-
1Academic Journal
Authors: Mihaela MUNTEANU, Mihail POPOVICI, Victoria IVANOV, Lucia CIOBANU, Ion POPOVICI, Ion MORARU, Valeriu COBEȚ
Source: Buletinul Academiei de Ştiinţe a Moldovei: Ştiinţe Medicale, Vol 78, Iss 1, Pp 106-114 (2024)
Subject Terms: постинфарктное ремоделирование, функция изолированная сердца, коронарная реактивность, Medicine (General), R5-920, Internal medicine, RC31-1245, Other systems of medicine, RZ201-999, Public aspects of medicine, RA1-1270
File Description: electronic resource
-
2Academic Journal
Authors: S. V. Popov, L. N. Maslov, A. V. Mukhomedzyanov, A. S. Slidnevskaya, A. Kan, N. V. Naryzhnaya, Yu. G. Birulina, T. V. Lasukova, Yu. K. Podoxenov, С. В. Попов, Л. Н. Маслов, А. В. Мухомедзянов, А. С. Слидневская, А. Кан, Н. В. Нарыжная, Ю. Г. Бирулина, Т. В. Ласукова, Ю. К. Подоксенов
Contributors: The study was supported by the Russian Science Foundation grant No. 23-65-10017. The section on post-infarction cardiac remodeling was prepared in the framework of the state assignment 122020300042-4, Работа выполнена при финансовой поддержке гранта Российского научного фонда №2365-10017. Раздел, посвященный постинфарктному ремоделированию сердца, подготовлен в рамках государственного задания 122020300042-4
Source: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 11-18 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 11-18 ; 2713-265X ; 2713-2927
Subject Terms: адреномедуллин, peptides, ischemia/reperfusion, post-infarction cardiac remodeling, adrenomedullin, пептиды, ишемия / реперфузия, постинфарктное ремоделирование сердца
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2628/1043; Currey E.M., Falconer N., Isoardi K.Z., Barras M. Impact of pharmacists during in-hospital resuscitation or medical emergency response events: A systematic review. Am. J. Emerg. Med. 2024;75:98–110. https://doi.org/10.1016/j.ajem.2023.10.020; Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R. et al. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1_Pt_B):102049. https://doi.org/10.1016/j.cpcardiol.2023.102049; Nanavaty D., Sinha R., Kaul D., Sanghvi A., Kumar V., Vachhani B. et al. Impact of COVID-19 on acute myocardial infarction: A national inpatient sample analysis. Curr. Probl. Cardiol. 2024;49(1_Pt_A):102030. https://doi.org/10.1016/j.cpcardiol.2023.102030; Hti Lar Seng N.S., Zeratsion G., Pena Zapata O.Y., Tufail M.U., Jim B. Utility of cardiac troponins in patients with chronic kidney disease. Cardiol. Rev. 2024;32(1):62–70. https://doi.org/10.1097/CRD.0000000000000461; Luo Q., Sun W., Li Z., Sun J., Xiao Y., Zhang J. et al. Biomaterialsmediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials. 2023;303:122368. https://doi.org/10.1016/j.biomaterials.2023.122368; Мотова А.В., Каретникова В.Н., Осокина А.В., Поликутина О.М., Барбараш О.Л. Инфаркт миокарда 2-го типа: особенности диагностики в реальной клинической практике. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):75–82. https://doi.org/10.29001/2073-8552-2022-37-3-75-82; Вышлов Е.В., Алексеева Я.В., Усов В.Ю., Мочула О.В., Рябов В.В. Синдром микрососудистого повреждения миокарда у пациентов с первичным инфарктом миокарда с подъемом сегмента ST: распространенность и связь с клиническими характеристиками. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):36–46. https://doi.org/10.29001/2073-8552-2021-36-4-36-46; Li M., Hu L., Li L. Research progress of intra-aortic balloon counterpulsation in the treatment of acute myocardial infarction with cardiogenic shock: A review. Medicine (Baltimore). 2023;102(49):e36500. https://doi.org/10.1097/MD.0000000000036500; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Cur. Cardiol. Rev. 2022;18(5):63–79. https://doi.org/10.2174/1573403X18666220413121730; Reimer K.A., Jennings R.B. Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischemic myocardium without limitation of ultimate infarct size. Lab. Invest. 1984;51(6):655–666.; Kitamura K., Kangawa K., Kawamoto M., Ichiki Y., Nakamura S., Matsuo H. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 1993a;192(2):553–560. https://doi.org/10.1006/bbrc.1993.1451; Sugo S., Minamino N., Kangawa K., Miyamoto K., Kitamura K., Sakata J. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 1994;201(3):1160–1166. https://doi.org/10.1006/bbrc.1994.1827; Kitamura K., Sakata J., Kangawa K., Kojima M., Matsuo H., Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem. Biophys. Res. Commun. 1993b; 194(2):720– 725. https://doi.org/10.1006/bbrc.1993.1881; Ishiyama Y., Kitamura K., Ichiki Y., Sakata J., Kida O., Kangawa K. et al. Haemodynamic responses to rat adrenomedullin in anaesthetized spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1995;22(9):614–618. https://doi.org/10.1111/j.1440-1681.1995.tb02075.x; Meeran K., O'Shea D., Upton P.D., Small C.J., Ghatei M.A., Byfield P.H. et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 1997;82(1):95–100. https://doi.org/10.1210/jcem.82.1.3656; Sandoval D.A., D'Alessio D.A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015;95(2):513–548. https://doi.org/10.1152/physrev.00013.2014; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. https://doi.org/10.1016/j.bmcl.2020.127499; Naot D., Musson D.S., Cornish J. The activity of peptides of the calcitonin family in bone. Physiol. Rev. 2019;99(1):781–805. https://doi.org/10.1152/physrev.00066.2017; Woolley M.J., Reynolds C.A., Simms J., Walker C.S., Mobarec J.C., Garelja M.L. et al. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochem. Pharmacol. 2017;142:96–110. https://doi.org/10.1016/j.bcp.2017.07.005; Sekine N., Takano K., Kimata-Hayashi N., Kadowaki T., Fujita T. Adrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism. Am. J. Physiol. Endocrinol. Metab. 2006;291(1):E9–E14. https://doi.org/10.1152/ajpendo.00213.2005; Mittra S. Bourreau J.P. Gs and Gi coupling of adrenomedullin in adult rat ventricular myocytes. Am J. Physiol. Heart Circ. Physiol. 2006;290(5):H1842–H1847. https://doi.org/10.1152/ajpheart.00388.2005; Berenguer C., Boudouresque F., Dussert C., Daniel L., Muracciole X., Grino M. et al. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Oncogene. 2008;27(4):506–518. https://doi.org/10.1038/sj.onc.1210656; Bell D., Campbell M., McAleer S.F., Ferguson M., Donaghy L., Harbinson M.T. Endothelium-derived intermedin/adrenomedullin-2 protects human ventricular cardiomyocytes from ischaemiareoxygenation injury predominantly via the AM1 receptor. Peptides. 2016;76:1–13. https://doi.org/10.1016/j.peptides.2015.12.005; Xian X., Sakurai T., Kamiyoshi A., Ichikawa-Shindo Y., Tanaka M., Koyama T. et al. Vasoprotective activities of the adrenomedullin-RAMP2 system in endothelial cells. Endocrinology. 2017;158(5):1359–1372. https://doi.org/10.1210/en.2016-1531; Josiassen J., Frydland M., Holmvang L., Lerche Helgestad O.K., Okkels Jensen L., Goetze J.P. et al. Mortality in cardiogenic shock is stronger associated to clinical factors than contemporary biomarkers reflecting neurohormonal stress and inflammatory activation. Biomarkers. 2020;25(6):506–512. https://doi.org/10.1080/1354750X.2020.1795265; Nagaya N., Nishikimi T., Uematsu M., Yoshitomi Y., Miyao Y., Miyazaki S. et al. Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart. 1999;81(5):483–487. https://doi.org/10.1136/hrt.81.5.483; Hartopo A.B., Puspitawati I., Anggraeni V.Y. High level of mid-regional proadrenomedullin during ST-segment elevation myocardial infarction is an independent predictor of adverse cardiac events within 90-day follow-up. Medicina (Kaunas). 2022;58(7):861. https://doi.org/10.3390/medicina58070861; Vijay P., Szekely L., Aufiero T.X., Sharp T.G. Coronary sinus adrenomedullin rises in response to myocardial injury. Clin. Sci. (Lond). 