-
1Academic Journal
Συγγραφείς: A. S. Korovkin, D. V. Gorenkov, А. С. Коровкин, Д. В. Горенков
Συνεισφορές: The study reported in this publication is a result of publicly funded research project No. 056-00026-24-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D reporting No. 124022200103-5)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-0002624-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022200103-5).
Πηγή: Safety and Risk of Pharmacotherapy; Том 12, № 1 (2024); 14-23 ; Безопасность и риск фармакотерапии; Том 12, № 1 (2024); 14-23 ; 2619-1164 ; 2312-7821
Θεματικοί όροι: иммунизация, side effects following immunisation, post-vaccination complications, post-vaccination reactions, vaccine safety, vaccination, immunisation, побочные проявления после иммунизации, поствакцинальные осложнения, поствакцинальные реакции, безопасность вакцин, вакцинация
Περιγραφή αρχείου: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/417/1038; https://www.risksafety.ru/jour/article/view/417/1007; https://www.risksafety.ru/jour/article/view/417/1008; https://www.risksafety.ru/jour/article/view/417/1010; https://www.risksafety.ru/jour/article/view/417/1013; https://www.risksafety.ru/jour/article/downloadSuppFile/417/460; Борисевич ИВ, Супотницкий МВ. Прощай, ГИСК_ БИОпрепараты. Профилактика, диагностика, лечение. 2011;(3):6-15. EDN: RENCWL; Таточенко ВК, Бакрадзе МД. Пневмококковая инфекция - недооцениваемая угроза здоровью детей. Детские инфекции. 2008;7(2):36-40. EDN: lUJOXZ; Voss EA, Shoaibi A, Yin Hui Lai L, Blacketer C, Alshammari T, Makadia R, et al. Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study. eClinicalMedicine. 2023;58:101932. https://doi.org/10.1016/j.eclinm.2023.101932; Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022;40(40):5798-805. https://doi.org/10.1016/j.vaccine.2022.08.036; Das MK. Adverse events following immunization - the known unknowns and black box: based on 10th Dr. I.C. Verma excellence award for young pediatricians delivered as oration on 9th Oct. 2022. Indian J Pediatr. 2023;90(8):817-25. https://doi.org/10.1007/s12098-023-04555-3; Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-associated enhanced disease and pathogenic human coronaviruses. Front Immunol. 2022;13:882972. https://doi.org/10.3389/fimmu.2022.882972; Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original antigenic sin: how first exposure shapes lifelong anti-influenza virus immune responses. J Immunol. 2019;202(2):335-40. https://doi.org/10.4049/jimmunol.1801149; Fitzpatrick M. The Cutter incident: how America's first polio vaccine led to a growing vaccine crisis. J R Soc Med. 2006;99(3):156. https://doi.org/10.1177/014107680609900320; Терешкина НВ, Снегирева ИИ, Дармостукова МА. Возможные причины и меры по минимизации рисков развития абсцессов после прививки АКДС-вакциной. Безопасность и риск фармакотерапии. 2021;9(1):3-14. https://doi.org/10.30895/2312-7821-2021-9-1-3-14; Bernard DM, Cooper Robbins SC, McCaffery KJ, Scott CM, Skinner SR. The domino effect: adolescent girls' response to human papillomavirus vaccination. Med J Aust. 2011;194(6):297-300. https://doi.org/10.5694/j.1326-5377.2011.tb02978.x; Neha R, Subeesh V, Beulah E, Gouri N, Maheswari E. Postlicensure surveillance of human papillomavirus vaccine using the Vaccine Adverse Event Reporting System, 2006-2017. Perspect Clin Res. 2020;11(1):24-30. https://doi.org/10.4103/picr.PICR_140_18; Hawken S, Ducharme R, Rosella LC, Benchimol EI, Langley JM, Wilson K, et al. Assessing the risk of intussusception and rotavirus vaccine safety in Canada. Hum Vaccin Immunother. 