Εμφανίζονται 1 - 20 Αποτελέσματα από 184 για την αναζήτηση '"поражение ЦНС"', χρόνος αναζήτησης: 0,75δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 16, № 1 (2025); 62-67 ; Медицинский вестник Юга России; Том 16, № 1 (2025); 62-67 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2025-16-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1911/1078; https://www.medicalherald.ru/jour/article/downloadSuppFile/1911/923; https://www.medicalherald.ru/jour/article/downloadSuppFile/1911/924; https://www.medicalherald.ru/jour/article/downloadSuppFile/1911/925; Петеркова В.А., Безлепкина О.Б., Ширяева Т.Ю., Вадина Т.А., Нагаева Е.В., и др. Клинические рекомендации «Врожденный гипотиреоз». Проблемы Эндокринологии. 2022;68(2):90-103. https://doi.org/10.14341/probl12880; Дедов И.И., Безлепкина О.Б., Вадина Т.А., Байбарина Е.Н., Чумакова О.В., и др. Скрининг на врожденный гипотиреоз в Российской Федерации. Проблемы Эндокринологии. 2018;64(1):14-20. https://doi.org/10.14341/probl201864114-20; Tenenbaum-Rakover Y, Almashanu S, Hess O, Admoni O, Hag-Dahood Mahameed A, et al. Long-term outcome of lossof-function mutations in thyrotropin receptor gene. Thyroid. 2015;25(3):292-299. Erratum in: Thyroid. 2015;25(8):977. https://doi.org/10.1089/thy.2014.0311; https://www.medicalherald.ru/jour/article/view/1911

  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 15, № 3 (2024); 62-66 ; Медицинский вестник Юга России; Том 15, № 3 (2024); 62-66 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2024-15-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1880/1049; https://www.medicalherald.ru/jour/article/downloadSuppFile/1880/879; https://www.medicalherald.ru/jour/article/downloadSuppFile/1880/880; Кузнецова А.И., Бобошко И.Е., Жданова Л.А. Взаимосвязь избыточной гестационной прибавки массы тела с состоянием здоровья новорожденных и матерей. Вестник Ивановской медицинской академии. 2020;25(1):26-30. eLIBRARY ID: 44063951 EDN: ZMVBKR; Дятлова Л.И., Рогожина И.Е., Нечаев В.Н., Сергеева О.Н., Глухова Т.Н. Акушерская тактика при недоношенной беременности, осложненной преждевременным разрывом плодных оболочек, состояние плода и новорожденного. Медикофармацевтический журнал "Пульс". 2022;24(12):18-22. https://doi.org/10.26787/nydha-2686-6838-2022-24-12-18-22; Киосов А.Ф. Поздние недоношенные дети: эпидемиологические аспекты, заболеваемость, тактика ведения. Доктор.Ру. 2019;9(164):19–24. https://doi.org/10.31550/1727-2378-2019-164-9-19-24; Гребенюк М.М., Поздняков А.В., Мелашенко Т.В., Позднякова О.Ф., Макаров Л.М. Возможности нейровизуали-зационных методов (УЗИ, МРТ) в оценке постгипоксических изменений головного мозга у недоношенных детей. Визуализация в медицине.2020;2(1):16-24. eLIBRARY ID: 43596510 EDN: URLGDO; Саркисян Е.А., Журавлева И.В., Макарова Л.М., Волкова А.И., Шинкаренко Л.Д., и др. Опыт ведения поздних недоношенных новорожденных в условиях второго этапа выхаживания QuantumSatis. 2023;6(1):95-99. eLIBRARY ID: 54149782 EDN: DJVWBZ; Тимофеева Л.А., Киртбая А.Р., Дегтярев Д.Н., Шарафутдинова Д.Р., Цой Т.А., и др. Поздние недоношенные дети: насколько они нуждаются в специализированной медицинской помоши? Неонатология: новости, мнения, обучение. 2016;(4):94-101. eLIBRARY ID: 27720037 EDN: XIPNSR; https://www.medicalherald.ru/jour/article/view/1880

  5. 5
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 11 (2023); 26-33 ; Медицинский Совет; № 11 (2023); 26-33 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7665/6799; Baselga J., Cortés J., Kim S.B., Im S.A., Hegg R., Im Y.H. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–119. https://doi.org/10.1056/NEJMoa1113216.; Swain S.M., Baselga J., Kim S.B., Ro J., Semiglazov V., Campone M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–734. https://doi.org/10.1056/NEJMoa1413513.; Nicolò E., Zagami P., Curigliano G. Antibody–drug conjugates in breast cancer: the chemotherapy of the future? Curr Opin Oncol. 2020;32(5):494–502. https://doi.org/10.1097/CCO.0000000000000656.; Schettini F., Chic N., Brasó-Maristany F., Paré L., Pascual T., Conte B. et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ Breast Cancer. 2021;7(1):1. https://doi.org/10.1038/s41523-020-00208-2.; Tarantino P., Hamilton E., Tolaney S.M., Cortes J., Morganti S., Ferraro E. et al. HER2-low breast cancer: pathological and clinical landscape. J Clin Oncol. 2020;38(17):1951–1962. https://doi.org/10.1200/JCO.19.02488.; Nakada T., Sugihara K., Jikoh T., Abe Y., Agatsuma T. The latest research and development into the antibody-drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem Pharm Bull. 2019;67(3):173–185. https://doi.org/10.1248/cpb.c18-00744.; Modi S., Saura C., Yamashita T., Park Y.H., Kim S.-B., Tamura K. et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med. 2020;382(7):610–621. https://doi.org/10.1056/NEJMoa1914510.; Ogitani Y., Hagihara K., Oitate M., Naito H., Agatsuma T. Bystander killing effect of DS‐8201a, a novel anti‐human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–1046. https://doi.org/10.1111/cas.12966.; Mosele M.F., Lusque A., Dieras V., Deluche E., Ducoulombier A., Pistilli B. et al. LBA1 Unraveling the mechanism of action and resistance to trastuzumab deruxtecan (T-DXd): biomarker analyses from patients from DAISY trial. Ann Oncol. 2022;33:S123. https://doi.org/10.1016/j.annonc.2022.03.277; Diéras V., Deluche E., Lusque A., Pistilli B., Bachelot T., Pierga J.Y. et al. Abstract PD8-02: Trastuzumab deruxtecan (T-DXd) for advanced breast cancer patients (ABC), regardless HER2 status: a phase II study with biomarkers analysis (DAISY). Cancer Research. 