, Georgess D, Bang H, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122:1791-802. doi:10.1172/JCI60975; Krishnamurthy A, Joshua V, Haj Hensvold A, et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis. 2016;75:721-9. doi:10.1136/annrheumdis- 2015-208093; Wigerblad G, Bas DB, Fernades-Cerqueira C, et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann Rheum Dis. 2016;75:730-8. doi:10.1136/annrheumdis- 2015-208094; Suurmond J, Rivellese F, Dorjee AL, et al. Toll-like receptor triggering augments activation of human mast cells by anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74:1915-23. doi:10.1136/annrheumdis-2014-205562; Habets KL, Trouw LA, Levarht EW, et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther. 2015;17:209. doi:10.1186/s13075- 015-0665-7; Kuhn KA, Kulik L, Tomooka B, et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest. 2006;116:961-73. doi:10.1172/JCI25422; Ho PP, Lee LY, Zhao X, et al. Autoimmunity against fibrinogen mediates inflammatory arthritis in mice. J Immunol. 2010;184:379-90. doi:10.4049/jimmunol.0901639; Dwivedi N, Radic M. Citrullination of autoantigens implicated NETosis in the induction of autoimmunity. Ann Rheum Dis. 2014;73:483-91. doi:10.1136/annrheumdis-2013-203844; Harre U, Lang SC, Pfeifle R, et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone lose. Nat Communocation. 2015. doi:10.1038/ncomms7651; Kleyer A, Finsel S, Rech J, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73:854-60. doi:10.1136/annrhgeumdis-2012-202958; Bugatt S, Bogliolo L,Vitolo B, et al. Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis Arthritis Res Ther. 201618:226. doi:10.1186/s13075- 016-1116-9; Titcombe PJ, Amara K, Barsness LO, et al. Citrullinated self antigen-specific blood B cells carry cross reactive immunoglobulins with effector potential. Ann Rheum Dis. 2016;75 Suppl 1:A28- A29. doi:10.1136/annrheumdis-2016-209124.68; Zhang ZJ, Cao DL, Zhang X, et al. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain. 2013;154:2185-97. doi:10.1016/j.pain.2013.07.002; Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(7):415-29. doi:10.1038/nrrheum.2015.53; Pfeifle R, Rothe T, Ipseiz N, et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol. 2017;18:104-13. doi:10.1038/ni.3579; Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86 [Nasonov EL. New possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases: a focus on inhibitors of interleukin-17. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(1):68-86. (In Russ.)]. doi:10.14412/1995-4484- 2017-68-86; Fasching P, Stradner M, Graninger W, et al. Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules. 2017;22(1):134. doi:10.3390/molecules22010134; Ajeganova S, van Steenbergen HW, Verheul MK, et al. The association between anti-carbamylated protein (anti-CarP) antibodies and radiographic progression in early rheumatoid arthritis: a study exploring replication and the added value to ACPA and rheumatoid factor. Ann Rheum Dis. 2017;76(1):112-8. doi:10.1136/annrheumdis-2015-208870; Shi J, van de Stadt LA, Levarth EWN, et al. Anti-carbamylated protein antibodies are present in arthralgia patients and predict the development of rheumatoid arthritis. Arthritis Rheum. 2013;65:911-5. doi:10.1002/art.37830; Harris ML, Darrah E, Lam GK, et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 2008;58(7):1958-67. doi:10.1002/art.23596; Kolfenbach JR, Deane KD, Derber LA, et al. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 2010;62(9):2633-9. doi:10.1002/art.27570; Gan RW, Trouw LA, Shi J, et al. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J Rheumatol. 