Εμφανίζονται 1 - 20 Αποτελέσματα από 108 για την αναζήτηση '"порфирин"', χρόνος αναζήτησης: 0,74δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The study was supported by the Russian Science Foundation grant No. 23-75-01087, https://rscf.ru/project/23-75-01087/.

    Πηγή: Biomedical Photonics; Том 14, № 2 (2025); 4-11 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/715/484; World health statistics 2024: monitoring health for the SDGs, Sustainable Development Goals // Geneva: World Health Organization. – 2024. Licence: CC BY-NC-SA 3.0 IGO.; European Centre for Disease Prevention and Control // Antimicrobial resistance in the EU/EEA (EARS-Net) – Annual Epidemiological Report 2023. Stockholm: ECDC. – 2024.; Kharkwal G.B., Sharma S.K., Huang Y.Y., et al. Photodynamic therapy for infections: clinical applications // Lasers Surg Med. – 2011. – Vol. 43(7). – P. 755-67. https://doi.org/10.1002/lsm.21080.; Semyonov D.Yu., Vasil’ev Yu.L., Dydykin S.S. et al. Antimicrobial and antimycotic photodynamic therapy (review of literature) // Biomedical Photonics. – 2021. –Vol. 10(1). – P. 25-31. https://doi.org/10.24931/2413- 9432-2021-10-1-25-31; Мишутина O. Л., Bолченкова Г.B., Ковалева Н.С. и др. Фотодинами- ческая терапия в стоматологии (о6зор литературы) // Смоленский медицинский альманах. – 2019. – №3. – С.102-111. – EDN: PMCRWJ.; Рисованная, O. Н. Фотодинамическая терапия – современные взгляды и новшества в стоматологии / O. Н. Рисованная, Т. Ш. Aн- дреасян // Медицинский алфавит. – 2024. – № 18. – С. 78-84. https:// doi.org/10.33667/2078-5631-2024-18-78-84; Morgado L.F., Travolo A.R.F., Muehlmann L.A., et al. Photodynamic Therapy treatment of onychomycosis with Aluminium-Phthalocyanine Chloride nanoemulsions: A proof of concept clinical trial // J Photochem Photobiol B. – 2017. – Vol. 173. – P. 266-270. https://doi.org/10.1016/j. jphotobiol.2017.06.010.; La Selva A., Negreiros R.M, Bezerra D.T., et al. Treatment of herpes labialis by photodynamic therapy: Study protocol clinical trial (SPIRIT compliant) // Medicine (Baltimore). – 2020. – P. 99 (12): e19500. https:// doi.org/10.1097/MD.0000000000019500.; Galinari C.B., Conrado P.C.V., Arita G.S., et al. Nanoencapsulated hypericin in P-123 associated with photodynamic therapy for the treatment of dermatophytosis. J Photochem Photobiol B. – 2021. – Vol. 215. – P. 112103. https://doi.org/10.1016/j. jphotobiol.2020.112103.; Maldonado A.E., Osorio Peralta M.O., Moreno V.A., et al. Effectiveness of Photodynamic Therapy in Elimination of HPV-16 and HPV-18 Associated with CIN I in Mexican Women // Photochem Photobiol. – 2017. – Vol. 93(5). – P. 1269-1275. https://doi.org/10.1111/php.12769.; Shanazarov N.A., Zinchenko S.V., Kisikova S.D., et al. Photodynamic therapy in the treatment of HPV-associated cervical cancer: mechanisms, challenges and future prospects // Biomedical Photonics. – 2024. – Vol. 13(1). – P. 47-55. https://doi.org/10.24931/2413-9432-2023-13-1-47-55; Патент № 2820135 C1 Российская Федерация, МПК A61N 5/067, A61K 33/14, A61M 25/10. Спосо6 лечения 6ольных хроническим рецидивирующим 6актериальным циститом: № 2023122177: за- явл. 25.08.2023: опу6л. 29.05.2024 / Стрельцова O.С., Aнтонян A.Э., Седова E.С. [и др.]; заявитель федеральное государственное 6юд- жетное о6разовательное учреждение высшего о6разования «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации.; Логунова E.B., Eгоров B.И., Наседкин A.Н и др. Использование ферментов с целью повышения эффективности антимикро6ной фотодинамической терапии 6ольных хроническим тонзиллитом // Bестник оториноларингологии. – 2016. – № 81(2). – С.44-48. https:// doi.org/10.17116/otorino201681244-48; Плавский B.Ю., Плавская Л.Г., Дудинова O.