2022;82:(4 Suppl):PD8–02. https://doi.org/10.1158/1538-7445.SABCS21-PD8-02.; Manich C.S., Modi S., Krop I., Park Y.H., Kim S.B., Tamura K. et al. 279P trastuzumab deruxtecan (T-DXd) in patients with HER2-positive metastatic breast cancer (MBC): updated survival results from a phase II trial (DESTINY-Breast01). Ann Oncol. 2021;32:S485–S486. https://doi.org/10.1016/j.annonc.2021.08.562.; Saura Manich C., Modi S., Krop I., Park Y.H., Kim S., Tamura K. et al. Trastuzumab deruxtecan (T-DXd) in patients with HER2-positive metastatic breast cancer (MBC): Updated survival results from a phase II trial (DESTINY-Breast01). Ann Oncol. 2021;32(5 Suppl.):S485–S486. https://doi.org/10.1016/j.annonc.2021.08.562.; André F., Hee Park Y., Kim S.B., Takano T., Im S.A., Borges G. et al. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023;401(10390): 1773–1785. https://doi.org/10.1016/S0140-6736(23)00725-0.; André F., Shahidi J., Lee C., Wang K., Krop I.E. Trastuzumab deruxtecan (DS-8201a) vs investigator’s choice of treatment in subjects with HER2- positive, unresectable and/or metastatic breast cancer who previously received T-DM1: A randomized, phase 3 study. Cancer Research. 2019;79(4):OT2-07-02. https://doi.org/10.1158/1538-7445.SABCS18-OT2-07-02.; Hurvitz S.A., Hegg R., Chung W-P., Im S-A., Jacot W., Ganju V. et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINYBreast03, a randomised, open-label, phase 3 trial. Lancet. 2023;401(10371): 105–117. https://doi.org/10.1016/S0140-6736(22)02420-5.; Curigliano G., Dunton K., Rosenlund M., Janek M., Cathcart J., Liu Y. et al. Patient-reported outcomes and hospitalization data in patients with HER2-positive metastatic breast cancer receiving trastuzumab deruxtecan or trastuzumab emtansine in the phase 3 DESTINY-Breast03 study. Ann Oncol. 2023;(23):00677-4. https://doi.org/10.1016/j.annonc.2023.04.516.; Garcia-Alvarez A., Papakonstantinou A., Oliveira M. Brain metastases in HER2-positive breast cancer: current and novel treatment strategies. Cancers. 2021;13(12):2927. https://doi.org/10.3390/cancers13122927.; Watase C., Shiino S., Shimoi T., Noguchi E., Kaneda T., Yamamoto Y. et al. Breast cancer brain metastasi s– overview of disease state, treatment options and future perspectives. Cancers. 2021;13(5):1078. https://doi.org/10.3390/cancers13051078.; Bailleux C., Eberst L., Bachelot T. Treatment strategies for breast cancer brain metastases. Br J Cancer. 2021;124(1):142–155. https://doi.org/10.1038/s41416-020-01175-y.; Jerusalem G., Park Y.H., Yamashita T., Hurvitz S.A., Modi S., Andre F. et al. Trastuzumab Deruxtecan in HER2-positive metastatic breast cancer patients with brain metastases: a DESTINY-Breast01 subgroup analysis. Cancer discovery. 2022;12(12):2754–2762. https://doi.org/10.1158/2159-8290.CD-22-0837.; Jacobson A. Trastuzumab Deruxtecan Improves Progression-Free Survival and Intracranial Response in Patients with HER2-Positive Metastatic Breast Cancer and Brain Metastases. Oncologist. 2022;27(Suppl 1):S3–S4. https://doi.org/10.1093/oncolo/oyac009.; Pérez-García J.M., Vaz Batista M., Cortez P., Ruiz-Borrego M., Cejalvo J.M., de la Haba-Rodriguez et al. Trastuzumab deruxtecan in patients with central nervous system involvement from HER2-positive breast cancer: the DEBBRAH trial. Neuro Oncol. 2023;25(1):157–166. https://doi.org/10.1093/neuonc/noac144.; Ogitani Y., Aida T., Hagihara K., Yamaguchi J., Ishii C., Harada N. et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1Preclinical Efficacy of DS-8201a, a Novel HER2-Targeting ADC. Clin Cancer Res. 2016;22(20):5097–5108. https://doi.org/10.1158/1078-0432.CCR-15-2822.; Modi S., Jacot W., Yamashita T., Sohn J., Vidal M., Tokunaga E. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022;387(1):9–20. https://doi.org/10.1056/NEJMoa2203690.; Powell C.A., Modi S., Iwata H., Takahashi S., Smit E.F., Siena S. et al. Pooled analysis of drug-related interstitial lung disease and/or pneumonitis in nine trastuzumab deruxtecan monotherapy studies. ESMO Open. 2022;7(4):100554. https://doi.org/10.1016/j.esmoop. 2022.100554.; Tarantino P., Modi S., Tolaney S.M., Cortés J., Hamilton E.P., Kim S.B. et al. Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates: a review. JAMA Oncol. 2021;7(12):1873–1881. https://doi.org/10.1001/jamaoncol.2021.3595.; Powell C.A., Modi S., Iwata H., Takahashi S., Smit E.F., Siena S. et al. Pooled analysis of drug-related interstitial lung disease (ILD) in 8 single-arm trastuzumab deruxtecan (T-DXd) studies. ESMO Open. 2022;7(4):100554. https://doi.org/10.1016/j.esmoop.2022.100554.; Conte P., Ascierto P.A., Patelli G., Danesi R., Vanzulli A., Sandomenico F. et al. Drug-induced interstitial lung disease during cancer therapies: expert opinion on diagnosis and treatment. ESMO open. 2022;7(2):100404. https://doi.org/10.1016/j.esmoop.2022.100404.; Powell C.A., Modi S., Iwata H., Takahashi S., Nie K., Qin A. et al. Analysis of study drug-related interstitial lung disease (ILD) in patients (pts) with HER2+ metastatic breast cancer (mBC) treated with trastuzumab deruxtecan (T-DXd). Ann Oncol. 2021;32:S61–S62. https://doi.org/10.1016/j.annonc.2021.03.106.; Kumagai K., Aida T., Tsuchiya Y., Kishino Y., Kai K., Mori K. Interstitial pneumonitis related to trastuzumab deruxtecan, a human epidermal growth factor receptor 2-targeting Ab–drug conjugate, in monkeys. Cancer Sci. 2020;111(12):4636–4645. https://doi.org/10.1111/cas.14686.; Rugo H.S., Bianchini G., Cortes J., Henning J.W., Untch M. Optimizing treatment management of trastuzumab deruxtecan in clinical practice of breast cancer. ESMO Open. 2022;7(4):100553. https://doi.org/10.1016/j.esmoop.2022.100553.