2015;42:572-9. doi:10.3899/jrheum.140767; Kokkonen H, Soderstrom I, Rocklov J, et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62:383-91. doi:10.1002/art.27186; Deane KD, O'Donnell CI, Hueber W, et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 2010;62(11):3161-72. doi:10.1002/art.27638; Hughes-Austin JM, Deane KD, Derber LA, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann Rheum Dis. 2013;72(6):901-7. doi:10.1136/annrheumdis-2012-201505; Barra L, Summers K, Bell D, Cairns E. Serum Cytokine Profile of Unaffected First-degree Relatives of Patients with Rheumatoid Arthritis. J Rheumatol. 2014;4 (2):280-5. doi:10.3899/jrheum.130539; Chalan P, Bijzet J, van den Berg A, et al. Analysis of serum immune markers in seropositive and seronegative rheumatoid arthritis and in high-risk seropositive arthralgia patients. Sci Peport. 2016;6:26021. doi:10.1038/srep26021; Masi AT, Rehman AA, Elmore KB, Aldag JC. Serum acute phase protein and inflammatory cytokine network correlations: comparison of a pre-rheumatoid arthritis and non-rheumatoid arthritis community cohort. J Innate Immun. 2013;5:100-13. doi:10.1159/000345700; Maksymowych WP, Naides SJ, Bykerk V, et al. Serum 14-3-3eta is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis. J Rheumatol. 2014;41(11):2104-13. doi:10.3899/jrheum.131446; Van Heusden GP. 14-3-3 proteins: regulators of numerous eukaryotic proteins. IUBMB Life. 2005;57(9):623-9. doi:10.1080/15216540500252666; Hitchon CA, Smolik I, Meng X, et al. Serum 14-3-3eta are elevated in indigenous North Americans with rheumatoid arthritis and may predict imminent synovitis in their in at-risk first degree relatives. Arthritis Rheum. 2015;67(10).; Van Beers-Tas MH, Marotta A, Boers M, et al. A prospective cohort study of 14-3-3η in ACPA and/or RF-positive patients with arthralgia. Arthritis Res Ther. 2016;18:76. doi:10.1186/s13075-016-0975-4; Issa SF, Duer A, Ostergaard M, et al. Increased galectin-3 may serve as a serologic signature of pre-rheumatoid arthritis while markers of synovitis and cartilage do not differ between early undifferentiated arthritis subsets. Arthritis Res Ther. 2017;26;19(1):80. doi:10.1186/s13075-017-1282-4; Tan YC, Kongpachith S, Blum LK, et al. Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis Rheum. 2014;66:2706-15. doi:10.1002/art.38754; Li S, Yu Y, Yue Y, et al. Autoantibodies from single circulating plasmablasts react with citrullinated antigens and Porphyromonas gingivalis in rheumatoid arthritis. Arthritis Rheum. 2016;68:614- 26. doi:10.1002/art.39455; Corsiero E, Bombardieri M, Carlotti E, et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2015;75:1866-75. doi:10.1136/annrheumdis-2015-208356; Kerkman PF, Kempers AC, van der Voort EI, et al. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anticitrullinated protein antibodies. Ann Rheum Dis. 2016;75(12):2201-7. doi:10.1136/annrheumdis-2015-208554 2016; De Hair MJH, van de Sande MGH, Ramwadhdoebe TH, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheum (Hoboken, NJ). 2014;66:513-22. doi:10.1002/art.38273; Van Baarsen LGM, de Hair MJH, Ramwadhdoebe TH, et al. The cellular composition of lymph nodes in the earliest phase of inflammatory arthritis. Ann Rheum Dis. 2013;72:1420-4. doi:10.1136/annrheumdis-2012-202990; Ramwadhdoebe TH, Hahnlein J, Maijer KI, et al. Lymph node biopsy analysis reveals an altered immunoregulatory balance already during the at-risk phase of autoantibody positive rheumatoid arthritis. Eur J Immunol. 2016;46:2812-21. doi:10.1002/eji.201646393; Ramwadhdoebe TH, Hahnlein J, van Kuijk BJ, et al. Human lymph-node CD8(+) T cells display an altered phenotype during systemic autoimmunity. Clin Transl Immunol. 2016;5:e67. doi:10.1038/cti.2016.8; Lü bbers J, van Beers-Tas MH, Vosslamber S, et al. Changes in peripheral blood lymphocyte subsets during arthritis development in arthralgia patients. Arthritis Res Ther. 2016 Sep 14;18(1):205. doi:10.1186/s13075-016-1102-2; Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36-49. doi:10.1038/nri3581; Van Baarsen LG, Bos WH, Rustenburg F, et al. Gene expression profiling in autoantibody-positive patients with arthralgia predicts development of arthritis. Arthritis Rheum. 