1999;96(4):415–420. https://doi.org/10.1042/cs0960415; Oie E., Vinge L.E., Yndestad A., Sandberg C., Grøgaard H.K., Attramadal H. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation. 2000;101(4):415–422. https://doi.org/10.1161/01.cir.101.4.415; Nagaya N., Nishikimi T., Yoshihara F., Horio T., Morimoto A., Kangawa K. Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278(4):R1019–R1026. https://doi.org/10.1152/ajpregu.2000.278.4.R1019; Belloni A.S., Guidolin D., Ceretta S., Bova S., Nussdorfer G.G. Acute effect of ischemia on adrenomedullin immunoreactivity in the rat heart: an immunocytochemical study. Int. J. Mol. Med. 2004;14(1):71–73. https://doi.org/10.3892/ijmm.14.1.71; Hinrichs S., Scherschel K., Krüger S., Neumann J.T., Schwarz M., Yan I. et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc. Natl. Acad. Sci USA. 2018;115(37):E8727–E8736. https://doi.org/1073/pnas.1721635115; Kato K., Yin H., Agata J., Yoshida H., Chao L., Chao J. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J. Physiol. Heart. Circ. Physiol. 2003;285(4):H1506– H1514. https://doi.org/10.1152/ajpheart.00270.2003; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis L.V.M., Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. https://doi.org/10.2174/1570161119666201120160619; Yin H., Chao L., Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension. 2004;43(1):109–116. https://doi.org/10.1161/01.HYP.0000103696.60047.55; An R., Xi C., Xu J., Liu Y., Zhang S., Wang Y. et al. Intramyocardial injection of recombinant adeno-associated viral vector coexpressing PR39/adrenomedullin enhances angiogenesis and reduces apoptosis in a rat myocardial infarction model. Oxid. Med. Cell. Longev. 2017;2017:1271670. https://doi.org/10.1155/2017/1271670; Naryzhnaya N.V., Maslov L.N., Derkachev I.A., Ma H., Zhang Y., Prasad N.R. et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J. Biomed. Res. 2022;37(4):230–254. https://doi.org/10.7555/JBR.36.20220125; Moradi M., Mousavi A., Emamgholipour Z., Giovannini J., Moghimi S., Peytam F. et al. Quinazoline-based VEGFR-2 inhibitors as potential antiangiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur. J. Med. Chem. 2023;259:115626. https://doi.org/10.1016/j.ejmech.2023.115626; Okumura H., Nagaya N., Itoh T., Okano I., Hino J., Mori K. et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004;109(2):242–248. https://doi.org/10.1161/01.CIR.0000109214.30211.7C; Hamid S.A., Baxter G.F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res. Cardiol. 2005;100(5):387– 396. https://doi.org/10.1007/s00395-005-0538-3; Hamid S.A., Baxter G.F. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J. Mol. Cell. Cardiol. 2006;41(2):360–363. https://doi.org/10.1016/j.yjmcc.2006.05.017; Hamid S.A., Totzeck M., Drexhage C., Thompson I., Fowkes R.C., Rassaf T. et al. Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res. Cardiol. 2010;105(2):257–266. https://doi.org/10.1007/s00395-009-0058-7; Nishida H., Sato T., Miyazaki M., Nakaya H. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res. 2008;77(2):398–405. https://doi.org/10.1016/j.cardiores.2007.07.015; Torigoe Y., Takahashi N., Hara M., Yoshimatsu H., Saikawa T. Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology. 2009;150(3):1450–1455. https://doi.org/10.1210/en.2008-1052; Karakas M., Akin I., Burdelski C., Clemmensen P., Grahn H., Jarczak D. et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, doubleblinded, placebo-controlled, multicentre trial. Lancet Respir. Med. 2022;10(3):247–254. https://doi.org/10.1016/S2213-2600(21)00439-2; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Marutsuka K. et al. Beneficial effects of adrenomedullin on left ventricular remodeling after myocardial infarction in rats. Cardiovasc. Res. 2002;56(3):373–380. https://doi.org/10.1016/s0008-6363(02)00594-1; Okumura H., Nagaya N., Kangawa K. Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens. Res. 2003;26_Suppl:S99–S104. https://doi.org/10.1291/hypres.26.s99; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Cao Y. et al. Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation. 2004;110(4):426–431. https://doi.org/10.1161/01.CIR.0000136085.34185.83; Dong W., Yu P., Zhang T., Zhu C., Qi J., Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol. Med. Rep. 2018;17(3):4547–4553. https://doi.org/10.3892/mmr.2018.8450; Dou L., Lu E., Tian D., Li F., Deng L., Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. J. Transl. Int. Med. 2023;11(2):169–177. https://doi.org/10.2478/jtim-2023-0091; Wang X., Jia J.H., Zhang M., Meng Q.S., Yan B.W., Ma Z.Y. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 2023;37(10):e23143. https://doi.org/10.1096/fj.202300474R; https://www.sibjcem.ru/jour/article/view/2628
-
3
-
4Academic Journal
Authors: Abdullaiev, R.Ya., Kapustnik, V.A., Markovsky, V.D., Kulikova, F.I., Kyrychenko, A.G., Tomakh, N.V.
Source: Azerbaijan Medical Journal. :9-14
Subject Terms: острый инфаркт миокарда, ürəyin gecikmiş postinfarkt remodelləşməsi, late postinfarction period, acute myocardial infarction, echocardiography, kəskin miokard infarktı, cardiac postinfarction remodeling, позднее постинфарктное ремоделирование сердца, 3. Good health, exokardioqrafiya, эхокардиография
-
5Academic Journal
Authors: Munteanu, M., Popovici, M.I., Ivanov, V.M., Ciobanu, L.M., Popovici, I.I., Moraru, I.L., Cobeţ, V.A., Kobets, V.A.
Source: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 78 (1) 106-114
Subject Terms: post-infarction remodeling, постинфарктное ремоделирование, isolated heart function, coronary reactivity, reactivitate coronariană, funcția cordului izolat, коронарнаяреактивность, remodelare post-infarct, функция изолированная сердца
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/209844
-
6Academic Journal
Source: Meditsinskiy sovet = Medical Council; № 6 (2024); 275-282 ; Медицинский Совет; № 6 (2024); 275-282 ; 2658-5790 ; 2079-701X
Subject Terms: острая декомпенсация сердечной недостаточности, post-infarction remodeling, biomarkers of heart failure, prognosis, постинфарктное ремоделирование, биомаркеры сердечной недостаточности, прогнозирование
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8301/7322; Мареев ВЮ, Фомин ИВ, Агеев ФТ, Беграмбекова ЮЛ, Васюк ЮА, Гарганеева АА и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018;58(6S):8–158. https://doi.org/10.18087/cardio.2475.; Ibrahim N, Januzzi JL. The potential role of natriuretic peptides and other biomarkers in heart failure diagnosis, prognosis and management. Expert Rev Cardiovasc Ther. 2015;13(9):1017–1030. https://doi.org/10.1586/14779072.2015.1071664.; Myhre PL, Vaduganathan M, Claggett BL, Anand IS, Sweitzer NK, Fang JC et al. Association of Natriuretic Peptides With Cardiovascular Prognosis in Heart Failure With Preserved Ejection Fraction: Secondary Analysis of the TOPCAT Randomized Clinical Trial. JAMA Cardiol. 2018;3(10):1000–1005. https://doi.org/10.1001/jamacardio.2018.2568.; Krauser DG, Lloyd-Jones DM, Chae CU, Cameron R, Anwaruddin S, Baggish AL et al. Effect of body mass index on natriuretic peptide levels in patients with acute congestive heart failure: a ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) substudy. Am Heart J. 2005;149(4):744–750. https://doi.org/10.1016/j.ahj.2004.07.010.; Caldwell JL, Smith CER, Taylor RF, Kitmitto A, Eisner DA, Dibb KM et al. Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res. 2014;115(12):986–996. https://doi.org/10.1161/CIRCRESAHA.116.303448.; Setterberg IE, Le C, Frisk M, Perdreau-Dahl H, Li J, Louch WE. Corrigendum: The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol. 2021;12:790227. https://www.frontiersin.org/article/10.3389/fphys.2021.790227.; Zhou K, Hong T. Cardiac BIN1 (cBIN1) is a regulator of cardiac contractile function and an emerging biomarker of heart muscle health. Sci China Life Sci. 2017;60(3):257–263. https://doi.org/10.1007/s11427-016-0249-x.; Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS et al. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol. 2010;8(2):e1000312. https://doi.org/10.1371/journal.pbio.1000312.; Li J, Richmond B, Hong T. Cardiac T-Tubule cBIN1-Microdomain, a Diagnostic Marker and Therapeutic Target of Heart Failure. Int J Mol Sci. 2021;22(5):2299. https://doi.org/10.3390/ijms22052299.; Nikolova AP, Hitzeman TC, Baum R, Caldaruse AM, Agvanian S, Xie Y et al. Association of a Novel Diagnostic Biomarker, the Plasma Cardiac Bridging Integrator 1 Score, With Heart Failure With Preserved Ejection Fraction and Cardiovascular Hospitalization. JAMA Cardiol. 2018;3(12):1206–1210. https://doi.org/10.1001/jamacardio.2018.3539.; Hitzeman TC, Xie Y, Zadikany RH, Nikolova AP, Baum R, Caldaruse AM et al. cBIN1 Score (CS) Identifies Ambulatory HFrEF Patients and Predicts Cardiovascular Events. Front Physiol. 2020;11:503. https://doi.org/10.3389/fphys.2020.00503.; Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L, Iqbal MM et al. Post-Myocardial Infarction T-tubules Form Enlarged Branched Structures With Dysregulation of Junctophilin-2 and Bridging Integrator 1 (BIN-1). J Am Heart Assoc. 2017;6(5):e004834. https://doi.org/10.1161/JAHA.116.004834.; Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA, Guo X, Hong T. Isoproterenol Promotes Rapid Ryanodine Receptor Movement to Bridging Integrator 1 (BIN1)-Organized Dyads. Circulation. 2016;133(4):388–397. https://doi.org/10.1161/CIRCULATIONAHA.115.018535.; Liu Y, Zhou K, Li J, Agvanian S, Caldaruse AM, Shaw S et al. In Mice Subjected to Chronic Stress, Exogenous cBIN1 Preserves Calcium-Handling Machinery and Cardiac Function. JACC Basic Transl Sci. 2020;5(6):561–578. https://doi.org/10.1016/j.jacbts.2020.03.006.; Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4(1):98–108. https://doi.org/10.1016/j.jcmg.2010.10.008.; Li J, Agvanian S, Zhou K, Shaw RM, Hong T. Exogenous Cardiac Bridging Integrator 1 Benefits Mouse Hearts With Pre-existing Pressure OverloadInduced Heart Failure. Front Physiol. 2020;11:708. https://doi.org/10.3389/fphys.2020.00708.; Hong TT, Smyth JW, Chu KY, Vogan JM, Fong TS, Jensen BC et al. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm. 2012;9(5):812–820. https://doi.org/10.1016/j.hrthm.2011.11.055.; Hong T, Yang H, Zhang SS, Cho HC, Kalashnikova M, Sun B et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med. 2014;20(6):624–632. https://doi.org/10.1038/nm.3543.; Hong TT, Cogswell R, James CA, Kang G, Pullinger CR, Malloy MJ et al. Plasma BIN1 correlates with heart failure and predicts arrhythmia in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2012;9(6):961–967. https://doi.org/10.1016/j.hrthm.2012.01.024.; Абугов СА, Алекян БГ, Архипов МВ, Барбараш ОЛ, Бойцов СА, Васильева ЕЮ и др. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы: клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4103. https://doi.org/10.15829/29/1560-4071-2020-4103.; Чаулин АМ, Дупляков ДВ. Повышение натрийуретических пептидов, не ассоциированное с сердечной недостаточностью. Российский кардиологический журнал. 2020;25(4S):4140. https://doi.org/10.15829/1560-4071-2020-4140.; Калашникова НМ, Зайцев ДН, Говорин АВ, Чистякова МВ, Бальжитов БТ. Прогностическое значение биомаркеров NT-proBNP и sST2 у больных постинфарктной хронической сердечной недостаточностью, перенесших новую коронавирусную инфекцию. Российский кардиологический журнал. 2023;28(6):5216. https://doi.org/10.15829/1560-4071-2023-5216.; Fiuzat M, Ezekowitz J, Alemayehu W, Westerhout CM, Sbolli M, Cani D et al. Assessment of Limitations to Optimization of Guideline-Directed Medical Therapy in Heart Failure From the GUIDE-IT Trial: A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2020;5(7):757–764. https://doi.org/10.1001/jamacardio.2020.0640.; Rohde LE, Zimerman A, Vaduganathan M, Claggett BL, Packer M, Desai AS et al. Associations Between New York Heart Association Classification, Objective Measures, and Long-term Prognosis in Mild Heart Failure: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol. 2023;8(2):150–158. https://doi.org/10.1001/jamacardio.2022.4427.; Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL et al. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis. JACC Heart Fail. 2017;5(4):280–286. https://doi.org/10.1016/j.jchf.2016.09.010.; Kamon D, Sugawara Y, Soeda T, Okamura A, Nakada Y, Hashimoto Y et al. Predominant subtype of heart failure after acute myocardial infarction is heart failure with non-reduced ejection fraction. ESC Heart Fail. 2021;8(1):317–325. https://doi.org/10.1002/ehf2.13070.; Хайруллин РР, Рузов ВИ, Фролова МВ, Мельникова МА. Диагностическая информативность кардиоспецифического интегратора (cbin1(cs)) при постинфарктном ремоделировании миокарда. Международный научноисследовательский журнал. 2023;(4):1–6. https://doi.org/10.23670/IRJ.2023.130.29.; Caraballo C, Desai NR, Mulder H, Alhanti B, Wilson FP, Fiuzat M et al. Clinical Implications of the New York Heart Association Classification. J Am Heart Assoc. 2019;8(23):e014240. https://doi.org/10.1161/JAHA.119.014240.; Blacher M, Zimerman A, Engster PHB, Grespan E, Polanczyk CA, Rover MM et al. Revisiting heart failure assessment based on objective measures in NYHA functional classes I and II. Heart. 2021;107(18):1487–1492. https://doi.org/10.1136/heartjnl-2020-317984.
-
7Academic Journal
Authors: M. E. Ryadinsky, A. A. Filippov, M. S. Kamenskikh, G. I. Kim, R. Y. Kappushev, J. D. Provotorova, I. Sh. Asadullin, D. V. Shmatov, М. Э. Рядинский, А. А. Филиппов, М. С. Каменских, Г. И. Ким, Р. Ю. Капушев, Ю. Д. Провоторова, И. Ш. Асадуллин, Д. В. Шматов
Source: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 2 (2024); 46-57 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 2 (2024); 46-57 ; 2713-265X ; 2713-2927
Subject Terms: предикторы рецидива митральной недостаточности, mitral valve repair, moderate ischemic mitral regurgitation, post-infarction heart remodeling, predictors of ischemic mitral regurgitation relapse, митральный клапан, умеренная ишемическая митральная недостаточность, пограничная ишемическая митральная недостаточность, постинфарктное ремоделирование левого желудочка
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2307/960; Mil-Homens Luz F., Amorim M.J. Ischemic mitral regurgitation – to repair or replace? Looking beyond the valve. Port. J. Card. Thorac. Vasc. Surg. 2022;29(1):25–34. DOI:10.48729/pjctvs.253.; Calafiore A.M., Prapas S., Katsavrias K., Totaro A., Di Marco M., Guarracini S. et al. Ischemic mitral regurgitation: Changing rationale of reparative surgical strategy. Hellenic J. Cardiol. 2021;62(1):35–37. DOI:10.1016/j.hjc.2020.12.003.; Beeri R. Ischemic mitral regurgitation and leaflet remodeling: Another arrow hits the target. J. Am. Coll. Cardiol. 2022;80(5):511–512. DOI:10.1016/j.jacc.2022.05.023.; Servito T., Elbatarny M., Yanagawa B., Dokollari A., Bisleri G. Surgical repair of ischemic mitral regurgitation: One ring does not fit all. Curr. Opin. Cardiol. 2021;36(2):154–162. DOI:10.1097/HCO.0000000000000827.; Hickey M.S., Smith L.R., Muhlbaier L.H., Harrell F.E. Jr., Reves J.G., Hinohara T. et al. Current prognosis of ischemic mitral regurgitation. Implications for future management. Circulation. 1988;78(3_Pt_2):I51–I59.; Nonaka D.F., Fox A.A. Ischemic mitral regurgitation: Repair, replacement or nothing. Semin. Cardiothorac. Vasc. Anesth. 