  6. 6
    Academic Journal

    Συνεισφορές: Исследование выполнено за счет гранта Российского научного фонда № 23-45-10017, в рамках российско-белорусского сотрудничества https://rscf.ru/project/23-45-10017/.

    Πηγή: HIV Infection and Immunosuppressive Disorders; Том 15, № 1 (2023); 7-22 ; ВИЧ-инфекция и иммуносупрессии; Том 15, № 1 (2023); 7-22 ; 2077-9828 ; 10.22328/2077-9828-2023-15-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/771/514; Hemelaar J., Elangovan R., Yun J., Dickson-Tetteh L., Fleminger I., Kirtley S., Williams B., Gouws-Williams E., Ghys P.D. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis // The Lancet Infectious Diseases. 2018. Vol. 19, No. 2. P. 143–155.; Thompson R. Pandemic potential of 2019-nCoV // Lancet Infect Dis. 2020. Vol. 20, No. 3. Р. 280. https://doi.org/10.1016/S1473-3099(20)30068-2.; Kanwugu О.N., Adadi Р. HIV/SARS-CoV-2 coinfection: A global perspective // Journal of Medical Virology. 2021. Vol. 93, No. 2. P. 726–732. https://doi.org/10.1002/jmv.26321.; Barbera L.K., Kevin F. Kamis K.F., Rowan S.E., Davis A.J., Shehata S., Carlson J.J., Johnson S.C., Erlandson K.M. HIV and COVID-19: review of clinical course and outcomes // HIV Research & Clinical Practice. 2021. Published online. doi:10.1080/25787489.2021.1975608.; Лесина О.Н., Гущин О.А., Кумарева Д.Ю. Клинико-лабораторные особенности пациентов при коинфекции HIV и SARS-CoV-2 // Журнал инфектологии. 2021. Т. 13, № 3. С. 148–149.; Eggers C., Arendt G., Hahn K. et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment // J. Neurol. 2017. Vol. 264. Р. 1715–1727. https://doi.org/10.1007/s00415-017-8503-2.; Wang Y., Liu M., Lu Q., Farrell F., Lappin J.M., Shi J., Lu L., Bao Y. Global prevalence and burden of HIV-associated neurocognitive disorder. A meta-analysis // Neurology. 2020. Vol. 95, No. 19. e2610-e2621.; Евзельман М.А., Снимщикова И.А., Королев Л.Я., Камчатнов П.Р. Неврологические осложнения ВИЧ-инфекции // Журнал неврологии и психиатрии. 2015. № 3. С. 89–93.; Тибекина Л.М., Малько В.А., Флуд В.В., Лепилина А.В. Церебральные инсульты у больных с ВИЧ-инфекцией // ВИЧ-инфекция и иммуносупрессии. 2019. Т. 11, № 4. С. 51–59.; Centner C.M., Bateman K.J., Heckmann J.M. Manifestations of HIV infection in the peripheral nervous system // The Lancet Neurology. 2013. Vol. 12, No. 3. P. 295–309. https://doi.org/10.1016/S1474-4422(13)70002-4.; Gonzalez-Duarte A., Cikurel K., Simpson D.M. Managing HIV peripheral neuropathy // Current HIV/AIDS. 2007. Rep. 4. Р. 114–118. https://doi.org/10.1007/s11904-007-0017-6.; Беляков Н.А., Медведев С.В., Трофимова Т.Н., Рассохин В.В., Дементьева Н.Е., Шеломов А.С. Механизмы поражения головного мозга при ВИЧ-инфекции // Вестник РАМН. 2012. № 9. C. 4–12.; Putatunda R., Ho W.Z., Hu W. HIV-1 and Compromised Adult Neurogenesis: Emerging Evidence for a New Paradigm of HAND Persistence // AIDS Reviews. 2019. Vol. 21, No. 1. Р. 11–22. doi:10.24875/AIDSRev.19000003.; Filatov A., Sharma P., Hindi F., Espinosa P.S. Neurological complications of coronavirus disease (COVID-19): encephalopathy // Cureus. 2020. Vol. 12, No. 3. e7352. https://doi.org/10.7759/cureus.7352.; Aghagoli G., Gallo Marin B., Katchur N.J., Chaves-Sell F., Asaad W.F., Murphy S.A. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review // Neurocrit. Care. 2021. Jun. Vol. 34, No. 3. Р. 1062–1071. doi:10.1007/s12028-020-01049-4.; Беляков Н.А., Рассохин В.В. ВИЧ-инфекция и коморбидные состояния. СПб., 2020. 680 с.: ил. [Belyakov N.A., Rassokhin V.V. HIV infection and comorbid conditions. St. Petersburg, 2020. 680 p.: ill. (In Russ.)].; Yazdanpanah N., Rezaei N. Autoimmune complications of COVID-19 // Journal of Medical Virology. 2022. Jan. Vol. 94, No. 1. Р. 54–62. doi:10.1002/jmv.27292.; Mao L., Jin H., Wang M. et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China // JAMA Neurol. 2020. Vol. 77, No. 6. Р. 683–690.; Cagnazzo F., Arquizan C., Derraz I. et al. Neurological manifestations of patients infected with the SARS-CoV-2: A systematic review of the literature // J. Neurol. 2020. Vol. 15. Р. 3.; Ghannam M., Alshaer Q., Al-Chalabi M. et al. Neurological involvement of coronavirus disease 2019: A systematic review // J. Neurol. 2020. Vol. 267, No. 11. Р. 3135–3153.; Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation // Science. 2020. Mar 13. Vol. 367, No. 6483. Р. 1260–1263. doi:10.1126/science.abb2507.; Villarreal I.M., Morato M., Martinez-RuizCoello M. et al. Olfactory and taste disorders in healthcare workers with COVID-19 infection // Eur. Arch. Otorhinolaryngol. 2021. Vol. 278, No. 6. Р. 2123–2127.; Yan C.H., Faraji F., Prajapati D.P. et al. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms // Int. Forum Allergy Rhinol. 2020. Vol. 10, No. 7. Р. 806–813.; Suzuki Y., Takeda M., Obara N. et al. Olfactory epithelium consisting of supporting cells and horizontal basal cells in the posterior nasal cavity of mice // Cell Tissue Res. 2000. Vol. 299, No. 3. Р. 313–325.; Liang F. Sustentacular cell enwrapment of olfactory receptor neuronal dendrites: An update // Genes (Basel). 