2010;62:694-704. doi:10.1002/art.27294; Lubbers J, Vosslamber S, van de Stadt LA, et al. B cell signature contributes to the prediction of RA development in patients with arthralgia. Ann Rheum Dis. 2015;74:1786-8. doi:10.1136/annrheumdis-2015-207324; Lubbers J, Brink M, van de Stadt LA, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72:776-80. doi:10.1136/annrheumdis-2012- 202753; Castaneda-Delgado JE, Bastian-Hernandez Y, Macias-Segura N, et al. Type I interferon gene response is increased in early and established rheumatoid arthritis and correlates with autoantibody production. Front Immunol. 2017;8:285. doi:10.3389/fimmu.2017.00285; Hunt L, Hensor EM, Nam J, et al. T cell subsets: an immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann Rheum Dis. 2016;75:1884-9. doi:10.1136/annrheumdis-2015-207991; Chalan P, Bijzet J, Kroesen B-J, et al. Altered natural killer cell subsets in seropositive arthralgia and early rheumatoid arthritis are associated with autoantibody status. J Rheumatol. 2016;43(6):1008-16. doi:10.3899/jrheum.150644; Rodriguez-Carrio J, Hahnlein JS, Ramwadhdoebe TH, et al. Brief report: altered innate lymphoid cell subsets in human lymph node biopsy specimens obtained during the at-risk and earliest phases of rheumatoid arthritis. Arthritis Rheum (Hoboken, NJ). 2017;69:70-6. doi:10.1002/art.39811; Shikhagaie MM, Germar K, Bal SM, et al. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases. Nat Rev Rheumatol. 2017;13(3):164-73. doi:10.1038/nrrheum.2016.218; Makrygiannakis D, Hermansson M, Ulfgren A-K, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis. 2008;67:1488-92. doi:10.1136/ard.2007.075192; Stolt P, Bengtsson C, Nordmark B, et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis. 2003;62:835-41. doi:10.1136/ard.62.9.835; Lugli EB, Correia RESM, Fischer R, et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res Ther. 2015;17:9. doi:10.1186/s13075-015-0520-x; Demoruelle MK, Weisman MH, Simonian PL, et al. Brief report: airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity? Arthritis Rheum. 2012;64:1756-61. doi:10.1002/art.34344; Willis VC, Demoruelle MK, Derber LA, et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 2013;65:2545-54. doi:10.1002/art.38066. doi:10.1002/art.38066; Janssen KMJ, de Smit MJ, Brouwer E, et al. Rheumatoid arthritis-associated autoantibodies in non-rheumatoid arthritis patients with mucosal inflammation: a case-control study. Arthritis Res Ther. 2015;17:174. doi:10.1186/s13075-015-0690-6; Reynisdottir G, Olsen H, Joshua V, et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann Rheum Dis. 2016;75:1722-7. doi:10.1136/annrheumdis-2015-208216; Ytterberg AJ, Joshua V, Reynisdottir G, et al. Shared immunological targets in the lungs and joints of patients with rheumatoid arthritis: identification and validation. Ann Rheum Dis. 2015;74:1772-7. doi:10.1136/annrheumdis-2013-204912; Kinslow JD, Blum LK, Deane KD, et al. IgA plasmablasts are elevated in subjects at risk for future rheumatoid arthritis. Arthritis Rheum. 2016;68:2372-83. doi:10.1002/art.39771; Roos K, Martinsson K, Ziegelasch M, et al. Circulating secretory IgA antibodies against cyclic citrullinated peptides in early rheumatoid arthritis associate with inflammatory activity and smoking. Arthritis Res Ther. 2016;23;18(1):119. doi:10.1186/s13075-016-1014-1; Bas S, Genevay S, Meyer O, Gabay C. Anti-cyclic citrullinated peptide antibodies, IgM and IgA rheumatoid factors in the diagnosis and prognosis of rheumatoid arthritis. Rheumatology. 2003;42:677-80. doi:10.1093/rheumatology/keg184; Svä rd A, Skogh T, Alfredsson L, et al. Associations with smoking and shared epitope differ between IgA- and IgG-class antibodies to cyclic citrullinated peptides in early rheumatoid arthritis. Arthritis Rheum. 