2019;23(1):11–19. DOI:10.1177/1089253218792921.; Burch G.E., De Pasquale N.P., Phillips J.H. The syndrome of papillary muscle dysfunction. Am. Heart. J. 1968;75(3):399–415. DOI:10.1016/0002-8703(68)90097-5.; Vinciguerra M., Grigioni F., Romiti S., Benfari G., Rose D., Spadaccio C. et al. Ischemic mitral regurgitation: A multifaceted syndrome with evolving therapies. Biomedicines. 2021;9(5):447. DOI:10.3390/biomedicines9050447.; Vinciguerra M., Romiti S., Wretschko E., D’Abramo M., Rose D., Miraldi F. et al. Mitral plasticity: The way to prevent the burden of ischemic mitral regurgitation? Front. Cardiovasc. Med. 2022;8:794574. DOI:10.3389/fcvm.2021.794574.; Yamazaki S., Numata S., Yaku H. Surgical intervention for ischemic mitral regurgitation: How can we achieve better outcomes? Surg. Today. 2020;50(6):540–550. DOI:10.1007/s00595-019-01823-8.; Otto C.M., Nishimura R.A., Bonow R.O., Carabello B.A., Erwin J.P. 3rd, Gentile F. et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: Executive summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143(5):е35– е71. DOI:10.1161/CIR.000000000000932.; Piatkowski R., Kochanowski J., Budnik M., Peller M., Grabowski M., Opolski G. Stress echocardiography protocol for deciding type of surgery in ischemic mitral regurgitation: Predictors of mitral regurgitation recurrence following CABG alone. J. Clin. Med. 2021;10(21):4816. DOI:10.3390/jcm10214816.; Hadjadj S., Marsit O., Paradis J.M., Beaudoin J. Pathophysiology, diagnosis, and new therapeutic approaches for ischemic mitral regurgitation. Can. J. Cardiol. 2021;37(7):968–979. DOI:10.1016/j.cjca.2020.12.011.; Бузиашвили Ю.И., Кокшенева И.В., Абуков С.Т., Абдуллаев А.А. Значение функции папиллярных мышц митрального клапана и прилежащих сегментов миокарда левого желудочка в прогрессировании ишемической митральной регургитации у больных ишемической болезнью сердца после хирургического лечения. Терапевтический архив. 2015;87(8):915. DOI:10.17116/terarkh20158789-15.; Carpentier A. Cardiac valve surgery – the “French correction”. J. Thorac. Cardiovasc. Surg. 1983;86(3):323–337.; Schaff H.V., Nguyen A. Contemporary techniques for mitral valve repair – the Mayo Clinic experience. Indian J. Thorac. Cardiovasc. Surg. 2020;36(Suppl_1):18–26. DOI:10.1007/s12055-019-00801-6.; Kuralay E. Mitral ring annuloplasty by biological material. Turk. Gogus. Kalp. Damar. Cerrahisi. Derg. 2022;30(4):645–648. DOI:10.5606/tgkdc.dergisi.2022.23578.; Chotivatanapong T. Mitral annuloplasty ring design and selection: Complete semi-rigid is best. JTCVS Tech. 2021;10:55–57. DOI:10.1016/j.xjtc.2021.10.036.; Del Forno B., Castiglioni A., Sala A., Geretto A., Giacomini A., Denti P. et al. Mitral valve annuloplasty: Tutorial (video). Multimed. Man. Cardiothorac. Surg. 2017:016. DOI:10.1510/mmcts.2017.016.; Pierce E.L., Bloodworth C.H., Imai A., Begum S., Soomro M.A., Naseeb Kh. et al. Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces. J. Biomech. 2018;75:58–66. DOI:10.1016/j.jbiomech.2018.04.043.; Kubota K., Otsuji Y., Ueno T. et al. Functional mitral stenosis after surgical annuloplasty for ischemic mitral regurgitation: importance of subvalvular tethering in the mechanism and dynamic deterioration during exertion. J. Thorac. Cardiovasc. Surg. 2010;140(3):617–623. DOI:10.1016/j.jtcvs.2009.11.00342.; Bertrand P.B., Gutermann H., Smeets C.J., Van Kerrebroeck C., Verhaert D., Vandervoort P. et al. Functional impact of transmitral gradients at rest and during exercise after restrictive annuloplasty for ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 2014;148(1):183–187. DOI:10.1016/j.jtcvs.2013.10.013.; Bertrand P.B., Verbrugge F.H., Verhaert D., Smeets C.J., Grieten L., Mullens W. et al. Mitral valve area during exercise after restrictive mitral valve annuloplasty: Importance of diastolic anterior leaflet tethering. J. Am. Coll. Cardiol. 2015;65(5):452–461. DOI:10.1016/j.jacc.2014.11.037.; Penicka M., Linkova H., Lang O. et al. Predictors of improvement of unrepaired moderate ischemic mitral regurgitation in patients undergoing elective isolated coronary artery bypass graft surgery. Circulation. 2009;120(15):1474–1481. DOI:10.1161/CIRCULATIONAHA.108.842104.; Braun J., Bax J.J., Versteegh M.I., Voigt P.G., Holman E.R., Klautz R.J. et al. Preoperative left ventricular dimensions predict reverse remodeling following restrictive mitral annuloplasty in ischemic mitral regurgitation. Eur. J. Cardiothorac. Surg. 2005;27(5):847–853. DOI:10.1016/j.ejcts.2004.12.031.; Jeong D.S., Lee H.Y., Kim W.S., Sung K., Park P.W., Lee Y.T. Off pump coronary artery bypass versus mitral annuloplasty in moderate ischemic mitral regurgitation. Ann. Thorac. Cardiovasc. Surg. 2012;18(4):322– 330. DOI:10.5761/atcs.oa.11.01845.; Fattouch K., Sampognaro R., Speziale G. et al. Impact of moderate ischemic mitral regurgitation after isolated coronary artery bypass grafting. Ann. Thorac. Surg. 2010;90(4):1187–1194. DOI:10.1016/j.athoracsur.2010.03.103.; Sun X., Huang J., Shi M., Huang G., Pang, L., Wang Y. Predictors of moderate ischemic mitral regurgitation improvement after off-pump coronary artery bypass. J. Thorac. Cardiovasc. Surgery. 2015;149(6):1606– 1612. DOI:10.1016/j.jtcvs.2015.02.047.; Poh K.K., Lee G.K., Lee L.C., Chong E., Chia B.L., Yeo T.C. Reperfusion therapies reduce ischemic mitral regurgitation following inferoposterior ST-segment elevation myocardial infarction. Coron. Artery. Dis. 2012;23(8):555–559. DOI:10.1097/MCA.0b013e32835aab65.; Hwang H.Y., Lim J.H., Oh S.J., Paeng J.C., Kim K.B. Improved functional mitral regurgitation after off-pump revascularization in acute coronary syndrome. Ann. Thorac. Surg. 2012;94(4):1157–1165. DOI:10.1016/j.athoracsur.2012.04.118.; Capoulade R., Zeng X., Overbey J.R. et al. Impact of left ventricular to mitral valve ring mismatch on recurrent ischemic mitral regurgitation after ring annuloplasty. Circulation. 2016;134(17):1247–1256. DOI:10.1161/CIRCULATIONAHA.115.021014.; Magne J., Pibarot P., Dagenais F., Hachicha Z., Dumesnil J.G., Sénéchal M. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation. 2007;115(6):782–791. DOI:10.1161/CIRCULATIONAHA.106.649236; Bouma W., Lai E.K., Levack M.M. et al. Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral annuloplasty. Ann. Thorac. Surg. 2016;101(2):567–575. DOI:10.1016/j.athoracsur.2015.09.076.; Sun X., Jiang Y., Huang G., Huang J., Shi M., Pang L. et al. Threedimensional mitral valve structure in predicting moderate ischemic mitral regurgitation improvement after coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2019;157(5):1795–1803.e2. DOI:10.1016/j.jtcvs.2018.09.018.; Sun X., Huang G., Huang J., Shi M., Wang F., Pang L. et al. Left ventricular regional dyssynchrony predicts improvements in moderate ischaemic mitral regurgitation after off-pump coronary artery bypass. Eur. J. Cardiothorac. Surg. 2018;54(1):84–90. DOI:10.1093/ejcts/ezy024.; Teng Z., Ma X., Zhang Q., Yun Y., Ma C., Hu S. et al. Additional mitral valve procedure and coronary artery bypass grafting versus isolated coronary artery bypass grafting in the management of significant functional ischemic mitral regurgitation: a meta-analysis. J. Cardiovasc. Surg. (Torino). 2017;58(1):121–130. DOI:10.23736/S0021-9509.16.08852-2.; Gelsomino S., Lorusso R., De Cicco G., Capecchi I., Rostagno C., Caciolli S. et al. Five-year echocardiographic results of combined undersized mitral ring annuloplasty and coronary artery bypass grafting for chronic ischaemic mitral regurgitation. Eur. Heart. J. 2008;29(2):231–240. DOI:10.1093/eurheartj/ehm468.; Van Garsse L., Gelsomino S., Parise O., Lucà F., Cheriex E., Lorusso R. et al. Systolic papillary muscle dyssynchrony predicts recurrence of mitral regurgitation in patients with ischemic cardiomyopathy (ICM) undergoing mitral valve repair. Echocardiography. 