2020. Vol. 11, No. 5. Р. 493.; Bilinska K., Jakubowska P., Von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age // ACS Chem Neurosci. 2020. Vol. 11, No. 11. Р. 1555–1562.; Bryche B., St Albin A., Murri S. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters // Brain Behav Immun. 2020. Vol. 89. Р. 79–86.; Yachou Y., El Idrissi A., Belapasov V., Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients // Neurological Sciences. 2020. Vol. 41. Р. 2657–2669. doi 10.1007/s10072-020-04575-3.; Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat Neurosci. 2021. Vol. 24, No. 2. Р. 168–175.; Bulfamante G., Chiumello D., Canevini M.P. et al. First ultrastructural autoptic findings of SARS — Cov-2 in olfactory pathways and brainstem // Minerva Anestesiol. 2020. Vol. 86, No. 6. Р. 678–679.; Aragao M., Leal M.C., Cartaxo Filho O.Q. et al. Anosmia in COVID-19 associated with injury to the olfactory bulbs evident on MRI // Am. J. Neuroradiol. 2020. Vol. 41, No. 9. Р. 1703–1706.; Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia // JAMA Neurol. 2020. Vol. 77, No. 8. Р. 1028–1029.; Von Weyhern C.H., Kaufmann I., Neff F., Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes // Lancet. 2020. Vol. 395, No. 10241. Р. e109.; Bulfamante G., Bocci T., Falleni M. et al. Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung // J. Neurol. 2021.; Lima M., Siokas V., Aloizou A.M. et al. Unraveling the possible routes of SARS-CoV-2 invasion into the central nervous system // Curr. Treat Options Neurol. 2020. Vol. 22, No. 11. Р. 37.; Dahiya D.S., Kichloo A., Albosta M., Pagad S., Wani F. Gastrointestinal implications in COVID-19 // J. Investig Med. 2020. Dec. Vol. 68, No. 8. Р. 1397–1401. doi:10.1136/jim-2020-001559.; Satarker S., Nampoothiri M. Involvement of the nervous system in COVID-19: The bell should toll in the brain // Life Sci. 2020. Vol. 262. Р. 118568.; McCray P.B. Jr., Pewe L., Wohlford-Lenane C. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus // J. Virol. 2007. Vol. 81, No. 2. Р. 813–821.; Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19 // Nat. Rev. Neurol. 2020. Vol. 16, No. 11. Р. 636–644.; Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms // ACS Chem Neurosci. 2020. Vol. 11, No. 7. Р. 995–998.; Buzhdygan T.P., DeOre B.J., Baldwin-Leclair A. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier // Neurobiol. Dis. 2020. Vol. 146. Р. 105131.; Torices S., Cabrera R., Stangis M., Naranjo O., Fattakhov F., Teglas T. et al. Expression of SARS-CoV-2-related receptors in cells of the neurovascular unit: implications for HIV-1 infection // Journal of Neuroinflammation. 2021. Vol. 18. Р. 167. https://doi.org/10.1186/s12974-021-02210-2.; Hu J., Jolkkonen J., Zhao C. Neurotropism of SARS-CoV-2 and its neuropathological alterations: Similarities with other coronaviruses // Neurosci Biobehav Rev. 2020. Vol. 119. Р. 184–193.; Izquierdo-Useros N., Naranjo-Gomez M., Erkizia I. et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? // PLoS Pathog. 2010. Vol. 6, No. 3. Р. e1000740.; Bao L., Deng W., Huang B. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice // Nature. 2020. Vol. 583, No. 7818. Р. 830–833.; Беляков Н.А., Багненко С.Ф., Рассохин В.В., Трофимова Т.Н. и др. Эволюция пандемии COVID-19. CПб.: Балтийский медицинский образовательный центр, 2021. 410 с.: ил.; Paniz-Mondolfi A., Bryce C., Grimes Z. et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARSCoV-2) // J. Med. Virol. 2020. Vol. 92, No. 7. Р. 699–702.; Hoogland I.C., Houbolt C., van Westerloo D.J., van Gool W.A., van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments // J. Neuroinflammation. 2015. Jun. 6. Vol. 12. Р. 114. doi:10.1186/s12974-015-0332-6.; Dandekar A.A., Wu G.F., Pewe L., Perlman S. Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus // J. Virol. 2001. Vol. 75, No. 13. Р. 6115–6120.; Septyaningtrias D.E., Susilowati R. Neurological involvement of COVID-19: From neuroinvasion and neuroimmune crosstalk to long-term consequences // Rev. Neurosci. 2021. Vol. 32, No. 4. Р. 427–442.; Mukandala G., Tynan R., Lanigan S., O’Connor J.J. The effects of hypoxia and inflammation on synaptic signaling in the CNS // Brain Sci. 2016. Vol. 6, No. 1. Р. 6.; Ferraro E., Germano M., Mollace R. et al. HIF-1, the Warburg effect, and macrophage/microglia polarization potential role in COVID-19 pathogenesis // Oxid. Med. Cell Longev. 2021. Vol. 2021. Р. 8841911.; Xu J., Lazartigues E. Expression of ACE2 in Human Neurons Supports the Neuro-Invasive Potential of COVID-19 Virus // Cell Mol. Neurobiol. 2022. Jan. Vol. 42, No. 1. Р. 305–309. doi:10.1007/s10571-020-00915-1.; Wang T., Town T., Alexopoulou L., Anderson J.F., Fikrig E., Flavell R.A. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis // Nat. Med. 2004. Vol. 10. Р. 1366–1373.; Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при COVID-19. 2020.; Ellul M.A., Benjamin L., Singh B., Lant S., Michael B.D., Easton A., Kneen R., Defres S., Sejvar J., Solomon T. Neurological associations of COVID-19 // Lancet Neurol. 