2015;67:2032-7. doi:10.1002/art.39170; Watkin LB, Jessen B, Wiszniewski W, et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmunemediated lung disease and arthritis. Nat Genet. 2015;47:654-60. doi:10.1038/ng.3279; Nesse W, Dijkstra PU, Abbas F, et al. Increased prevalence of cardiovascular and autoimmune diseases in periodontitis patients: a cross-sectional study. J Periodontol. 2010;81:1622-8. doi:10.1902/jop.2010.100058; Dissick A, Redman RS, Jones M, et al. Association of periodontitis with rheumatoid arthritis: a pilot study. J Periodontol. 2010;81:223-30. doi:10.1902/jop.2009.090309; De Smit M, Westra J, Vissink A, et al. Periodontitis in established rheumatoid arthritis patients: a cross-sectional clinical, microbiological and serological study. Arthritis Res Ther. 2012;14:R222. doi:10.1186/ar4061; Nesse W, Westra J, van der Wal JE, et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J Clin Periodontol. 2012;39:599-607. doi:10.1111/j.1600- 051X.2012.01885.x; Harvey GP, Fitzsimmons TR, Dhamarpatni AASSK, et al. Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J Periodontal Res. 2013;48:252-61. doi:10.1111/jre.12002; Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662-72. doi:10.1002/art.27552; Wegner N, Lundberg K, Kinloch A, et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev. 2010; 233:34-54. doi:10.1111/j.0105-2896.2009.00850.x; Mikuls TR, Thiele GM, Deane KD, et al. Porphyromonas gingivalis and disease-related autoantibodies in individuals at increased risk of rheumatoid arthritis. Arthritis Rheum. 2012;64:3522-30. doi:10.1002/art.34595; Bello-Gualtero JM, Lafaurie GI, Hoyos LX, et al. Periodontal disease in individuals with a genetic risk of developing arthritis and early rheumatoid arthritis: a cross-sectional study. J Periodontol. 2016;87:346-56. doi:10.1902/jop.2015.150455; Quirke A-M, Lugli EB, Wegner N, et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann Rheum Dis. 2014;73:263-9. doi:10.1136/annrheumdis-2012-202726; Fisher BA, Cartwright AJ, Quirke A-M, et al. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case-control study. BMC Musculoskelet Disord. 2015;16:331. doi:10.1186/s12891-015-0792-y; Eriksson K, Nise L, Kats A, et al. Prevalence of periodontitis in patients with established rheumatoid arthritis: a Swedish population based case-control study. PLoS ONE. 2016;11:e0155956. doi:10.1371/journal.pone.0155956; Kharlamova N, Jiang X, Sherina N, et al. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking, and risk genes in rheumatoid arthritis etiology. Arthritis Rheum. 2016;68:604-13. doi:10.1002/art.39491; Konig MF, Abusleme L, Reinholdt J, et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med. 2016;8(369):369ra176. doi:10.1126/scitranslmed.aaj1921; Ling S, Cline EN, Haug TS, et al. Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum. 2013;65(3):618-26. doi:10.1002/art.37814; Chen B, Sun L, Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun. 2017. pii: S0896-8411(17)30178-6. doi:10.1016/j.jaut.2017.03.009; Diamanti AP, Manuela Rosado M, Lagana B, D'Amelio R. Microbiota and chronic inflammatory arthritis: an interwoven link. J Transl Med. 2016;14(1):233. doi:10.1186/s12967-016- 0989-3; Wu X, He B, Liu J, et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int J Mol Sci. 2016;17(3):431. doi:10.3390/ijms17030431; Scher JU, Littman DR, Abramson SB. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheum. 2016;68(1):35-45. doi:10.1002/art.39259; Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. doi:10.7554/eLife.01202; Pianta A, Arvikar S, Strle K, et al. Evidence for immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheum (Hoboken, NJ). 