Н. и др. Эндогенные фотоакцепторы, сенси6илизирующие фото6иологические реак- ции в соматических клетках // Mурнал прикладной спек- троскопии. – 2023. – № 90(2). – С. 239-252. https://doi.org/10. 47612/0514-7506-2023-90-2-239-252; Guffey J.S, Payne W., Jones T., et al. Evidence of resistance development by Staphylococcus aureus to an in vitro, multiple stage application of 405 nm light from a supraluminous diode array // Photomed Laser Surg. – 2013. – Vol. 31. – P. 179-82. https://doi.org/10.1089/pho.2012.3450; Amin R.M., Bhayana B., Hamblin M.R., et al. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies // Lasers Surg Med. – 2016. – Vol. 48. – P. 562-568. https://doi.org/10.1002/lsm.22474; Pieranski M., Sitkiewicz I., Grinholc M. Increased photoinactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments // Free Radic Biol Med. – 2020. – Vol. 160. – P. 657-69. https://doi.org/10.1016/j.freeradbiomed.2020.09.003; Rapacka-Zdonczyk A., Wozniak A., Pieranski M., et al. Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment // Sci Rep. – 2019. – Vol. 9. – P.1-18. https://doi.org/10.1038/s41598-019- 45962-x; Тиганова И.Г., Макарова E.A., Меерович Г.A. и др. Фотодинамиче- ская инактивация патогенных 6актерий в 6иопленках с исполь- зованием новых синтетических производных 6актериохлорина // Biomedical Photonics. – 2017. – Т. 6, № 4. – С. 27-36.; Lebedeva N.S., Gubarev Y.A., Koifman M.O., et al. The Application of Porphyrins and Their Analogues for Inactivation of Viruses // Molecules. – 2020. – vol. 23. – no.25(19). – P. 4368. https://doi.org/10.3390/ molecules25194368.; Ле6едева Н.Ш., Койфман O.И. Супрамолекулярные системы на ос- нове макроциклических соединений с протеинами. Перспективы применения. // Биоорганическая химия. – 2022. – Vol. 48(1). – P. 3-31. https://doi.org/10.31857/S0132342322010079.; Rapacka-Zdończyk A., Woźniak A., Michalska K., et al. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation // Front Med (Lausanne). – 2021. – Vol. 8. – P. 642609. https://doi.org/10.3389/fmed.2021.642609.; Киселев A.Н., Ле6едев М.A., Сыр6у С.A. и др. Синтез и исследование водорастворимых несимметричных катионных порфиринов как потенциальных фотоинактиваторов патогенов // Известия Aкаде- мии наук. Серия химическая. – 2022. – № 12. – С. 2691-2700.; Eвропейский комитет по определению чувствительности к анти- микро6ным препаратам. Та6лицы пограничных значений для ин- терпретации значений МПК и диаметров зон подавления роста. Bерсия 13.0, 2023. – URL: https://www.antibiotic.ru/library/eucast- eucast-clinical-breakpoints-bacteria-13-0-rus/ (дата о6ращения: 18.02.2024)

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Συγγραφείς: Sh. Ohta, Ш. Ота

    Συνεισφορές: This study was not sponsored, Спонсорская поддержка отсутствовала

    Πηγή: PULMONOLOGIYA; Том 34, № 5 (2024); 624-633 ; Пульмонология; Том 34, № 5 (2024); 624-633 ; 2541-9617 ; 0869-0189

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4512/3691; https://journal.pulmonology.ru/pulm/article/view/4512/3693; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4512/2724; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4512/2726; Yagi T., Higuchi Y. Studies on hydrogenase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013; 89 (1): 16–33. DOI:10.2183/pjab.89.16.; Hansen M., Perner M. Hydrogenase gene distribution and H2 consumption ability within the Thiomicrospira lineage. Front. Microbiol. 2016; 7; 99. DOI:10.3389/fmicb.2016.00099.; Ohsawa I., Ishikawa M., Takahashi K. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007; 13 (6): 688–694. DOI:10.1038/nm1577.; Ohta S. Development of hydrogen medicine and biology: potential for various applications in diverse fields. Curr. Pharm. Des. 2021; 27 (5): 583–584. DOI:10.2174/138161282705210211144515.; Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014; 144 (1): 1–11. DOI:10.1016/j.pharmthera.2014.04.006.; Li L., Lou W., Kong L., Shen W. Hydrogen commonly applicable from medicine to agriculture: from molecular mechanisms to the field. Curr. Pharm. Des. 2021; 27 (5): 747–759. DOI:10.2174/1381612826666201207220051.; Sano M., Ichihara G., Katsumata Y. et al. Pharmacokinetics of a single inhalation of hydrogen gas in pigs. PLoS One. 2020; 15 96): e0234626. DOI:10.1371/journal.pone.0234626.; Ichihara G., Katsumata Y., Moriyama H. et al. Pharmacokinetics of hydrogen after ingesting a hydrogen-rich solution: a study in pigs. Heliyon. 2021; 7 (11): e08359. DOI:10.1016/j.heliyon.2021.e08359.; Li J., Wang C., Zhang J.H. et al. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer's disease by reduction of oxidative stress. Brain Res. 2010; 1328: 152–161. DOI:10.1016/j.brainres.2010.02.046.; Takahashi H. Application of hydrogen in ophthalmology. Curr. Pharm. Des. 2021; 27 (5): 592–594. DOI:10.2174/1381612826666201019103446.; Fontanari P., Badier M., Guillot C. et al. Changes in maximal performance of inspiratory and skeletal muscles during and after the 7.1-MPa Hydra 10 record human dive. Eur. J. Appl. Physiol. 2000; 81 (4): 325–328. DOI:10.1007/s004210050050.; Cole A.R., Sperotto F., DiNardo J.A. et al. Safety of prolonged inhalation of hydrogen gas in air in healthy adults. Crit. Care Explor. 2021; 3 (10): e543. DOI:10.1097/cce.0000000000000543.; Ohta S. Direct targets and subsequent pathways for molecular hydrogen to exert multiple functions: focusing on interventions in radical reactions. Curr. Pharm. Des. 2021; 27 (5): 595–609. DOI:10.2174/1381612826666200806101137.; Wood K.C., Gladwin M.T. The hydrogen highway to reperfusion therapy. Nat. Med. 2007; 13 (6): 673–674. DOI:10.1038/nm0607-673.; Jin Z., Zhao P., Gong W. et al. Fe-porphyrin: a redox-related biosensor of hydrogen molecule. Nano Research. 2023; 16 (2): 2020–2025. DOI:10.1007/s12274-022-4860-y.; Sun X., Ohta S., Zhang J.H. Discovery of a hydrogen molecular target. Med. Gas Res. 2023; 13 (2): 41–42. DOI:10.4103/2045-9912.356472.; Ohta S. Molecular hydrogen may activate the transcription factor Nrf2 to alleviate oxidative stress through the hydrogen-targeted porphyrin. Aging Pathobiol. Ther. 2023; 5 (1): 25–32. DOI:10.31491/APT.2023.03.104.; Zhou Y., Wu H., Zhao M. et al. The Bach family of transcription factors: a comprehensive review. Clin. Rev. Allergy Immunol. 2016; 50 (3): 345–356. DOI:10.1007/s12016-016-8538-7.; Igarashi K., Kurosaki T., Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat. Rev. Immunol. 2017; 17 (7): 437–450. DOI:10.1038/nri.2017.26.; Song Q., Mao X., Jing M. et al. Pathophysiological role of BACH transcription factors in digestive system diseases. Front. Physiol. 2023; 14: 1121353. DOI:10.3389/fphys.2023.1121353.; Dixon S.J., Pratt D.A. Ferroptosis: A flexible constellation of related biochemical mechanisms. Mol. Cell. 2023; 83 (7): 1030–1042. DOI:10.1016/j.molcel.2023.03.005.; Iuchi K., Nishimaki K., Kamimura N., Ohta S. Molecular hydrogen suppresses free-radical-induced cell death by mitigating fatty acid peroxidation and mitochondrial dysfunction. Can. J. Physiol. Pharmacol. 2019; 97 (10): 999–1005. DOI:10.1139/cjpp-2018-0741.; Kamimura N., Ichimiya H., Iuchi K., Ohta S. Molecular hydrogen stimulates the gene expression of transcriptional coactivator PGC-1α to enhance fatty acid metabolism. NPJ. Aging. Mech. Dis. 2016; 2: 16008. DOI:10.1038/npjamd.2016.8.; Luchi K., Imoto A., Kamimura N. et al. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci. Rep. 2016; 6: 18971. DOI:10.1038/srep18971.; Matsumoto A., Yamafuji M., Tachibana T. et al. Oral 'hydrogen water' induces neuroprotective ghrelin secretion in mice. Sci. Rep. 2013; 3: 3273. DOI:10.1038/srep03273.; Kamimura N., Nishimaki K., Ohsawa I., Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring). 2011; 19 (7): 1396–1403. DOI:10.1038/oby.2011.6.; Nicolson G.L., de Mattos G.F., Settineri R. et al. Clinical effects of hydrogen administration: from animal and human diseases to exercise medicine. Int. J. Clin. Med. 2016; 7 (1): 32–76. DOI:10.4236/ijcm.2016.71005.; Johnsen H.M., Hiorth M., Klaveness J. Molecular hydrogen therapy-a review on clinical studies and outcomes. Molecules. 2023; 28 (23): 7785. DOI:10.3390/molecules28237785.; Mizuno K., Sasaki A.T., Ebisu K. et al. Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med. Gas Res. 2018; 7 (4): 247–255. DOI:10.4103/2045-9912.222448.; Mikami T., Tano K., Lee H. et al. Drinking hydrogen water enhances endurance and relieves psychometric fatigue: a randomized, double-blind, placebo-controlled study. Can. J. Physiol. Pharmacol. 2019; 97 (9): 857–862. DOI:10.1139/cjpp-2019-0059.; Botek M., Krejci J., McKune A.J., Sladeckova B. Hydrogen-rich water supplementation and up-hill running performance: effect of athlete performance level. Int. J. Sports Physiol. Perform. 2020; 15 (8): 1193–1196. DOI:10.1123/ijspp.2019-0507.; Ostojic S.M. Hydrogen gas as an exotic performance-enhancing agent: challenges and opportunities. Curr. Pharm. Des. 2021; 27 (5): 723–730. DOI:10.2174/1381612826666200922155242.; Botek M., Krejci J., McKune A. et al. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance training. J. Strength Cond. Res. 2022; 36 (10): 2792–2799. DOI:10.1519/jsc.0000000000003979.; Zhou K., Liu M., Wang Y. et al. Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: a systematic review and meta-analysis. Front. Nutr. 2023; 10: 1094767. DOI:10.3389/fnut.2023.1094767.; Liu H., Kang X., Ren P. et al. Hydrogen gas ameliorates acute alcoholic liver injury via anti-inflammatory and antioxidant effects and regulation of intestinal microbiota. Int. Immunopharmacol. 2023; 120: 110252. DOI:10.1016/j.intimp.2023.110252.; Lv X., Lu Y., Ding G. et al. Hydrogen intake relieves alcohol consumption and hangover symptoms in healthy adults: a randomized and placebo-controlled crossover study. Am. J. Clin. Nutr. 2022; 116 (5): 1208–1218. DOI:10.1093/ajcn/nqac261.; Hu A., Yamaguchi T., Tabuchi M. et al. A pilot study to evaluate the potential therapeutic effect of hydrogen-water bathing on atopic dermatitis in humans. Adv. Integr. Med. 2024; 11 (1): 2–9. DOI:10.1016/j.aimed.2023.10.003.; Bajgai J., Lee K.J., Rahman M.H. et al. Role of molecular hydrogen in skin diseases and its impact in beauty. Curr. Pharm. Des. 2021; 27 (5): 737–746. DOI:10.2174/1381612826666200925124235.; Dhillon G., Buddhavarapu V., Grewal H. et al. Hydrogen water: extra healthy or a hoax? – A systematic review. In. J. Mol. Sci. 2024; 25 (2): 973. DOI:10.3390/ijms25020973.; Ono H., Nishijima Y., Ohta S. et al. Hydrogen gas inhalation treatment in acute cerebral infarction: a randomized controlled clinical study on safety and neuroprotection. J. Stroke Cerebrovasc. Dis. 2017; 26 (11): 2587–2594. DOI:10.1016/j.jstrokecerebrovasdis.2017.06.012.; Hayashida K., Sano M., Kamimura N. et al. Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest independently of targeted temperature management. Circulation. 2014; 130 (24): 2173–2180. DOI:10.1161/circulationaha.114.011848.; Tamura T., Suzuki M., Homma K. et al. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): a multi-centre, randomised, double-blind, placebo-controlled trial. EClinicalMedicine. 