2020. https://doi.org/10.1016/S1474-4422(20)30221-0.; Abu-Rumeileh S., Abdelhak A., Foschi M., Tumani H., Otto M. Guillain-Barr´e syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases // J. Neurol. 2020. https://doi.org/10.1007/s00415-020-10124-x.; Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., Sperhake J.P., Wong M.N. Multiorgan and renal tropism of SARS-CoV-2 // N. Engl. J. Med. 2020. Vol. 383. Р. 590–592.; Wichmann D., Sperhake J.-P., Lütgehetmann M., Steurer S., Edler C., Heinemann A., Heinrich F., Mushumba H. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study // Ann. Intern. Med. 2020. Vol. 173. Р. 268–277.; Matschke J., Lütgehetmann M., Hagel C., Sperhake J.P., Schr¨oder A.S., Edler C., Mushumba H., Dottermusch M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series // Lancet Neurol. 2020. Vol. 19. Р. 919–929.; Solomon I.H., Normandin E., Bhattacharyya S., Mukerji S.S., Keller K., Ali A.S. Neuropathological features of Covid-19 // N. Engl. J. Med. 2020. https://doi.org/10.1056/NEJMc2019373.; Remmelink M., De Mendonça R., D’Haene N., De Clercq S., Verocq C., Lebrun L., Salmon I. Unspecific postmortem findings despite multiorgan viral spread in COVID-19 patients // Crit. Care. 2020. Vol. 24. Р. 495.; Shibani S., Mukerji A., Solomon I.H. What can we learn from brain autopsies in COVID-19? // Neuroscience Letters. 2021. Vol. 742. Р. 135528.; Serrano G.E., Walkera J.E., Arcea R., Glassa M.J., Vargasa D., Lucia I. Suea L.I. Mapping of SARS-CoV-2 Brain Invasion and Histopathology in COVID-19 Disease. 2021. https://doi.org/10.1101/2021.02.15.21251511.; Rhodes R.H., Love G.L., Da Silva Lameira F. et al. Acute Endotheliitis (Type 3 Hypersensitivity Vasculitis) in Ten COVID-19 Autopsy Brains. medRxiv. 2021.; Butowt R., Bilinska K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection // ACS Chem. Neurosci. 2020.; Politis C., Papadaki M., Politi L. et al. Post-donation information and haemovigilance reporting for COVID-19 in Greece: Information supporting the absence of SARS-CoV-2 possible transmission through blood components. Transfus Clin Biol. 2020.; Rosin N.L., Jaffer A., Sinha S. et al. SARS-CoV-2 infection of circulating immune cells is not responsible for virus dissemination in severe COVID-19 patients. bioRxiv. 2021.; Andersson M.I., Arancibia-Carcamo C.V., Auckland K. et al. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res. 2020. Vol. 5:181.; Payus A.O., Jeffree M.S., Ohn M.H., Tan H.J., Ibrahim A., Chia Y.K., Raymond A.A. Immune-mediated neurological syndrome in SARS-CoV-2 infection: a review of literature on autoimmune encephalitis in COVID-19 // Neurol Sci. 2022. Mar. Vol. 43, No. 3. Р. 1533–1547. doi:10.1007/s10072-021-05785-z.; Marchioni E., Ravaglia S., Montomoli C. et al. Postinfectious neurologic syndromes // A prospective cohort study. 2013. Vol. 80, No. 10. Р. 882–889.; Van den Berg B., Walgaard C. et al. Guillain-Barre syndrome: Pathogenesis, diagnosis, treatment and prognosis // Nat. Rev. Neurol. 2014. Vol. 10, No. 8. Р. 469–482.; Li Z., Huang Z., Li X. et al. Bioinformatic analyses hinted at augmented T helper 17 cell differentiation and cytokine response as the central mechanism of COVID-19-associated Guillain-Barre syndrome // Cell Prolif. 2021. Vol. 54, No. 5. Р. e13024.; Kleyweg R.P., van der Meche F.G.A., Meulstee J. Treatment of Guillain-Barre syndrome with high-dose gammaglobulin // Neurology. 1988. Oct. Vol. 38, No. 10. Р. 1639–1641.; Orlikowski D., Porcher R., Sivadon Tardy V. et al. Guillain-Barré syndrome following primary cytomegalovirus infection: a prospective cohort study // Clin. Infect. Dis 2011. Vol. 52. Р. 837–844.; Brannagan T.H. 3rd, Zhou Y. HIV-associated Guillain-Barré syndrome // J. Neurol. Sci. 2003. Apr 15. Vol. 208, No. 1–2. Р. 39–42. doi:10.1016/s0022–510x(02)00418–5. PMID: 12639723.; Islam Z., Jacobs B.C., van Belkum A. et al. Axonal variant of Guillain-Barre syndrome associated with Campylobacter infection in Bangladesh // Neurology. 2010. Feb. 16. Vol. 74, No. 7. Р. 581–587. doi:10.1212/WNL.0b013e3181cff735. PMID: 20157160.; van den Berg B., van der Eijk A.A., Pas S.D. et al. Guillain-Barré syndrome associated with preceding hepatitis E virus infection // Neurology. 2014 Feb 11. Vol. 82, No. 6. Р. 491–497. doi:10.1212/WNL.0000000000000111. Epub 2014 Jan 10. PMID: 24415572.; Uncini A., Shahrizaila N., Kuwabara S. Zika virus infection and Guillain-Barré syndrome: a review focused on clinical and electrophysiological subtypes // Journal of Neurology, Neurosurgery & Psychiatry. 2017. Vol. 88. Р. 266–271.; Donofrio P.D. Guillain-Barre´ syndrome. Continuum (Minneap, Minn). 2017. Vol. 23, No. 5. Peripheral Nerve and Motor Neuron Disorders. Р. 1295–1309. https://doi.org/10.1212/ CON.0000000000000513.; Heikema A.P., Islam Z., Horst-Kreft D. et al. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome // Clin. Microbiol. Infect. 2015. Sep. Vol. 21, No. 9. Р. 852.e1–9. https://doi.org/10.1016/j.cmi.2015.05.031

  7. 7
    Academic Journal

    Συγγραφείς: Bezkaravayny, B.A., Solovyova, G.A.