2016. doi:10.1002/art.40003; Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895-905. doi:10.1038/nm.3914; MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43(1):30-7. doi:10.1002/1529-0131(200001)43:13.0.co;2-b; Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30:1205-13. doi:10.1002/art.1780301102; Huizinga TWJ, Amos CI, van der Helm-van Mil AHM, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 2005;52:3433-8. doi:10.1002/art.21385; Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44:291-6. doi:10.1038/ng.1076; Scally SW, Petersen J, Law SC, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med. 2013;210:2569-82. doi:10.1084/jem.20131241; De Almeida DE, Ling S, Holoshitz J. New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Lett. 2011;585(23):3619-26. doi:10.1016/j.febslet.2011.03.035; Bos WH, Ursum J, de Vries N, et al. The role of the shared epitope in arthralgia with anti-cyclic citrullinated peptide antibodies (anti-CCP), and its effect on anti-CCP levels. Ann Rheum Dis. 2008;67:1347-50. doi:10.1136/ard.2008.089953; Tracy A, Buckley CD, Raza K. Pre-symptomatic autoimmunity in rheumatoid arthritis: when does the disease start? Semin Immunopathol. 2017 Mar 23. doi:10.1007/s00281-017-0620-6; Snir O, Rieck M, Gebe JA, et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum. 2011;63:2873-83. doi:10.1002/art.30445; James EA, Rieck M, Pieper J, et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheum. 2014;66:1712-22. doi:10.1002/art.38637; Padyukov L, Silva C, Stolt P, et al. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 2004;50:3085-92. doi:10.1002/art.20553; Pedersen M, Jacobsen S, Garred P, et al. Strong combined geneenvironment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark. Arthritis Rheum. 2007;56:1446-53. doi:10.1002/art.22597; Fisher BA, Bang S-Y, Chowdhury M, et al. Smoking, the HLADRB1 shared epitope and ACPA fine-specificity in Koreans with rheumatoid arthritis: evidence for more than one pathogenic pathway linking smoking to disease. Ann Rheum Dis. 2014;73:741-7. doi:10.1136/annrheumdis-2012-202535; Lee H-S, Irigoyen P, Kern M, et al. Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum. 2007;56:1745-53. doi:10.1002/art.22703; Van Heemst J, Hensvold AH, Jiang X, et al. Protective effect of HLA-DRB1*13 alleles during specific phases in the development of ACPA-positive RA. Ann Rheum Dis. 2016;75:1891-8. doi:10.1136/annrheumdis-2015-207802; Van Heemst J, Jansen DTSL, Polydorides S, et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLAbased protection against rheumatoid arthritis. Nat Commun. 2015;6:6681. doi:10.1038/ncomms7681; Diogo D, Okada Y, Plenge RM. Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: recent findings and challenges. Curr Opin Rheumatol. 2014;26(1):85-92. doi:10.1097/bor.0000000000000012; Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol. 2014;15:875-83. doi:10.1038/ni.2958; Menard L, Saadoun D, Isnardi I, et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest. 2011;121:3635-44. doi:10.1172/JCI45790; Chang HH, Liu GY, Dwivedi N, et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight. 2016;1(17):e90045. doi:10.1172/jci.insight.90045; Kallberg H, Padyukov L, Plenge RM, et al. Epidemiological Investigation of Rheumatoid Arthritis study group. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet. 2007;80:867-75. doi:10.1086/516736; Yang Z, Shen Y, Oishi H, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med. 2016;8:331ra38. doi:10.1126/scitranslmed.aad7151; Di Giuseppe D, Crippa A, Orsini N, Wolk A. Fish consumption and risk of rheumatoid arthritis: a dose-response meta-analysis. Arthritis Res Ther. 2014;16:446. doi:10.1186/s13075-014-0446-8; Gan RW, Demoruelle MK, Deane KD, et al. Omega-3 fatty acids are associated with a lower prevalence of autoantibodies in shared epitope-positive subjects at risk for rheumatoid arthritis. Ann Rheum Dis. 2017;76:147-52. doi:10.1136/annrheumdis-2016- 209154; Goldberg RJ, Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain. 2007;129:210-23. doi:10.1016/j.pain.2007.01.020; Mas E, Croft KD, Zahra P, et al. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012;58:1476-84. doi:10.1373/clinchem.2012.190199; Arnardottir HH, Dalli J, Norling LV, et al. Resolvin D3 is dysregulated in arthritis and reduces arthritic inflammation. J Immunol. 2016;197:2362-8. doi:10.4049/jimmunol.1502268; McAllen RM, Cook AD, Khiew HW, et al. The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Res Ther. 2015;17:87. doi:10.1186/s13075-015- 0597-2; Koopman FA, Tang MW, Vermeij J, et al. Autonomic dysfunction precedes development of rheumatoid arthritis: a prospective cohort study. EBioMedicine. 2016;6:231-7. doi:10.1016/j.ebiom.2016.02.029; Liu Z, Han B, Li P, et al. Activation of alpha7nAChR by nicotine reduced the Th17 response in CD4(+)T lymphocytes. Immunol Investig. 2014;43:667-74. doi:10.3109/08820139.2014.914532; Baez-Pagan CA, Delgado-Velez M, Lasalde-Dominicci JA. Activation of the macrophage alpha7 nicotinic acetylcholine receptor and control of inflammation. J NeuroImmune Pharmacol. 2015;10:468-76. doi:10.1007/s11481-015-9601-5; Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:8284-9. doi:10.1073/pnas.1605635113; Van Steenbergen HW, Huizinga TW, van der Helm-van Mil AH. Review: the preclinical phase of rheumatoid arthritis: what is acknowledged and what needs to be assessed? Arthritis Rheum. 2013;65:2219-32. doi:10.1002/art.38013; Raza K, Gerlag DM. Preclinical inflammatory rheumatic diseases: an overview and relevant nomenclature. Rheum Dis Clin N Am. 2014;40:569-80. doi:10.1016/j.rdc.2014.07.001; Stack RJ, van Tuyl LH, Sloots M, et al. Symptom complexes in patients with seropositive arthralgia and in patients newly diagnosed with rheumatoid arthritis: a qualitative exploration of symptom development. Rheumatology (Oxford). 2014;53(9):1646- 53. doi:10.1093/rheumatology/keu159; Bos WH, Wolbink GJ, Boers M, et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann Rheum Dis. 2010;69:490-4. doi:10.1136/ard.2008.105759; Van de Stadt LA, Witte BI, Bos WH, van Schaardenburg D. A prediction rule for the development of arthritis in seropositive arthralgia patients. Ann Rheum Dis. 2013;72:1920-6. doi:10.1136/annrheumdis-2012-202127; Van der Helm-van Mil AH, le Cessie S, van Dongen H, et al. A prediction rule for disease outcome in patients with recentonset undifferentiated arthritis: how to guide individual treatment decisions. Arthritis Rheum. 2007;56:433-40. doi:10.1002/art.22380; De Rooy DP, van der Linden MP, Knevel R, et al. Predicting arthritis outcomes – what can be learned from the Leiden Early Arthritis Clinic? Rheumatology (Oxford). 2011;50:93-100. doi:10.1093/rheumatology/keq230; Van Steenbergen HW, van Nies JA, Huizinga TW, et al. Characterising arthralgia in the preclinical phase of rheumatoid arthritis using MRI. Ann Rheum Dis. 2015;74:122-32. doi:10.1136/annrheumdis-2014-205522; Van Steenbergen HW, Aletaha D, Beaart-van de Voorde LJJ. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann Rheum Dis. 2017;76(3):491-6. doi:10.1136/annrheumdis-2016-209846; Van der Linden MP, le Cessie S, Raza K, et al. Long-term impact of delay in assessment of patients with early arthritis. Arthritis Rheum. 2010;62:3537-46. doi:10.1002/art.2769; Finckh A, Liang MH, van Herckenrode CM, et al. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: a meta-analysis. Arthritis Care Res. 2006;55:864-72. doi:10.1002/art.22353; Van Nies JA, Krabben A, Schoones JW, et al. What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review. Ann Rheum Dis. 2014;73:861-70. doi:10.1136/annrheumdis-2012- 203130; Bos WH, Dijkmans BA, Boers M, et al. Effect of dexamethasone on autoantibody levels and arthritis development in patients with arthralgia: a randomised trial. Ann Rheum Dis. 2010;69:571-4. doi:10.1136/ard.2008.105767; Saleem B, Mackie S, Quinn M, et al. Does the use of tumour necrosis