2012;29(10):1191–1200. DOI:10.1111/j.1540-8175.2012.01789.x.; Gelsomino S., Lorusso R., Billè G., Rostagno C., De Cicco G., Romagnoli S. et al. Left ventricular diastolic function after restrictive mitral ring annuloplasty in chronic ischemic mitral regurgitation and its predictive value on outcome and recurrence of regurgitation. Int. J. Cardiol. 2009;132(3):419–428. DOI:10.1016/j.ijcard.2007.12.058.; Ereminiene E., Vaskelyte J., Benetis R., Stoskute N. Ischemic mitral valve repair: predictive significance of restrictive left ventricular diastolic filling. Echocardiography. 2005;22(3):217–224. DOI:10.1111/j.0742-2822.2005.03108.x.; Kongsaerepong V., Shiota M., Gillinov A.M., Song J.M., Fukuda S., Mc-Carthy P.M. et al. Echocardiographic predictors of successful versus unsuccessful mitral valve repair in ischemic mitral regurgitation. Am. J. Cardiol. 2006;98(4):504–508. DOI:10.1016/j.amjcard.2006.02.056.; Kron I.L., Hung J., Overbey J.R., Bouchard D., Gelijns A.C., Moskowitz A.J. et al. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 2015;149(3):752–61.e1. DOI:10.1016/j.jtcvs.2014.10.120.; Чернявский А.М., Разумахин Р.А., Эфендиев В.У., Рузматов Т.М., Подсосникова Т.Н. и др. Отдаленные результаты хирургического лечения умеренной ишемической митральной недостаточности у пациентов с сохраненной фракцией выброса левого желудочка. Патология кровообращения и кардиохирургия. 2015;19(2):63–71. DOI:10.21688/1681-3472-2015-2-63-71.; Smith P.K., Puskas J.D., Ascheim D.D., Voisine P., Gelijns A.C., Moskowitz A.J. et al. Surgical treatment of moderate ischemic mitral regurgitation. N. Engl. J. Med. 2014;371(23):2178–2188. DOI:10.1056/NEJMoa1410490.; El-Hag-Aly M.A., El Swaf Y.F., Elkassas M.H., Hagag M.G., Allam H.K. Moderate ischemic mitral incompetence: does it worth more ischemic time? Gen. Thorac. Cardiovasc. Surg. 2020;68(5):492–498. DOI:10.1007/s11748-019-01212-5.; Чрагян В.А., Арутюнян В.Б., Дьячков С.И. Результаты одномоментной коррекции ишемической митральной недостаточности и коронарного шунтирования у больных с осложненными формами ишемической болезни сердца. Пермский медицинский журнал. 2017;34(3):25–32. DOI:10.17816/pmj34325-32.; Salmasi M.Y., Harky A., Chowdhury M.F., Abdelnour A., Benjafield A., Suker F. et al. Should the mitral valve be repaired for moderate ischemic mitral regurgitation at the time of revascularization surgery? J. Card. Surg. 2018;33(7):374–384. DOI:10.1111/jocs.13722.; Khallaf A., Elzayadi M., Alkady H., El Naggar A. Results of coronary artery bypass grafting alone versus combined surgical revascularization and mitral repair in patients with moderate ischemic mitral regurgitation. Heart Surg. Forum. 2020;23(3):E270–E275. DOI:10.1532/hsf.2773.; Anantha Narayanan M., Aggarwal S., Reddy Y.N.V., Alla V.M., Baskaran J., Kanmanthareddy A. et al. Surgical repair of moderate ischemic mitral regurgitation – A systematic review and meta-analysis. Thorac. Cardiovasc. Surg. 2017;65(6):447–456. DOI:10.1055/s-0036-1598012.; Seese L., Deitz R., Dufendach K., Sultan I., Aranda-Michel E., Gleason T.G. et al. Midterm outcomes of isolated coronary artery bypass grafting in the setting of moderate ischemic mitral regurgitation. J. Surg. Res. 2022;278:317–324. DOI:10.1016/j.jss.2022.04.043.; Moscarelli M., Athanasiou T., Speziale G., Punjabi P.P., Malietzis G. Lancellotti P. et al. The value of adding sub-valvular procedures for chronic ischemic mitral regurgitation surgery: a meta-analysis. Perfusion. 2017;32(6):436–445. DOI:10.1177/0267659117693683.; Nappi F., Lusini M., Avtaar Singh S.S., Santana O., Chello M., Mihos C.G. Risk of ischemic mitral regurgitation recurrence after combined valvular and subvalvular repair. Ann. Thor. Surg. 2019;108(2):536–543. DOI:10.1016/j.athoracsur.2018.12.030.; Mihos C.G., Yucel E., Santana O. The role of papillary muscle approximation in mitral valve repair for the treatment of secondary mitral regurgitation. Eur. J. Card. Thorac. Surg. 2017;51(6):1023–1030. DOI:10.1093/ejcts/ezw384.; Kron I.L., Green G.R., Cope J.T. Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. Ann. Thorac. Surg. 2002;74(2):600–601. DOI:10.1016/s0003-4975(02)03749-9.; Fattouch K., Lancellotti P., Castrovinci S. Murana G., Sampognaro R., Corrado E. et al. Papillary muscle relocation in conjunction with valve annuloplasty improve repair results in severe ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 2012;143(6):1352–1355. DOI:10.1016/j.jtcvs.2011.09.062.; Messas E., Guerrero J.L., Handschumacher M.D., Conrad C., Chow C.M., Sullivan S. et al. Chordal cutting: a new therapeutic approach for ischemic mitral regurgitation. Circulation. 2001;104(16):1958–1963. DOI:10.1161/hc4201.097135.; Calafiore A.M., Refaie R., Iacò A.L., Asif M., Al Shurafa H.S., Al-Amri H. et al. Chordal cutting in ischemic mitral regurgitation: a propensity-matched study. J. Thorac. Cardiovasc. Surg. 2014;148(1):41–46. DOI:10.1016/j.jtcvs.2013.07.036.; Nielsen S.L., Timek T.A., Green R.G., Dagum P., Daughters G.T., Hasenkam M.J. et al. Influence of anterior mitral leaflet second-order chordae tendineae on left ventricular systolic function. Circulation. 2003;108(4):486–491. DOI:10.1161/01.CIR.0000080504.70265.05.; Zhan-Moodie S., Xu D., Suresh K.S., He Q., Onohara D., Kalra K. et al. Papillary muscle approximation reduces systolic tethering forces and improves mitral valve closure in the repair of functional mitral regurgitation. JTCVS open. 2021;7:91–104. DOI:10.1016/j.xjon.2021.04.008.; Oi K., Arai H., Nagaoka E., Fujiwara T., Oishi K., Takeshita M. et al. Long-term outcomes of papillary muscle relocation anteriorly for functional mitral regurgitation. Interact. Cardiovasc. Thorac. Surg. 2022;35(6):ivac245. DOI:10.1093/icvts/ivac245.; https://www.sibjcem.ru/jour/article/view/2307
-
8
-
9Academic Journal
Authors: O. Yu. Kytikova, T. P. Novgorodtseva, М. V. Antonyuk, Yu. K. Denisenko, O. V. Atamas, О. Ю. Кытикова, Т. П. Новгородцева, М. В. Антонюк, Ю. К. Денисенко, О. В. Атамась
Source: Acta Biomedica Scientifica; Том 7, № 2 (2022); 113-124 ; 2587-9596 ; 2541-9420
Subject Terms: постинфарктное ремоделирование сердца, nerve growth factor, post-infarction cardiac remodeling, фактор роста нервов
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/3427/2328; Virani SS, Alonso А, Benjamin EJ. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation. 2020; 141(9): 139-596. doi:10.1161/CIR.0000000000000757; Shih J-Y, Chen Z-C, Chang H-Y. Risks of age and sex on clinical outcomes post myocardial infarction. Int J Cardiol Heart Vasc. 2019; 23: 100350. doi:10.1016/j.ijcha.2019.100350; Report on cardiovascular health and diseases in China 2019: An updated summary. Chinese Circulation Journal. 2020; 35(9): 833-854.; Timmis A, Townsend N, Gale CP. European Society of Cardiology: Cardiovascular disease statistics 2019. Eur Heart J. 2020; 41: 12-85. doi:10.1093/eurheartj/ehz859; Maglietta G, Ardissino М, Malagoli Tagliazucchi G. Longterm outcomes after early-onset myocardial infarction. J Am Coll Cardiol. 2019; 74(16): 2113-2115. doi:10.1016/j.jacc.2019.08.1000; Pfeffer MA. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation. 1985; 2(72): 406-412.; Guo Y, Zhang C, Ye T, Chen X, Liu X, Chen X, et al. Pinocembrin ameliorates arrhythmias in rats with chronic ischaemic heart failure. Ann Med. 2021; 53(1): 830-840. doi:10.1080/07853890.2021.1927168; Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci. 2021; 264: 118628. doi:10.1016/j.lfs.2020.118628; Maida CD, Norrito RL, Daidone M. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020; 21(18): 6454. doi:10.3390/ijms21186454; Morton AB, Jacobsen NL, Segal SS. Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. Am J Physiol Cell Physiol. 2021; 320(6): C1099-C1111. doi:10.1152/ajpcell.00501.2020; Gonçalves RC, Banfi A, Oliveira MB. Strategies for revascularization and promotion of angiogenesis in trauma and disease. Biomaterials. 2021; 269: 120628. doi:10.1016/j.biomaterials.2020.120628; László A, Lénárt L, Illésy L. The role of neurotrophins in psychopathology and cardiovascular diseases: Psychosomatic connections. J Neural Transm (Vienna). 2019; 126(3): 265-278. doi:10.1007/s00702-019-01973-6; Kotlega D, Zembron-Lacny A, Morawin B. Free fatty acids and their inflammatory derivatives affect BDNF in stroke patients. Mediators Inflamm. 2020; 2020: 6676247. doi:10.1155/2020/6676247; Jamali A, Shahrbanian S, Morteza Tayebi S. The effects of exercise training on the brain-derived neurotrophic factor (BDNF) in the patients with type 2 diabetes: A systematic review of the randomized controlled trials. J Diabetes Metab Disord. 2020; 19(1): 633-643. doi:10.1007/s40200-020-00529-w; Wang J, Amidfar M, Eyileten C. Nerve growth factor in metabolic complications and Alzheimer’s disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(10): 165858. doi:10.1016/j.bbadis.2020.165858; Xue Y, Liang H, Yang R. The role of pro- and mature neurotrophins in the depression. Behav Brain Res. 2021; 404: 113162. doi:10.1016/j.bbr.2021.113162; Hang PZ, Zhu H, Li PF. The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life (Basel). 2021; 11(1): 70. doi:10.3390/life11010070; Halloway S, Jung M, Yeh AY. An integrative review of brain-derived neurotrophic factor and serious cardiovascular conditions. Nurs Res. 2020; 69(5): 376-390. doi:10.1097/NNR.0000000000000454; Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021; 17(1): 34-46. doi:10.1038/s41584-020-00528-4; Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail. 2021; 8(2): 974-987. doi:10.1002/ehf2.13138; Li R, Xu J, Rao Z. Facilitate angiogenesis and neurogenesis by growth factors integrated decellularized matrix hydrogel. Tissue Eng Part A. 2021; 27(11-12): 771-787. doi:10.1089/ten.TEA.2020.0227; Yan T, Zhang Z, Li D. NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and alpha-lipoic acid treatment. BMC Neuroscience. 2020; 21(1): 38. doi:10.1186/s12868-020-00588-y; Xu F, Na L, Li Y. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020; 10: 54. doi:10.1186/s13578-020-00416-0; Baldassarro VA, Lorenzini L, Bighinati A. NGF and endogenous regeneration: From embryology toward therapies. Adv Exp Med Biol. 2021; 1331: 51-63. doi:10.1007/978-3-030-74046-7_5; Dahlström M, Nordvall G, Sundström E. Identification of amino acid residues of nerve growth factor important for neurite outgrowth in human dorsal root ganglion neurons. Eur J Neurosci. 2019; 50: 3487-3501. doi:10.1111/ejn.14513; Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol Res. 2021; 169: 105662. doi:10.1016/j.phrs.2021.105662; Grassi G, Quarti-Trevano F, Esler MD. Sympathetic activation in congestive heart failure: An updated overview. Heart Fail Rev. 2021; 26(1): 173-182. doi:10.1007/s10741-019-09901-2; Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, et al. Nerve growth factor, stress and diseases. Curr Med Chem. 2021; 28(15): 2943-2959. doi:10.2174/0929867327999200818111654; Wang Y, Tan J, Yin J, Hu H, Shi Y, Wang Y, et al. Targeting blockade of nuclear factor-kappaB in the hypothalamus paraventricular nucleus to prevent cardiac sympathetic hyperinnervation post myocardial infarction. Neurosci Lett. 2019; 707: 134319. doi:10.1016/j.neulet.2019.134319; Oliveira ÍM, Silva Júnior ELD, Martins YO, Rocha HAL, Scanavacca MI, Gutierrez PS. Cardiac autonomic nervous system remodeling may play a role in atrial fibrillation: A study of the autonomic nervous system and myocardial receptors. Arq Bras Cardiol. 2021; 117(5): 999-1007. doi:10.36660/abc.20200725; Gussak G, Pfenniger A, Wren L, Gilani M, Zhang W, Yoo S, et al. Region-specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation. JCI Insight. 2019; 4(20): e130532. doi:10.1172/jci.insight.130532; Yang M, Zhang S, Liang J, Tang Y, Wang X, Huang C, et al. Different effects of norepinephrine and nerve growth factor on atrial fibrillation vulnerability. J Cardiol. 2019; 74: 460-465. doi:10.1016/j.jjcc.2019.04.009; Wang Z, Li S, Lai H, Zhou L, Meng G, Wang M, et al. Interaction between endothelin-1 and left stellate ganglion activation: A potential mechanism of malignant ventricular arrhythmia during myocardial ischemia. Oxid Med Cell Longev. 2019; 2019: 6508328. doi:10.1155/2019/6508328; Jie X, Yang H, Wang K, Zhu ZF, Wang JP, Yang LG, et al. Apocynin prevents reduced myocardial nerve growth factor, contributing to amelioration of myocardial apoptosis and failure. Clin Exp Pharmacol Physiol. 2021; 48(5): 704-716. doi:10.1111/1440-1681.13465; Cheng XY, Chen C, He SF, Huang CX, Zhang L, Chen ZW, et al. Spinal NGF induces anti-intrathecal opioid-initiated cardioprotective effect via regulation of TRPV1 expression. Eur J Pharmacol. 2019; 844: 145-155. doi:10.1016/j.ejphar.2018.12.007; van der Bijl P, Abou R, Goedemans L, Gersh BJ, Holmes DR Jr, Ajmone Marsan N, et al. Left ventricular post-infarct remodeling: Implications for systolic function improvement and outcomes in the modern era. JACC Heart Fail. 2020; 8(2): 131-140. doi:10.1016/j.jchf.2019.08.014; Schuttler D, Clauss S, Weckbach LT, Brunner S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells. 2019; 8(10): 1128. doi:10.3390/cells8101128; Smit M, Coetzee AR, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2020; 34(9): 2501-2512. doi:10.1053/j.jvca.2019.10.00; Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac adipose tissue contributes to cardiac repair: A review. Stem Cell Rev Rep. 2021; 17(4): 1137-1153. doi:10.1007/s12015-020-10097-4; Revelo X, Parthiban P, Chen C, Barrow F, Fredrickson G, Wang H, et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ Res. 2021; 129(12): 1086-1101. doi:10.1161/CIRCRESAHA.121.319737; Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, et al. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021; 8(1): 222-237. doi:10.1002/ehf2.13144; Yu TS, Ge LZ, Cao JM. Research advances in sympathetic remodeling after myocardial infarction and its significance in forensic science. Fa Yi Xue Za Zhi. 2019; 35(1): 68-73. doi:10.12116/j.issn.1004-5619.2019.01.013; Kosmas N, Manolis AS, Dagres N, Iliodromitis EK. Myocardial infarction or acute coronary syndrome with non-obstructive coronary arteries and sudden cardiac death: A missing connection. Europace. 2020; 22(9): 1303-1310. doi:10.1093/europace/euaa156; Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, et al. Macrophagemediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol. 2020; 115(5): 56. doi:10.1007/s00395-020-0813-3; Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology. Russian Open Medical Journal. 2019; 8(4): e0402. doi:10.15275/rusomj.2019.0402; Cuello AC. Levi-Montalcini R. NGF metabolism in health and in the Alzheimer’s pathology. Adv Exp Med Biol. 2021; 1331: 119-144. doi:10.1007/978-3-030-74046-7_9; Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J, et al. Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions. Comput Struct Biotechnol J. 2021; 19: 2938-2949. doi:10.1016/j.csbj.2021.05.009; Yamashita N. NGF signaling in endosomes. Adv Exp Med Biol. 2021; 1331: 19-29. doi:10.1007/978-3-030-74046-7_3; Rowe CW, Dill T, Faulkner S, Gedye C, Paul JW, Tolosa JM, et al. The precursor for nerve growth factor (proNGF) in thyroid cancer lymph node metastases: Correlation with primary tumour and pathological variables. Int J Mol Sci. 2019; 20(5924). doi:10.3390/ijms20235924; Kendall A, Nyström S, Ekman S, Hultén LM, Lindahl A, Hansson E, et al. Nerve growth factor in the equine joint. Vet J. 2021; 267: 105579. doi:10.1016/j.tvjl.2020.105579; Liu Z, Wu H, Huang S. Role of NGF and its receptors in wound healing (Review). Exp Ther Med. 2021; 21(6): 599. doi:10.3892/etm.2021.10031; Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021; 17(1): 34-46. doi:10.1038/s41584-020-00528-4; Kang L, Andersen ND, Turek JW. Commentary: Connecting the dots: Coronary artery development as a combination of vasculogenesis and angiogenesis. J Thorac Cardiovasc Surg. 2021: S0022-5223(21)01224-1. doi:10.1016/j.jtcvs.2021.08.026; Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021; 117(5): 1257-1273. doi:10.1093/cvr/cvaa287; Kurotsu S, Osakabe R, Isomi M, Tamura F, Sadahiro T, Muraoka N, et al. Distinct expression patterns of Flk1 and Flt1 in the coronary vascular system during development and after myocardial infarction. Biochem Biophys Res Commun. 2019; 495: 884-891. doi:10.1016/j.bbrc.2017.11.094; Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 2019; 73: 2990-3002. doi:10.1016/j.jacc.2019.03.503; Yang S, Cheng J, Man C, Jiang L, Long G, Zhao W, et al. Effects of exogenous nerve growth factor on the expression of BMP-9 and VEGF in the healing of rabbit mandible fracture with local nerve injury. J Orthop Surg Res. 2021; 16(1): 74. doi:10.1186/s13018-021-02220-z; Julian K, Prichard B, Raco J, Jain R, Jain R. A review of cardiac autonomics: From pathophysiology to therapy. Future Cardiol. 2022; 18(2): 125-133. doi:10.2217/fca-2021-0041; Kusayama T, Wan J, Yuan Y, Chen PS. Neural mechanisms and therapeutic opportunities for atrial fibrillation. Methodist Debakey Cardiovasc J. 2021; 17(1): 43-47. doi:10.14797/FVDN2224; Shah R, Assis F, Alugubelli N, Okada DR, Cardoso R, Shivkumar K, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: A systematic review. Heart Rhythm. 2019; 16(10): 1499-1505. doi:10.1016/j.hrthm.2019.06.018; Aksu T, Gupta D, Pauza DH. Anatomy and physiology of intrinsic cardiac autonomic nervous system: Da Vinci anatomy card #2. JACC Case Rep. 2021; 3(4): 625-629. doi:10.1016/j.jaccas.2021.02.018; Moss A, Robbins S, Achanta S, Kuttippurathu L, Turick S, Nieves S, et al. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience. 2021; 24(7): 102713. doi:10.1016/j.isci.2021.102713; Kotalczyk A, Mazurek M, Kalarus Z, Potpara TS, Lip GYH. Stroke prevention strategies in high-risk patients with atrial fibrillation. Nat Rev Cardiol. 2021; 18(4): 276-290. doi:10.1038/s41569-020-00459-3; Sethwala AM, Goh I, Amerena JV. Combating inflammation in cardiovascular disease. Heart Lung Circ. 2021; 30(2): 197-206. doi:10.1016/j.hlc.2020.09.003; Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, et al. Molecular mechanisms associated with ROSdependent angiogenesis in lower extremity artery disease. Antioxidants (Basel). 2021; 10(5): 735. doi:10.3390/antiox10050735; Bostan MM, Stătescu C, Anghel L, Șerban IL, Cojocaru E, Sascău R. Post-myocardial infarction ventricular remodeling biomarkers – The key link between pathophysiology and clinic. Biomolecules. 2020; 10(11): 1587. doi:10.3390/biom10111587; Henning RJ. Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 2021; 14(2): 195-212. doi:10.1007/s12265-020-10040-5; Hu Y, Xiong J, Wen H, Wei H, Zeng X. MiR-98-5p promotes ischemia/reperfusion-induced microvascular dysfunction by targeting NGF and is a potential biomarker for microvascular reperfusion. Microcirculation. 2021; 28(1): e12657. doi:10.1111/micc.12657; Zhao W, Zhao J, Rong J. Pharmacological modulation of cardiac remodeling after myocardial infarction. Oxid Med Cell Longev. 2020; 2020: 8815349. doi:10.1155/2020/8815349; Pentz R, Iulita MF. The NGF metabolic pathway: New opportunities for biomarker research and drug target discovery: NGF pathway biomarkers and drug targets. Adv Exp Med Biol. 2021; 1331: 31-48. doi:10.1007/978-3-030-74046-7_4; Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2020; 41(5): 2746-2774. doi:10.1002/med.21721; Luo W, Gong Y, Qiu F, Yuan Y, Jia W, Liu Z, et al. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair. Am J Physiol Heart Circ Physiol. 2021; 320(5): H1959-H1974. doi:10.1152/ajpheart.00855.2020; Saragovi HU, Galan A, Levin LA. Neuroprotection: Prosurvival and anti-neurotoxic mechanisms as therapeutic strategies in neurodegeneration. Front Cell Neurosci. 2019; 13: 231. doi:10.3389/fncel.2019.00231; Dobbin SJH, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond). 2021; 135(1): 71-100. doi:10.1042/CS20200305; https://www.actabiomedica.ru/jour/article/view/3427
-
10
-
11Academic Journal
Authors: Ivanov, Mihaela
Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 65 No. 1 (2020): Medical Sciences; 106-113 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 65 Nr. 1 (2020): Ştiinţe medicale; 106-113 ; Вестник Академии Наук Молдовы. Медицина; Том 65 № 1 (2020): Медицина; 106-113 ; 1857-0011
Subject Terms: патологическое ремоделирование, постинфарктное ремоделирование, биомаркеры ремоделирования, окислительный стресс, воспалительная реакция, pathological remodelling, post-infarction remodelling, remodelling biomarkers, oxidative stress, inflammatory response, remodelare patologică, remodelare post-infarct, biomarkerii remodelării, stres oxidativ, răspuns inflamator
File Description: application/pdf
Relation: https://bulmed.md/bulmed/article/view/3170/3170; https://bulmed.md/bulmed/article/view/3170
Availability: https://bulmed.md/bulmed/article/view/3170
-
12Academic Journal
Authors: Munteanu Ivanov, M.V.
Source: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 65 (1) 106-113
Subject Terms: remodelare patologică, remodelare post-infarct, biomarkerii remodelării, stres oxidativ, răspuns inflamator, pathological remodelling, post-infarction remodelling, remodelling biomarkers, oxidative stress, inflammatory response, патологическое ремоделирование, постинфарктное ремоделирование, биомаркеры ремоделирования, окислительный стресс, воспалительная реакция
File Description: application/pdf
Relation: info:eu-repo/grantAgreement/EC/FP7/17185/EU/Alternative terapeutice noi de ameliorere a prognozei de lungă durată a pacienților cu insuficiență cardiacă cronică prin implementarea strategiilor chirurgicale, intervenționale și de recuperare peri/20.80009.8007.34; https://ibn.idsi.md/vizualizare_articol/114996; urn:issn:18570011
Availability: https://ibn.idsi.md/vizualizare_articol/114996
-
13Academic Journal
Authors: S. A. Kryzhanovskii, G. V. Mokrov, O. S. Grigorkevich, I. B. Tsorin, V. N. Stolyaruk, M. B. Vititnova, A. M. Likhosherstov, T. A. Gudasheva
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 3, Pp 3-8 (2016)
Subject Terms: металлопротеиназы 2-го и 9-го типа, постинфарктное ремоделирование миокарда, производные бензоила-мино(фенилсульфонил)-замещённых циклических аминокислот, metallproteinases 2nd- and 9th-type, post-infarction myocardial remodeling, derivatives of the benzoylamino (phenylsulfonyl) amino-substituted cyclic aminoacids, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
14Academic Journal
Source: Гены и клетки. 2018. Т. 13, № 3. С. 56-62
Subject Terms: макрофаги, Воспаление, ремоделирование сердца, клинико-анамнестические характеристики, постинфарктное ремоделирование сердца, инфаркт миокарда
File Description: application/pdf
-
15Academic Journal
Authors: Rogovskaya, Yuliya V., Rebenkova, Mariya, Kzhyshkowska, Julia G., Ryabov, Vyacheslav V., Gombozhapova, Aleksandra
Source: Cardiovascular research. 2018. Vol. 114, Issue suppl. 1. P. S100
Subject Terms: макрофаги, инфаркта миокарда, постинфарктное ремоделирование левого желудочка