2023; 58: 101907. DOI:10.1016/j.eclinm.2023.101907.; Qin S. Role of Hydrogen in atherosclerotic disease: from bench to Bedside. Curr. Pharm. Des. 2021; 27 (5): 713–722. DOI:10.2174/1381612826666201124112152.; Ohsawa I., Nishimaki K., Yamagata K. et al. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem. Biophys. Res. Commun. 2008; 377 (4): 1195–1198. DOI:10.1016/j.bbrc.2008.10.156.; Todorovic N., Fernández-Landa J., Santibañez A. et al. The effects of hydrogen-rich water on blood lipid profiles in clinical populations: a systematic review and meta-analysis. Pharmaceuticals (Basel). 2023; 16 (2): 142. DOI:10.3390/ph16020142.; Nagata K., Nakashima-Kamimura N., Mikami T. et al. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology. 2009; 34 (2): 501–508. DOI:10.1038/npp.2008.95.; Nishimaki K., Asada T., Ohsawa I. et al. Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment. Curr. Alzheimer Res. 2018; 15 (5): 482–492. DOI:10.2174/1567205014666171106145017.; Kueper J.K., Speechley M., Montero-Odasso M. The Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog): modifications and responsiveness in pre-dementia populations. A narrative review. J. Alzheimers Dis. 2018; 63 (2): 423–444. DOI:10.3233/jad-170991.; Ayyubova G. APOE4 is a risk factor and potential therapeutic target for Alzheimer's disease. CNS Neurol. Disord. Drug Targets. 2024; 23 (3): 342–352. DOI:10.2174/1871527322666230303114425.; Alm K.H., Bakker A. Relationships between diffusion tensor imaging and cerebrospinal fluid metrics in early stages of the Alzheimer's disease continuum. J. Alzheimers Dis. 2019; 70 (4): 965–981. DOI:10.3233/jad-181210.; Ono H., Nishijima Y., Ohta S. Therapeutic inhalation of hydrogen gas for Alzheimer's disease patients and subsequent long-term follow-up as a disease-modifying treatment: An open label pilot study. Pharmaceuticals (Basel). 2023; 16 (3): 434. DOI:10.3390/ph16030434.; Ono H., Nishijima Y., Sakamoto M. et al. Long-term inhalation of hydrogen gas for patients with advanced Alzheimer's disease: a case report showing improvement in fecal Incontinence. Med. Res. Arch. 2022; 10 (7). DOI:10.18103/mra.v10i7.2951.; Rahman M.H., Bajgai J., Sharma S. et al. Effects of hydrogen gas inhalation on community-dwelling adults of various ages: a single-arm, open-label, prospective clinical trial. Antioxidants (Basel). 2023; 12 (6): 1241. DOI:10.3390/antiox12061241.; Dan Z., Li H., Xie J. Efficacy of donepezil plus hydrogen-oxygen mixture inhalation for treatment of patients with Alzheimer disease: a retrospective study. Medicine (Baltimore). 2023; 102 (30): e34382. DOI:10.1097/md.0000000000034382.; He J., Liu F., Xu T. et al. The role of hydrogen therapy in Alzheimer's disease management: Insights into mechanisms, administration routes, and future challenges. Biomed. Pharmacother. 2023; 168: 115807. DOI:10.1016/j.biopha.2023.115807.; Nakashima-Kamimura N., Mori T., Ohsawa I. et al. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother. Pharmacol. 2009; 64 (4): 753–761. DOI:10.1007/s00280-008-0924-2.; Kang K.M., Kang Y.N., Choi I.B. et al. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med. Gas Res. 2011; 1 (1): 11. DOI:10.1186/2045-9912-1-11.; Akagi J., Baba H. Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol. Rep. 2019; 41 (1): 301–311. DOI:10.3892/or.2018.6841.; Akagi J., Baba H. Hydrogen gas activates coenzyme Q10 to restore exhausted CD8(+) T cells, especially PD-1(+)Tim3(+)terminal CD8(+) T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncol. Lett. 2020; 20 (5): 258. DOI:10.3892/ol.2020.12121.; Mohd Noor M.N.Z., Alauddin A.S., Wong Y.H. et al. A systematic review of molecular hydrogen therapy in cancer management. Asian Pac. J. Cancer Prev. 2023; 24 (1): 37–47. DOI:10.31557/apjcp.2023.24.1.37.; https://journal.pulmonology.ru/pulm/article/view/4512