2017;13(3):703-10. https://doi.org/10.1080/21645515.2016.1240846; Gidengil C, Goetz MB, Newberry S, Maglione M, Hall O, Larkin J, et al. Safety of vaccines used for routine immunization in the United States: an updated systematic review and meta-analysis. Vaccine. 2021;39(28):3696-716. https://doi.org/10.1016/j.vaccine.2021.03.079; Arlegui H, Nachbaur G, Praet N, Begaud B. Quantitative benefit-risk models used for rotavirus vaccination: a systematic review. Open Forum Infect Dis. 2020;7(4):ofaa087. https://doi.org/10.1093/ofid/ofaa087; Vazquez M. Safety of second-generation rotavirus vaccines, intussusception. Curr Opin Pediatr. 2014;26(1):101-5. https://doi.org/10.1097/MOP.0000000000000051; Burke RM, Tate JE, Kirkwood CD, Steele AD, Parashar UD. Current and new rotavirus vaccines. Curr Opin Infect Dis. 2019;32(5):435-44. https://doi.org/10.1097/QCO.0000000000000572; Godlee F, Smith J, Marcovitch H. Wakefield's article linking MMR vaccine and autism was fraudulent. BMJ. 20n;342:c7452. https://doi.org/10.1136/bmj.c7452; Hviid A, Hansen JV, Frisch M, Melbye M. Measles, mumps, rubella vaccination and autism: a nationwide cohort study. Ann Intern Med. 2019;170(8):513-20. https://doi.org/10.7326/M18-2101; Taylor LE, Swerdfeger AL, Eslick GD. Vaccines are not associated with autism: an evidence-based meta-analysis of case-control and cohort studies. Vaccine. 2014;32(29):3623-9. https://doi.org/10.1016/j.vaccine.2014.04.085; Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev. 2020;4(4):CD004407. https://doi.org/10.1002/14651858.CD004407.pub4; Mohammed SA, Rajashekar S, Giri Ravindran S, Kakarla M, Ausaja Gambo M, Yousri Salama M, et al. Does vaccination increase the risk of autism spectrum disorder? Cureus. 2022;14(8):e27921. https://doi.org/10.7759/cureus.27921; DeStefano F, Shimabukuro TT. The MMR vaccine and autism. Annu Rev Virol. 2019;6(1):585-600. https://doi.org/10.1146/annurev-virology-092818-015515; Шамшева ОВ. Поствакцинальные реакции и методы их предупреждения. Практика педиатра. 2011;(3):46-50. EDN: TWGPJD; Харит СМ, Лакоткина ЕА, Черняева ТВ, Воронина ОЛ, Начарова ЕП. Дифференциальный диагноз поствакцинальных осложнений. Трудный паи,иент. 2006;2(1):17-22. EDN: ODSWHP; Бахмутская ЕВ, Чернявская ОП, Волкова НА. Система мониторинга за побочными проявлениями после иммунизации в России и мире. Современные аспекты и проблемы. Эпидемиология и вакцинопрофилактика. 2022;21(5):4-13. https://doi.org/10.31631/2073-3046-2022-21-5-4-13; Начарова ЕП, Харит СМ, Лобзин ЮВ, Брико НИ. Принципы мониторинга неблагоприятных событий после вакцинации в России и мире. Журнал микробиологии, эпидемиологии и иммунобиологии. 2017;(1):86-96. https://doi.org/10.36233/0372-9311-2017-1-86-96; Моисеева ИЕ. Вакцинопрофилактика в практике семейного врача. Российский семейный врач. 2010;14(2):4-15. EDN:NCRCUF; Каплина СП, Харит СМ, Скрипченко НВ. Вакцинопрофилактика в России в современных условиях. Российский вестник перинатологии и педиатрии. 2018;63(1):5-13. https://doi.org/10.21508/1027-4065-2018-63-1-5-13; https://www.risksafety.ru/jour/article/view/417