-
16Academic Journal
Authors: S. L. Andreev, V. M. Shipulin, E. A. Alexandrova, M. O. Gulya, Сергей Леонидович Андреев, Владимир Митрофанович Шипулин, Екатерина Александровна Александрова, Марина Олеговна Гуля
Source: Siberian Journal of Clinical and Experimental Medicine; Том 29, № 3 (2014); 98-101 ; Сибирский журнал клинической и экспериментальной медицины; Том 29, № 3 (2014); 98-101 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2014-29-3
Subject Terms: left ventricular aneurysm resection, ишемическая болезнь сердца, постинфарктное ремоделирование левого желудочка, резекция аневризмы левого желудочка, myocardial muscle bridge, coronary artery disease, postinfarction left ventricular remodeling
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/108/109; Белозеров Ю.М. Инфаркт миокарда у детей // Российский вестник перинатологии и педиатрии. - 1996. - № 3. -С. 36-40.; Бокерия Л.А., Суханов С.Г., Стерник Л.И., Шатахян М.П. Миокардиальные мостики. - М.: НЦССХ им. А.Н. Бакулева РАМН, 2013. - 158 с.; Карташева А. Мышечные мостики миокарда // Medicine review. - 2008. - Т. 1(01). - С. 60-61.; Мазур Н.А. Факторы риска внезапной кардиальной смерти у больных молодого возраста и меры по профилактике // Рус. мед. журнал. - 2003. - Т. 11, № 19. - С. 1077-1079.; Berry J.F., von Mering G.O., Schmalfuss C. et al. Systolic compression of the left anterior descending coronary artery: a case series, review of the literature, and therapeutic options including stenting // Cath. Cardiovasc. Intervent. - 2002. -Vol. 56. - P. 58-63.; Bose D., Philipp S. High-Resolution Imaging of Myocardial Bridging // New England Journal of Medicine. - 2008. - Vol. 4. - P. 358-392.; Elyonassi B., Kendoussi M., Khatouri A. et al. Muscle bridge and myocardial ischemia. Study of 6 cases // Ann. Cardiol. Angiol. -1998. - Vol. 47, No. 7. - P. 459-463.; Hongo Y., Tada H., Ito K. et al. Augmentation of vessel squeezing at coronary myocardial bridge by nitroglycerin: study by quantitative coronary angiography and intravascular ultrasound // Am. Heart J. - 1999. - Vol. 138, No. 2. - P. 345-350.; Juilliere Y., Berder V., Suty-Selton C. et al. Isolated myocardial bridges with angiographic milking of the left anterior descending coronary artery: a long-term follow-up study // Am. Heart J. - 1995. - Vol. 129, No. 4. - P. 663-665.; Lozano I., Baz J.A., Lopez-Palop R. et al. Long-term prognosis of patients with myocardial bridge and angiographic milking of the left anterior descending coronary artery // Rev. Esp. Cardiol. - 2002. - Vol. 55, No. 4. - P. 359-364.; Mohlenkamp S., Hort W., Ge J., Erbel R. Update on Myocardial Bridging // Circulation. - 2002. - Vol. 106. - P. 2616-2622.; Venkateushu K.V., Mysorekar V.R., Sanikop M.B. Myocardial bridges // J. Indian Med. Ass. - 2000. - Vol. 98, No. 11. - P. 691-693.; https://www.sibjcem.ru/jour/article/view/108
-
17Academic Journal
-
18Academic Journal
Authors: S. A. Kryzhanovskii, G. V. Mokrov, O. S. Grigorkevich, I. B. Tsorin, V. N. Stolyaruk, M. B. Vititnova, A. M. Likhosherstov, T. A. Gudasheva, С. А. Крыжановский, Г. В. Мокров, О. С. Григоркевич, И. Б. Цорин, В. Н. Столярук, М. Б. Вититнова, А. М. Лихошерстов, Т. А. Гудашева
Source: Pharmacokinetics and Pharmacodynamics; № 3 (2016); 3-8 ; Фармакокинетика и Фармакодинамика; № 3 (2016); 3-8 ; 2686-8830 ; 2587-7836
Subject Terms: derivatives of the benzoyLamino (phenyLsuLfonyL) amino-substituted cycLic aminoacids, постинфарктное ремоделирование миокарда, производные бензоила-мино(фенилсульфонил)-замещённых циклических аминокислот, metaLLproteinases 2nd- and 9th-type, post-infarction myocardiaL remodeLing
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/176/176; Гасанов А.Г., Бершова Т.В. Роль изменений внеклеточного матрикса при возникновении сердечно-сосудистых заболеваний. Биомед. химия. 2009; 55: 2: 155-168.; Крыжановский С.А., Колик Л.Г., Цорин И.Б., Ионова Е.О., Столярук В.Н., Сорокина А.В., Вититнова М.Б., Мирошкина И.А. Доказательство валидности эхокардиографии в модельных экспериментах на мелких животных. Бюл. эксп. биол. и медицины. 2016; 161: 3: 416-420.; Ali M.A., Fan X., Schulz R. Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase-2 in heart disease. Trends Cardiovasc. Med. 2011; 21: 4: 112-118.; Bench T.J., Jeremias A., Brown D.L. Matrix metalloproteinase inhibiton with tetracyclines for the treatment of coronary artery disease. Pharmacol. Res. 2011; 64: 561-566.; Bencsik P., Paloczi J., Kocsis G.F., Pipis J., Belecz I., Varga Z.V., Csonka C., Görbe A., Csont T., Ferdinandy P. Moderate inhibition of myocardial matrix metalloproteinase-2 by ilomastat is cardioprotective. Pharmacol. Res. 2014; 80: 36-42.; Chang S.A., Chang H.J., Choi S.I., Chun E.J., Yoon Y.E., Kim H.K., Kim Y.J., Choi D.J., Sohn D.W., Helm R.H., Lardo A.C. Usefulness of left ventricular dyssynchrony after acute myocardial infarction, assessed by a tagging magnetic resonance image derived metric, as a determinant of ventricular remodeling. Am.J. Cardiol. 2009; 104: 1: 19-23.; Gallagher G.L., Jackson C.J., Hunyor S.N. Myocardial extracellular matrix remodeling in ischemic heart failure. Front. Biosci. 2007; 12: 1410-1419.; Griffin M.O., Fricovsky E., Ceballos G., Villarreal F. Tetracyclines: a pleotropic family of compounds with promising therapeutic properties. Review of the literature. Am.J. Physiol. Cell. Physiol. 2010; 299: 539-548.; Henderson K.K., Danzi S., Paul J. T., Leya G., Klein I., Samarel A.M. Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ. Heart Fail. 2009; 2: 3: 243-252.; Hori M., Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 2009; 81: 3: 457-464.; Hughes B.G., Fan X., Cho W.J., Schulz. R. MMP-2 is localized to the mitochondria-associated membrane of the heart. Am.J. Physiol. Heart Circ. Physiol. 2014; 306: 5: H764-H770.; Hughes B.G., Schulz. R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 2014; 109(4):424.; Jugdutt B. J. The dog model of left ventricular remodeling after myocardial infarction. Card. Fail. 2002; 8: 6 Suppl: S472-S475.; Kandasamy A.D., Chow A.K., Ali M. A., Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc. Res. 2010; 85: 3: 413-423.; Lindsey M.L. Matrix Metalloproteinase-9 Post Myocardial Infarction: Breakdowns and Breakthroughs. Global J. Hum. Anat. Physiol. Res. 2014; 1: 6-9.; Moshal K.S., Rodriguez. W.E., Sen U., Tyagi S.C. Targeted deletion of MMP-9 attenuates myocardial contractile dysfunction in heart failure. // Physiol. Res. - 2008. - Vol. 57, № 3. - P. 379-384.; Shamhart P.E., Meszaros J.G. Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? J. Mol. Cell. Cardiol. 2010; 48: 3: 530-537.; Spinale F. G. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol. Rev. 2007; 87: 1285-1342.; Tiyyagura S.R., Pinney S. P. Left ventricular remodeling after myocardial infarction: past, present, and future. Mt. Sinai J. Med. 2006; 73: 6: 840-851.; Zhou S.X., Zhou Y., Lei J., Zhang Y.L. Effects of oxidative stress on ventricular remodeling after myocardial infarction in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2008; 28: 11: 2030-2034.; https://www.pharmacokinetica.ru/jour/article/view/176
Availability: https://www.pharmacokinetica.ru/jour/article/view/176
-
19Academic Journal
Authors: Патрикеев, А., Рудман, В., Максимкин, Даниил, Мамбетов, А., Веретник, Г., Баранович, В., Файбушевич, А., Шугушев, З.
Subject Terms: ГИБЕРНИРОВАННЫЙ МИОКАРД, ЖИЗНЕСПОСОБНОСТЬ МИОКАРДА, ПОСТИНФАРКТНЫЙ КАРДИОСКЛЕРОЗ, ПОСТИНФАРКТНОЕ РЕМОДЕЛИРОВАНИЕ
File Description: text/html
-
20Academic Journal
Authors: СТРУТЫНСКИЙ АНДРЕЙ ВЛАДИСЛАВОВИЧ, ГОРБАЧЕВА Е.В., ГОЛУБЕВ Ю.Ю., БЕКЕТОВА Е.Ю., БАКАЕВ Р.Г., ТРИШИНА В.В., ГУСЕВ-ЩЕРБАКОВ А.С.
File Description: text/html