  13. 13
    Academic Journal

    Πηγή: Epidemiology and Vaccinal Prevention; Том 23, № 3 (2024); 19-26 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 3 (2024); 19-26 ; 2619-0494 ; 2073-3046

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/2010/1032; European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA (ESAC-Net) -Annual Epidemiological Report 2022. Stockholm: ECDC; 2023. https://www.ecdc.europa.eu/sites/default/files/documents/AER-antimicrobial-consumption.pdf.; Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.; Карпов О. Э., Гусаров В. Г., Камышова Д. А. и др. Оценка эффективности применения стратегии сдерживания антибиотикорезистентности: результаты десятилетнего исследования в многопрофильном стационаре. Клиническая микробиология и антимикробная химиотерапия. 2023 Т. 25, №3. С. 283–295.; Распоряжение Правительства Российской Федерации от 25 сентября 2017 года N 2045-р «Об утверждении «Стратегии предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 года».; Meerovich G., Akhlyustina E., Romanishkin I., et al. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther. 2023 Vol. 44. 103853.; Rapacka-Zdończyk A., Woźniak A., Michalska K., et al. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne). 2021 Vol.12, N8. 642609.; Wozniak A., Grinholc M. Combined Antimicrobial Activity of Photodynamic Inactivation and Antimicrobials-State of the Art. Front Microbiol. 2018 Vol.8. N9. P. 930.; Kharkwal G., Sharma S., Huang Y., et al. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011 Vol. 43, N7. P.755–767.; Кувшинов А.В., Наумович С.А. Основные механизмы фотодинамической терапии. Современная стоматология. 2012 Т. 54, №1. С. 18–21.; Pérez C, Zúñiga T, Palavecino C. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther. 2021 Vol. 34. P.102285.; Rkein A., Ozog D. Photodynamic therapy. Dermatol Clin. 2014 Vol. 32, N3. P. 415–425.; Sułek A., Pucelik B., Kobielusz M., et al. Photodynamic inactivation of bacteria with porphyrin derivatives: effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro. Int J Mol Sci. 2020 Vol.21. P.8716.; Раджабов А.А., Дербенев В.А., Исмаилов Г.И., и др. Антибактериальная фотодинамическая терапия гнойных ран мягких тканей. Лазерная медицина. 2017 Т. 21, №2. С. 46–49.; Dabrowski J. Reactive oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Adv. Inorg. Chem. 2017 Vol. 70. P. 343–394.; Kustov A., Morshnev Ph., Kukushkina N., et al. The effect of molecular structure of chlorin photosensitizers on photo-bleaching of 1,3-diphenylisobenzofuran—the possible evidence of iodine reactive species formation. Comptes Rendus Chimie. 2022 Vol.25. P.97.; Lebedeva NS, Gubarev YA, Koifman MO, et al. The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Molecules. 2020 Vol. 25, N19. P. 4368.; Киселев А. Н., Лебедев М. А., Сырбу С. А. и др. Синтез и исследование водорастворимых несимметричных катионных порфиринов как потенциальных фотоинактиваторов патогенов. Известия Академии наук. Серия химическая. 2022 Т. 71, № 12. С. 2691–2700.; Рекомендации. Определение чувствительности микроорганизмов к антимикробным препаратам. Версия 2021–01. Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии. М.: 2021. https://www.antibiotic.ru/files/321/clrec-dsma2021.pdf. Ссылка активна на 01.04.2024.; Асланов Б. И., Зуева Л. П., Пунченко О. Е. и др. Рациональное применение бактериофагов в лечебной и противоэпидемической практике. Методические рекомендации. Москва, 2022. 32 с.; https://www.epidemvac.ru/jour/article/view/2010

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20