    Πηγή: Неонатологія, хірургія та перинатальна медицина, Vol 4, Iss 2(12) (2019)
    Neonatology, surgery and perinatal medicine; Том 4, № 2(12) (2014): ; 34-38
    Неонатологія, хірургія та перинатальна медицина; Том 4, № 2(12) (2014): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 34-38
    Неонатология, хирургия и перинатальная медицина; Том 4, № 2(12) (2014): ; 34-38

    Περιγραφή αρχείου: application/pdf

  8. 8
  9. 9
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 6 (2020); 98-107 ; Российский вестник перинатологии и педиатрии; Том 65, № 6 (2020); 98-107 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1297/1030; Gropman A.L., Summar M., Leonard J.V. Neurological implications of urea cycle disorders. J Inherit Metab Dis 2007; 30: 865–879. DOI:10.1007/s10545-007-0709-5; Joseph M., Hageman J.R. Neonatal Transport: A 3-DayOld Neonate with Hypothermia, Respiratory Distress, Lethargy and Poor Feeding. J Perinatol 2002; 22: 506–509. DOI:10.1038/sj.jp.7210755; Leonard J.V., Morris A.A. Urea Cycle Disorders. Semin Neonatol 2002; 7: 27–35. DOI:10.1053/siny.2001.0085; Brar G., Thomas R., Bawle E. Transient Hyperammonemia in Preterm Infants With Hypoxia. Pediatr Res 2004; 56: 671. DOI:10.1203/00006450-200410000-00052; Enns G.M. Inborn Errors of Metabolism Masquerading as Hypoxic-Ischemic Encephalopathy. Neo Rev 2005; 6(12): 549–558. DOI:10.1542/neo.6-12-e549; Haeberle J., Boddaert N., Burlina A., Chakrapani A., Dixon M., Huemer M. et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7: 32. DOI:10.1186/1750-1172-7-32; Биохимия. Под ред. Е.С. Северина. М.: ГЭОТАР-мед, 2015; 768. [Biochemistry. E.S. Severin (ed.). Moscow: GEOTAR-med, 2015; 768. (in Russ.)]; Dasarathy S., Mookerjee R.P., Rackayova V., Rangroo Thrane V., Vairappan B., Ott P., Rose C.F. Ammonia toxicity: from head to toe? Metab Brain Dis 2017; 32(2): 529–538. DOI:10.1007/s11011-016-9938-3; Wesson D.E., Buysse J.M., Bushinsky D.A. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J Am Soc Nephrol 2020; 31(3): 469–482. DOI:10.1681/ASN.2019070677; Cauli O., Rodrigo R., Piedrafita B., Boix J., Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatol 2007; 46: 514–519. DOI:10.1002/hep.21734; Ortiz-Pujols S., Jones S.W., Short K.A., Morrell M.R., Bermudez C.A., Tilley S.L., Cairns B.A. Management and sequelae of a 41-year-old Jehovah’s witness with severe anhydrous ammonia inhalation injury. J Burn Care Res 2014; 35: e180– e183. DOI:10.1097/BCR.0b013e318299d4d7; Jia B., Yu Z-J., Duan Z-F., Lü X-Q., Li J-J., Liu X-R. et al. Hyperammonaemia induces hepatic injury with alteration of gene expression profiles. Liver Int 2014; 34: 748–758. DOI:10.1111/liv.12365; Qiu J., Tsien C., Thapalaya S., Narayanan A., Weihl C.C., Ching J.K. et al. Hyperammonemia- mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 2012; 303: E983–E993. DOI:10.1152/ajpendo.00183.2012; Duffy T., Plum F. Seizures and comatose states. In: Basic Neurochemistry. G.J. Siegel, R.W. Albers, R. Katzman (eds). Boston: Little Brown, 1981; 857.; Hindfelt B., Siesjo B.K. Cerebral effects of acute ammonia intoxication. II. The effect upon energy metabolism, Scand J Clin Lab Invest 1971; 28: 365–374. DOI:10.3109/00365517109095711; Barkovich A.J. Pediatric Neuroimaging. 4th Еd, Lippincott Williams & Wilkins: Philadelphia, 2005; 206.; Häberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch Biochem Bioph 2013; 536(2): 101–108. DOI:10.1016/j.abb.2013.04.009; Robinson M.B., Batshaw M.L. Neurotransmitter alterations in congenital hyperammonemia, Ment Retard Dev Disabil Res Rev 1995; 1: 201–207.; Butterworth R.F. Effects of hyperammonaemia on brain function. J Inherit Metab Dis 1998; 21: 6–20. DOI:10.1023/a:1005393104494; Marcaida G., Felipo V., Hermenegildo C., Minana M.D., Grisolía S. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors, FEBS Lett 1992; 296: 67–68. DOI:10.1016/0014-5793 (92) 80404-5; Monfort P., Kosenko E., Erceg S., Canales J-J., Felipo V. Molecular mechanism of acute ammonia toxicity: role of NMDA receptors. Neurochem Internat 2002; 41(2–3): 95–102. DOI:10.1016/s0197-0186(02)00029-3; Summar M.L., Koelker S., Freedenberg D., Le Mons C., Häberle J., Lee H.S., Kirmse B. The incidence of urea cycle disorders. Mol Genet Metab 2013; 110: 179–810. DOI:10.1016/j.ymgme.2013.07.008; Guglielmo R.D., Gallo G., Scolamiero E., Salvatore F., Ruoppolo M. ‘‘Classical organic acidurias’’: diagnosis and pathogenesis. Clin Exp Med 2017; 17(3): 305–323. DOI:10.1007/s10238-016-0435-0; Sanderson S., Green A., Preece M.A., Burton H. The incidence of inherited metabolic disorders in the west midlands UK. Arch Dis Child 2006; 91(11): 869–899. DOI:10.1136/adc.2005.091637; Дегтярева А.В., Киртбая А.Р., Соколова Е.В., Балашова Е.Н., Ионов О.В., Высоких М.