-
2Academic Journal
Πηγή: Сучасна педіатрія. Україна; № 5(133) (2023): Сучасна педіатрія. Україна; 85-89
Modern Pediatrics. Ukraine; No. 5(133) (2023): Modern pediatrics. Ukraine; 85-89
Modern Pediatrics. Ukraine; № 5(133) (2023): Modern pediatrics. Ukraine; 85-89Θεματικοί όροι: прихильність, вакцинація, contraindications to vaccination, вакцина, будущие родители, immunization, поствакцинальні реакції, протипоказання до вакцинації, young people, pre-vaccination examination, поствакцинальные реакции, vaccine, иммунизация, adherence, противопоказания к вакцинации, майбутні батьки, вакцинация, імунізація, приверженность, молодь, молодежь, vaccination, 3. Good health, обстеження перед вакцинацією, post-vaccination reactions, expectant parents, обследование перед вакцинацией
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://mpu.med-expert.com.ua/article/view/289380
-
3Academic Journal
Συγγραφείς: K. S. Korsak, I. O. Stoma, E. V. Voropaev, O. V. Osipkina, A. A. Kovalev, Е. С. Корсак, И. О. Стома, Е. В. Воропаев, О. В. Осипкина, А. А. Ковалев
Πηγή: Epidemiology and Vaccinal Prevention; Том 22, № 1 (2023); 28-37 ; Эпидемиология и Вакцинопрофилактика; Том 22, № 1 (2023); 28-37 ; 2619-0494 ; 2073-3046
Θεματικοί όροι: «гибридный иммунитет», immune response, adverse reactions, Sputnik V (Gam-COVID-Vac), Sinopharm (BBIBP-CorV), COVID-19, SARS-CoV-2, S-protein, N-protein, Спутник V (Gam-COVID-Vac), S-белок, N-белок, иммунологическая эффективность, поствакцинальные реакции
Περιγραφή αρχείου: application/pdf
Relation: https://www.epidemvac.ru/jour/article/view/1742/908; WHO Coronavirus (COVID-19) dashboard [Internet]. World Health Organization (WHO). Доступно на: https://covid19.who.int/ Ссылка активна на 5 апреля 2022.; Wong R.S.Y. COVID-19 vaccines and herd immunity: Perspectives, challenges and prospects. The Malaysian Journal of Pathology. 2021. Vol. 43, N2. P. 203–217.; Argote P., Barham E., Zukerman Daly S., et al. The shot, the message, and the messenger: COVID-19 vaccine acceptance in Latin America // npj Vaccines. 2021. Vol. 6, P. 118. doi:10.1038/s41541-021-00380-x; Strizovaa Z., Smetanovaa J., Bartunkovaa J., et al. Principles and Challenges in anti-COVID-19 Vaccine Development. International Archives of Allergy and Immunology. 2021. Vol. 1, P. 1–11.; Khan M., Adil S.F., Alkhathlan H.Z., et al. COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far // Molecules. 2020. Vol. 26, N1. P. 39.; Jackson S.E., Paul E., Brown J., et al. Negative vaccine attitudes and intentions to vaccinate against Covid-19 in relation to smoking status: a population survey of UK adults // Nicotine & Tobacco Research. 2021. Vol. 23, N9. P. 1623–1628.; Basta N.E., Moodie E.M.M. on behalf of the VIPER (Vaccines, Infectious disease Prevention, and Epidemiology Research) Group COVID-19 Vaccine Development and Approvals Tracker Team. COVID-19 Vaccine Development and Approvals Tracker. Funding provided by the McGill University Interdisciplinary Initiative in Infection and Immunity (MI4) (2020). https://covid19.trackvaccines.org/; Our World In Data, University of Oxford, UK https://ourworldindata.org/coronavirus/country/belarus; Loo K.Y., Letchumanan V., Ser H.L., et al. COVID-19: Insights into Potential Vaccines // Microorganisms. 