factor antagonist therapy in poor prognosis, undifferentiated arthritis prevent progression to rheumatoid arthritis? Ann Rheum Dis. 2008;67:1178-80. doi:10.1136/ard.2007.084269; Emery P, Durez P, Dougados M, et al. Impact of T-cell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial). Ann Rheum Dis. 2010;69:510-6. doi:10.1136/ard.2009.119016; Machold KP, Landewe R, Smolen JS, et al. The Stop Arthritis Very Early (SAVE) trial, an international multicentre, randomised, double-blind, placebo-controlled trial on glucocorticoids in very early arthritis. Ann Rheum Dis. 2010;69:495-502. doi:10.1136/ard.2009.122473; Verstappen SM, McCoy MJ, Roberts C, et al. Beneficial effects of a 3-week course of intramuscular glucocorticoid injections in patients with very early inflammatory polyarthritis: results of the STIVEA trial. Ann Rheum Dis. 2010;69:503-9. doi:10.1136/ard.2009.119149; Van Dongen H, van Aken J, Lard LR, et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2007;56(5):1424-32. doi:10.1002/art.22525; Gerlag DM, Safy M, Maijer KI, et al. A Single Infusion of Rituximab Delays the Onset of Arthritis in Subjects at High Risk of Developing RA [abstract]. Arthritis Rheum. 2016;68 Suppl 10. Available from: http://acrabstracts.org/abstract/a-single-infusionof-rituximab-delays-the-onset-of-arthritis-in-subjects-at-highrisk-of-developing-ra/. Accessed May 20, 2017.; Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315-24. doi:10.1002/art.1780310302; Van Aken J, Heimans L, Gillet-van Dongen H, et al. Five-year outcomes of probable rheumatoid arthritis treated with methotrexate or placebo during the first year (the PROMPT study). Ann Rheum Dis. 2014;73(2):396-400. doi:10.1136/annrheumdis-2012-202967; Burgers LE, Allaart CF, Huizinga TWJ, et al. Brief Report: Clinical Trials Aiming to Prevent Rheumatoid Arthritis Cannot Detect Prevention Without Adequate Risk Stratification: A Trial of Methotrexate Versus Placebo in Undifferentiated Arthritis as an Example. Arthritis Rheum. 2017;69(5):926-31. doi:10.1002/art.40062; Насонов ЕЛ. Метотрексат при ревматоидном артрите – 2015: новые факты и идеи. Научно-практическая ревматология. 2015;53(4):421-33 [Nasonov EL. Methotrexate in rheumatoid arthritis – 2015: new facts and ideas. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2015;53(4):421-33 (In Russ.)]. doi:10.14412/1995- 4484-2015-421-433; Dekkers JS, Schoones JW, Huizinga TW, et al. Possibilities for preventive treatment in rheumatoid arthritis? Lessons from experimental animal models of arthritis: a systematic literature review and meta-analysis. Ann Rheum Dis. 2017;76(2):458-67. doi:10.1136/annrheumdis-2016-209830; Kohler L, Kirchoff T, Jablonka A, et al. Incidence of rheumatoid arthritis onset in patients with arthralgia and anti-citrullinated peptide antibody positivity; pilor study on effectiveness of hydroxychloroquine treatment. Rheumatology (Sunnyvale). 2016;6:2. doi:10.4172/2161-1149.1000196; Gerlag DM, Norris JM, Tak PP. Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment. Rheumatology (Oxford). 2016;55(4):607-14. doi:10.1093/rheumatology/kev347; Deane KD, Striebich CC, Holers VM. Editorial: Prevention of Rheumatoid Arthritis: Now Is the Time, but How to Proceed? Arthritis Rheum. 2017;69:873-7. doi:10.1002/art.40061; National Institute of Allergy and Infectious Diseases, sponsor. Strategy for the prevention of onset of clinically-apparent rheumatoid arthritis (StopRA). ClinicalTrials.gov identifier: NCT02603146; 2015.; Guy's and St. Thomas' NHS Foundation Trust, sponsor. Arthritis prevention in the pre-clinical phase of RA with abatacept. ISRCTN 46017566; 2014.; Academic Medical Center, Division of Clinical Immunology and Rheumatology, sponsor. Prevention of clinically manifest rheumatoid arthritis by B cell directed therapy in the earliest phase of the disease (PRAIRI). NTR 2442; 2010.

  4. 4
  5. 5