Ю. и др. Неонатальная гипераммониемия – транзиторное состояние или маркер наследственных болезней обмена веществ? Неонатология: новости, мнения, обучение 2018; 7(1): 96–102. [Degtyareva A.V., Kirtbaya A.R., Sokolova E.V., Balashova E.N., Ionov O.V., Vysokikh M.Yu. et al. Neonatal hyperammonemia transient condition or marker of inborn errors of metabolism? Neonatologiya: novosti, mneniya, obuchenie 2018; 7(1): 96–102. DOI:10.24411/2308-2402-2018-00013]; Bachmann C., Häberle J., Leonard J.V. Pathophysiology and Management of Hyperammonemia. SPS Publications, Heilbronn, 2006; 157–173.; Hoover W., Ackerman V., Schamberger M., Kumar M., Marshalleck F., Hoyer M. The congenital porto‐caval fistula: A unique presentation and novel intervention. Pediatr Pulmonol 2008; 43: 196–199. DOI:10.1002/ppul.20727; Taguchi T., Iwamura S., Mizobuchi M., Terada Y., Gastrointest J. Hepatic arteriovenous malformation with hyperammonemia in Rendu-Osler-Weber syndrome. Liver Dis 2011; 20: 330–331.; Laube G.F., Superti-Furga A., Losa M., Buttiker V., Berger C., Neuhaus T.J. Hyperammonaemic encephalopathy in a 13-year-old boy. Eur J Pediatr 2002; 161: 163–164. DOI:10.1007/s00431-001-0887-3; Cheang H.K., Rangecroft L., Plant N.D., Morris A.A. Hyperammonaemia due to Klebsiella infection in a neuropathic bladder. Pediatr Nephrol 1998; 12: 658–659. DOI:10.1007/s004670050523; McEwan P., Simpson D., Kirk J.M., Barr D.G., McKenzie K.J. Short Report: Hyperammonaemia in Critically Ill Septic Infants. Arch Dis Child 2001; 84: 512–513. DOI:10.1136/adc.84.6.512; Star K., Edwards I R., Choonara I. Valproic acid and fatalities in children: a review of individual case safety reports in VigiBase. PLOS One 2014; 9(10): e108970. DOI:10.1371/journal.pone.0108970; Fernández Colomer B., Rekarte García S., García López J.E., Pérez González C., Montes Granda M., Coto Cotallo G.D. Valproate-induced hyperammonaemic encephalopathy in a neonate: Treatment with carglumic acid. An Pediatr (Barc) 2014; 81(4): 251–255. DOI:10.1016/j.anpedi.2013.09.015; Silva M.F., Aires C.C., Luis P.B., Ruiter J.P., L I.J., Duran M. et al. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A review. J Inherit Metab Dis 2008; 31: 205–216. DOI:10.1007/s10545-008-0841-x; Lewis C., Deshpande A., Tesar G.E., Dale R. Valproate-induced Hyperammonemic Encephalopathy: A Brief Review. Curr Med Res Opin 2012; 28: 1039–1042. DOI:10.1185/03007995.2012.694362; Ballard R.A., Vinocur B., Reynolds J.W., Wennberg R.P., Merritt A., Sweetman L., Nyhan W.L. Transient hyperammonemia of the preterm infant. N Engl J Med 1978; 299: 920–925. DOI:10.1056/NEJM197810262991704; Chung M.Y., Chen C.C., Huang L.T., Ko T.Y., Lin Y.J. Transient hyperammonemia in a neonate. Acta Pediatr Taiwan 2005; 46(2): 94–96.; Golubnitschaja O., Yeghiazaryan K., Cebioglu M., Morelli M., Marschitz M.H. Birth asphyxia as the major complication in newborns: moving towards improved individual outcomes by prediction, targeted prevention and tailored medical care. EPMA J 2011; 2: 197–210. DOI:10.1007/s13167-011-0087-9; Swaiman K.F., Ashwal S., Ferrio D.M., Schor N.F. (eds). Swaiman’s Pediatric Neurology principle and practice. 5th ed. Philadelphia: Elsevier/Saunders, 2012; 362.; Goldberg R.N., Cabal L.A., Sinatra F.R., Plajstek C.E., Hodgman J.E. Hyperammonemia associated with perinatal asphyxia. Pediatrics 1979; 64: 336–341.; Unsinn C., Das A., Valayannopoulos V., Thimm E., Beblo S., Burlina A. et al. Clinical course of 63 patients with neonatal onset urea cycle disorders in the years 2001–2013. Orphanet J Rare Dis. 2016; 11(1): 116. DOI:10.1186/s13023-016-0493-0; Mayatepek E. Inborn Errors of Metabolism – Early Detection, Key Symptoms and Therapeutic Options. 2nd ed. Bremen, Germany: UNI-MED Science, 2017; 109.; Fabre A., Baumstarck K., Cano A., Loundou A., Berbis J., Chabrol B., Auquier P. Assessment of quality of life of the children and parents affected by inborn errors of metabolism with restricted diet: preliminary results of a cross-sectional study. Health Qual Life Outcomes 2013; 11: 158. DOI:10.1186/1477-7525-11-158; Tietz clinical guide to laboratory tests. A.H.B. Wu (ed.). 4th edit. Philadelphia: WB Saunders/Elsevier, 2006; 1856.; Shennar H.K., Al-Asmar D., Kaddoura A., Al-Fahoum S. Diagnosis and clinical features of organic acidemias: A hospital-based study in a single center in Damascus, Syria. Qatar Med J 2015; 2015(1): 9. DOI:10.5339/qmj.2015.9; Urea Cycle Disorders Conference Group: Consensus statement from a conference for the management of patients with urea cycle disorders. J Pediatr 2001; 138: S1–S5.; Valayannopoulos V., Baruteau J., Delgado M.B., Cano A., Couce M.L., Del Toro M. et al. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: a retrospective observational study. Orphanet J Rare Dis 2016; 11: 32. DOI:10.1186/s13023-016-0406-2; Dixon M., MacDonald A., White F.J. Disorders of Amino Acid Metabolism, Organic Acidaemias and Urea Cycle Disorders. In: Clinical Paediatric Dietetics. S.V. Hoboken (ed.). 5th edition. NJ: Wiley-Blackwell, 2020; 689.; Uchino T., Endo F., Matsuda I. Neurodevelopmental outcome of longterm therapy of urea cycle disorders in Japan, J Inherit Metab Dis 1998; 21: 151–159. DOI:10.1023/a:1005374027693; Bachmann C. Outcome and survival of 88 patients with urea cycle disorders: A retrospective evaluation. Eur J Pediatr 2003; 162: 410–416. DOI:10.1007/s00431-003-1188-9