2021. Vol. 9, N3. P. 605. doi:10.3390/microorganisms9030605; Mao Q., Xu M., He Q., et al. COVID-19 vaccines: progress and understanding on quality control and evaluation // Signal Transduction and Targeted Therapy. 2021. N6. P. 199.; Kisby T., Yilmazer A., Kostarelos K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nature Nanotechnology. 2021. Vol. 16, N8. P. 843–850.; Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021. Vol. 397, N10275. P. 671–681.; Zahid M.N. Unfolding the Mild to Moderate Short-Term Side Effects of Four COVID-19 Vaccines Used in Bahrain: A Cross-Sectional Study // Vaccines (Basel). 2021. Vol. 9, N11. P. 1369.; Houshmand B., Keyhan S.O., Fallahi H.R., et al. Vaccine-associated complications: a comparative multicenter evaluation among dental practitioners and dental students—which candidate vaccine is more safe in SARS COV II, Gam-COVID-Vac (Sputnik V), ChAdOx1 nCoV-19 (AstraZeneca), BBV152 (Covaxin), or BBIBP-CorV(Sinopharm)? // Maxillofacial Plastic and Reconstructive Surgery. 2022. Vol. 44, N1. P. 3.; Pourani M.R., Shahidi Dadras M., Salari M., et al. Cutaneous adverse events related to COVID-19 vaccines: A cross-sectional questionnaire-based study of 867 patients // Dermatologic Therapy. 2022. Vol. 35, N2. P. e15223.; Karimi N., Boostani R., Fatehi F., et al. Guillain-Barre Syndrome and COVID-19 Vaccine: A Report of Nine Patients. Basic Clinical Neuroscience. 2021. Vol. 12, N5. P. 703–710.; Petrović V., Vuković V., Marković M., et al. Early Effectiveness of Four SARS-CoV-2 Vaccines in Preventing COVID-19 among Adults Aged ≥60 Years in Vojvodina, Serbia. Vaccines. 2022. Vol. 10, N3. P. 389.; Dashdorj N.J., Wirz O.F., Röltgen K., et al. Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia // Cell Host & Microbe. 2021. Vol. 29, N12. P. 1738–1743.e4.; Vokó Z., Kiss Z., Surján G., et al. Nationwide effectiveness of five SARS-CoV-2 vaccines in Hungary – the HUN-VE study. Clinical Microbiology and Infection. 2021. Vol. S1198-743X, N21. P. 00639.; https://www.epidemvac.ru/jour/article/view/1742
-
4Academic Journal
Συγγραφείς: V. I. Sergevnin, M. V. Rozhkova, K. V. Ovchinnicov, E. V. Sarmometov, В. И. Сергевнин, М. В. Рожкова, К. В. Овчинников, Е. В. Сармометов
Πηγή: HIV Infection and Immunosuppressive Disorders; Том 13, № 4 (2021); 33-37 ; ВИЧ-инфекция и иммуносупрессии; Том 13, № 4 (2021); 33-37 ; 2077-9828 ; 10.22328/2077-9828-2021-13-4
Θεματικοί όροι: поствакцинальные реакции, Gam-COVID-Vac vaccine, SARS-CoV-2, class G immunoglobulins, immunization reactions, вакцина Гам-КОВИД-Вак, иммуноглобулины класса G
Περιγραφή αρχείου: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/675/458; Logunov D.Y., Dolzhnikiva I.V., Zubkova O.V. et al. Safety, and immunogenicity of a rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomized phase 1/2 studies from Russia // The Lancet. 2021. Vol. 397, No. 10275. Р. 671–681. DOI:10.1016/s0140-6736(21)00234-8.; Пахомов Д.В. Вакцинопрофилактика COVID-19 // Практическая пульмонология. 2020. № 3. С 74–79.; Frater J., Ewer K.J., Ogbe A. et al. Safety, and immunogenicity of the ChAdOx1 to-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial // Lancet HIV. 2021. Vol. 8, No. 8. e474–e485. DOI:10.1016/S2352-3018(21)00103-X.; Levy I., Wieder-Finesod A., Litchevsky V. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1 // Clin Microbiol Infect. 2021. S1198-743X(21)00423-7. DOI:10.1016/j.cmi.2021.07.031.; Alrubayyi А., Gea-Mallorquí Е., Tour Е.et al. Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV // bioRxiv. 2021. DOI:10.1101/2021.02.15.431215.; Touizer E., Alrubayyi A., Rees-Spear C. et al. Failure to seroconvert after two doses of BNT162b2 SARS-CoV-2 vaccine in a patient with uncontrolled HIV // Lancet HIV. 2021. Vol. 8, No. 6. e317-e318. DOI:10.1016/S2352-3018(21)00099-0.; Снегова Н.Ф. Безопасность и иммуногенность АКДС и инактивированной полиомиелитной вакцин у ВИЧ-серопозитивных детей первого года жизни // Детские инфекции. 2005. № 4. С. 51–55.; Rianne van den Berg, Ingrid van Hoogstraten, Michiel van Agtmael. Non-responsiveness to hepatitis B vaccination in HIV seropositive patients; possible causes and solutions // AIDS Rev. 2009. Vol. 11, No. 3. Р. 157–164.; Avelino-Silva V.I., Miyaji K.T., Hunt P.W. et al. CD4/CD8 ratio and KT ratio predict yellow fever vaccine immunogenicity in HIV-infected patients // PLoS Negl Trop Dis. 2016. Vol. 10, No. 12. DOI: 10e0005219.; Spinelli.SARS-CoV-2 vaccination in people with HIV // Lancet HIV. 2021. Vol. 8, No. 8. e455–e456. DOI:10.1016/S2352-3018(21)00128-4.; Paiardini М., Müller-Trutwin М. HIV-associated chronic immune activation Immunol Rev. Author manuscript; available in PMC 2014 Jul 1. // Immunol Rev. 2013. Vol. 254, No. 1. Р. 78–101. DOI:10.1111/imr.12079.
-
5Academic Journal
Συγγραφείς: L. O. Severgina, P. V. Glybochko, I. A. Коrovin, L. M. Rapoport, A. V. Belyakov, A. I. Kryukova, S. M. Efimochkina, A. G. Yaworovsky, T. G. Tsarichenko, D. O. Korolev, Л. О. Севергина, П. В. Глыбочко, И. А. Коровин, Л. М. Рапопорт, А. В. Беляков, А. И. Крюкова, С. М. Ефимочкина, А. Г. Яворовский, Д. Г. Цариченко, Д. О. Королев
Πηγή: Andrology and Genital Surgery; Том 23, № 3 (2022); 41-47 ; Андрология и генитальная хирургия; Том 23, № 3 (2022); 41-47 ; 2412-8902 ; 2070-9781
Θεματικοί όροι: гормональная терапия рака предстательной железы, cytopathic effects of SARS-CoV-2 virus, post-vaccination reactions, hormonal treatment of prostate cancer, цитопатическое действие вируса SARS-CoV-2 на ткань предстательной железы, поствакцинальные реакции
Περιγραφή αρχείου: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/583/471; Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80.e8. DOI:10.1016/j.cell.2020.02.052; Song H., Seddighzadeh B., Cooperberg M.R., Huang F.W. Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. Eur Urol 2020;78(2):296–8. DOI:10.1016/j.eururo.2020.04.065; Tur-Kaspa I., Tur-Kaspa T., Hildebrand G., Cohen D. COVID-19 may affect male fertility but is not sexually transmitted: a systematic review. F S Rev 2021;2(2):140–9. DOI:10.1016/j.xfnr.2021.01.002; Wong D.W.L., Klinkhammer B.M., Djudjaj S. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 2021;10(8):1900. DOI:10.3390/cells10081900; Haghpanah A., Masjedi F., Salehipour M. et al. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms?: a systematic review. Prostate Cancer Prostatic Dis 2022;25(1):27–38. DOI:10.1038/s41391-021-00388-3; Cinislioglu A.E., Demirdogen S.O., Cinislioglu N. et al. Variation of serum PSA levels in COVID-19 infected male patients with benign prostatic hyperplasia (BPH): a prospective cohort studys. Urology 2022;159:16–21. DOI:10.1016/j.urology.2021.09.016; Wichmann D., Sperhake J.P., Lütgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 2020;173(4):268–77. DOI:10.7326/M20-2003; Peng F., Li H., Ning Z. et al. CD147 and prostate cancer: a systematic review and meta-analysis. PLoS One 2016;11(9):e0163678. DOI:10.1371/journal.pone.0163678; Shilts J., Crozier T.W.M., Greenwood E.J.D. et al. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep 2021;11(1):413. DOI:10.1038/s41598-020-80464-1; Ragotte R.J., Pulido D., Donnellan F.R. et al. Human basigin (CD147) does not directly interact with SARS-CoV-2 spike glycoprotein. mSphere 2021;6(4):e0064721. DOI:10.1128/mSphere.00647-21; Fenizia C., Galbiati S., Vanetti C. et al. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells 2021;10(6):1434. DOI:10.3390/cells10061434; Chekol Abebe E., Mengie Ayele T., Tilahun Muche Z., Asmamaw Dejenie T. Neuropilin 1: a novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biologics 2021;15:143–52. DOI:10.2147/BTT.S307352; Tse B.W.C., Volpert M., Ratther E. et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36(24):3417–27. DOI:10.1038/onc.2016.482; Gatti G., Quintar A.A., Andreani V. et al. Expression of toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate 2009;69(13):1387–97. DOI:10.1002/pros.20984; Ou T., Lilly M., Jiang W. The pathologic role of toll-like receptor 4 in prostate cancer. Front Immunol 2018;9:1188. DOI:10.3389/fimmu.2018.01188; Khanmohammadi S., Rezaei N. Role of toll-like receptors in the pathogenesis of COVID-19. J Med Virol 2021;93(5):2735–9. DOI:10.1002/jmv.26826; Salciccia S., Del Giudice F., Eisenberg M.L. et al. Testosterone target therapy: focus on immune response, controversies and clinical implications in patients with COVID-19 infection. Ther Adv Endocrinol Metab 2021;12:20420188211010105. DOI:10.1177/20420188211010105; Acheampong D.O., Barffour I.K., Boye A. et al. Male predisposition to severe COVID-19: review of evidence and potential therapeutic prospects. Biomed Pharmacother 2020;131:110748. DOI:10.1016/j.biopha.2020.110748; Mjaess G., Karam A., Aoun F. et al. COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Prog Urol 2020;30(10):484–7. DOI:10.1016/j.purol.2020.05.007; Mauvais-Jarvis F. Do anti-androgens have potential as therapeutics for COVID-19? Endocrinology 2021;162(8):bqab114. DOI:10.1210/endocr/bqab114; Rastrelli G., Di Stasi V., Inglese F. et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021;9(1):88–98. DOI:10.1111/andr.12821; Schroeder M., Schaumburg B., Mueller Z. et al. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect 2021;10(1):1807–18. DOI:10.1080/22221751.2021.1969869; Ma L., Xie W., Li D. et al. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. medRxiv (preprint) 2020. DOI:10.1101/2020.03.21.20037267; Cattrini C., Bersanelli M., Latocca M.M. et al. Sex hormones and hormone therapy during COVID-19 pandemic: implications for patients with cancer. Cancers (Basel) 2020;12(8):2325. DOI:10.3390/cancers12082325; Di Zazzo E., Galasso G., Giovannelli P. et al. Estrogens and their receptors in prostate cancer: therapeutic implications. Front Oncol 2018;8:2. DOI:10.3389/fonc.2018.00002; Montopoli M., Zumerle S., Vettor R. et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol 2020;31(8):1040–5. DOI:10.1016/j.annonc.2020.04.479; Duarte M.B.O., Leal F., Argenton J.L.P., Carvalheira J.B.C. Impact of androgen deprivation therapy on mortality of prostate cancer patients with COVID-19: a propensity score-based analysis. Infect Agent Cancer 2021;16(1):66. DOI:10.1186/s13027-021-00406-y; Jin J.M., Bai P., He W. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 2020;8:152. DOI:10.3389/fpubh.2020.00152; Baughn L.B., Sharma N., Elhaik E. et al. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clin Proc 2020;95(9):1989–99. DOI:10.1016/j.mayocp.2020.06.018; Liontos M., Terpos E., Kunadis E. et al. Treatment with abirate rone or enzalutamide does not impair immunological response to COVID-19 vaccination in prostate cancer patients. Prostate Cancer Prostatic Dis 2022;25(1):117–8. DOI:10.1038/s41391-021-00455-9; Safrai M., Herzberg S., Imbar T. et al. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online 2022;44(4):685–8. DOI:10.1016/j.rbmo.2022.01.008; Corti C., Curigliano G. Commentary: SARS-CoV-2 vaccines and cancer patients. Ann Oncol 2021;32(4):569–71. DOI:10.1016/j.annonc.2020.12.019; Nawwar A.A., Searle J., Singh R., Lyburn I.D. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] Choline PET/CT – not only an FDG finding. Eur J Nucl Med Mol Imaging 2021;48(8):2657–8 DOI:10.1007/s00259-021-05279-2; Wong F.C., Martiniova L., Masrani A., Ravizzini G.C. 18F-Fluciclovine-avid reactive axillary lymph nodes after COVID-19 vaccination. Clin Nucl Med 2022;47(2):154–5. DOI:10.1097/RLU.0000000000003844; Albano D., Volpi G., Dondi F. et al. COVID-19 vaccination manifesting as unilateral lymphadenopathies detected by 18F-Сholine PET/CT. Clin Nucl Med 2022;47(2):e187–9. DOI:10.1097/RLU.0000000000003951; Oprea-Lager D.E., Vincent A.D., van Moorselaar R.J. et al. Dual-phase PET-CT to differentiate [18F]Fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One 2012;7(10):e48430. DOI:10.1371/journal.pone.0048430; https://agx.abvpress.ru/jour/article/view/583
-
6Academic Journal
Συγγραφείς: S. M. Kharit, N. V. Skripchenko, S. P. Kaplina
Πηγή: Эпидемиология и вакцинопрофилактика, Vol 15, Iss 2, Pp 66-72 (2016)
Θεματικοί όροι: safety, вакцинопрофилактика, патология нервной системы, postvaccinal reaction, эффективность, pathology of the nervous system, безопасность, vaccination, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, поствакцинальные реакции, efficiency, BD143-237, Epistemology. Theory of knowledge
-
7Academic Journal
Συγγραφείς: Рычкова, Ольга, Казакевич, Н., Сенникова, Н., Чемакина, Д.
Θεματικοί όροι: ВАКЦИНАЦИЯ, ВАКЦИНА ПРОТИВ ДИФТЕРИИ, КОКЛЮША, СТОЛБНЯКА, ПОЛИОМИЕЛИТА И ГЕМОФИЛЬНОЙ ИНФЕКЦИИ ТИПА B, ПОСТВАКЦИНАЛЬНЫЙ ПЕРИОД, ПОСТВАКЦИНАЛЬНЫЕ РЕАКЦИИ, ДЕТИ
Περιγραφή αρχείου: text/html
-
8Academic Journal
Πηγή: Педиатрическая фармакология.
Θεματικοί όροι: ВАКЦИНАЦИЯ, ВАКЦИНА ПРОТИВ ДИФТЕРИИ, КОКЛЮША, СТОЛБНЯКА, ПОЛИОМИЕЛИТА И ГЕМОФИЛЬНОЙ ИНФЕКЦИИ ТИПА B, ПОСТВАКЦИНАЛЬНЫЙ ПЕРИОД, ПОСТВАКЦИНАЛЬНЫЕ РЕАКЦИИ, ДЕТИ, 3. Good health
Περιγραφή αρχείου: text/html
-
9
Συγγραφείς: Козько, В.Н., Меркулова, Н.Ф., Ткаченко, В.Г.
Θεματικοί όροι: инффекционные болезни, иммунопрофилактика, методические указания, экзантемы, инфекционно-токсический шок, поствакцинальные реакции
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://repo.knmu.edu.ua/handle/123456789/632