  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 5 (2020); 42-46 ; Российский вестник перинатологии и педиатрии; Том 65, № 5 (2020); 42-46 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1235/980; Кирьяков К.С., Хатагова Р.Б., Тризна Е.В., Зеленина З.А., Яковлев А.В., Петрова Н.А. Коррекция кислотно-основного состояния при гипоксически-ишемическом поражении головного мозга у новорожденных. Российский вестник перинатологии и педиатрии 2018; 63(1): 40-45. DOI:10.21508/1027-4065-2018-63-1-40-45; Perez M., Saugstad O.D., Robbins M.E., Saugstad O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142: 61-72. DOI:10.1016/j.freeradbiomed.2019.03.035; Saugstad O.D. The oxygen radical disease in neonatology. Indian J Pediatr 1989; 56(5): 585-593.; Giusti B., Vestrini A., Poggi C., Magi A., Pasquini E, Abbate R. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants. Free Radic Res 2012; 46: 1130-1139. DOI:10.3109/10715762.2012.692787; Tataranno M.L., Perrone S., Longini M., Buonocore G. New antioxidant drugs for neonatal brain injury. Oxid Med Cell Longev 2015; 20: 1-13. DOI:10.1155/2015/108251; Miao L., Clair D.K.St. Regulation of superoxide dismutase genes: implications in diseases. Free Radic Biol Med 2009; 47(4): 344-356. DOI:10.1016/j.freeradbiomed.2009.05.018; Bastaki M., Huen K, Manzanillo Р, Chande N, Chen С, Balmes J.R. Genotype-activity relationship for Mn-superox-ide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 2006; 16: 279-286. DOI:10.1097/01.fpc.0000199498.08725.9c; Koide S., Kugiyama K., Sugiyama S., Nakamura S., Fukushima H., Honda О. Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol 2003; 41: 539-545. DOI:10.1016/s0735-1097(02)02866-8; Shah M.R., Wedgwood S., Czech L., Kim G.A., Lakshminru-simha S., Schumacker PN. Cyclic stretch induces inducible nitric oxide synthase and soluble guanylate cyclase in pulmonary artery smooth muscle cells. Int J Mol Sci 2013; 14: 4334-4348. DOI:10.3390/ijms14024334; Aceti А., Beghetti I., Martini S., Faldella G., Corvaglia L. Oxidative Stress and Necrotizing Enterocolitis: Pathogenetic Mechanisms, Opportunities for Intervention, and Role of Human Milk. Oxid Med Cell Longev 2018; 7397659. DOI:10.1155/2018/7397659; Рогаткин С.О., Володин Н.Н., Дегтярева М.Г., Гребенникова О.В., Маргания М.Ш., Серова Н.Д. Современные подходы к комплексной терапии перинатальных поражений ЦНС у новорожденных. Журнал неврологии и психиатрии им. С.С. Корсакова 2011; 1: 27-32.; Савченко О.А., Павлинова Е.Б., Мингаирова А.Г., Власенко Н.Ю., Полянская Н.А., Киршина И.А. Оценка эффективности комплексной терапии перинатальных заболеваний у новорожденных с экстремально низкой массой тела. Антибиотики и химиотерапия 2019; 64(1): 3-8.; Afolayan A.J., Eis A., Teng R., Bakhutashvili I., Kaul S., Davis J.M. Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2012; 303(10): 870-879. DOI:10.1152/ajplung.00098.2012; Daiber A., Steven S, Weber A., Shuvaev V.V., Muzykan-tov V.R., Laher I. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174: 1591-1619. DOI:10.1111/bph.13517; Karagianni P., Rallis D., Fidani L., Porpodi M., Kalinderi K., Tsakalidis C. Glutathion-S-Transferase P1 polymorphisms association with broncopulmonary dysplasia in preterm infants. J Hippokratia 2013; 17(4): 363—367.; Павлинова Е.Б., Геппе Н.А. Полиморфизм генов антиоксидантных ферментов и формирование бронхолегочной дисплазии у недоношенных детей новорожденных. Доктор.Ру 2012; 77(9): 14—20.

  14. 14
  15. 15
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 10, № 4 (2019); 59-65 ; Медицинский вестник Юга России; Том 10, № 4 (2019); 59-65 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2019-10-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/939/538; https://www.medicalherald.ru/jour/article/downloadSuppFile/939/317; Трепилец С.В., Голосная Г.С., Трепилец В.М., Кукушкин Е.И. Гипоксически-геморрагические поражения мозга у новорожденных: значения определения нейрохимических маркеров, маркеров воспаления и апоптоза в неонатальном периоде и результаты катамнестического наблюдения. // Педиатрия. – 2018. – Т.97. - №1 – С. 31-37.; Красноруцкая О.Н., Леднева В.С. Клинико-биохимические показатели в диагностике нарушения развития детей с последствиями перинатального поражения нервной системы. // Педиатрия. – 2018. - Т.97. - №3 – С. 175- 179.; Шниткова Е.В., Философова М.С., Чемоданов В.В., Соколова С.В., Пронина И.И., Балдаев А.А. Особенности онтогенетического развития детей, перенесших перинатальную гипоксию. // Вестник Ивановской медицинской академии. – 2007. - Т.12. - № 3-4 – С. 194-195.; Павленко В.А., Мельникова И.М., Мизерницкий Ю.Л. Прогностическое значение функциональных показателей дыхательной системы и вегетативной нервной системы у детей раннего возраста, перенесших острый обструктивный бронхит на фоне перинатального поражения центральной нервной системы. // Вопросы практической педиатрии. – 2015. – Т.10. - №1 – С. 7-14.; Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика» 5-е изд., испр. и доп. − М.: Изд. дом «Атмосфера». – 2017.; Görg A., Boguth G., Obermaier C., Posch A., Weiss W. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the fi rst dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. // Electrophoresis. – 1995. – V.16. - P.1079- 1086. DOI:10.1002/elps.11501601183; Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. // Anal Chem. – 1996. – V.68. – P.850-858. DOI:10.1021/ac950914h; Comhair SA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2010;12(1): 93-124. doi:10.1089/ARS.2008.2425.; Полоников А.В., Иванов В.П., Богомазов А.Д., Солодилова М.А. Генетико-биохимические механизмы вовлеченности ферментов антиоксидантной системы в развитие бронхиальной астмы. // Биомедицинская химия. – 2015. – Т.61. - № 4 - С. 427-439. Doi:10.1134/S1990750814040076; Никитин А.В., Золотарева М.А. Роль ферментативной активности в формировании окислительного стресса у больных бронхиальной астмой. (Обзор литературы). // Вестник новых медицинских технологий. – 2013. – Т. ХX. - № 2 – С. 165-169.; Youness E.R., Shady M., Nassar M.S., Mostafa R., Abuelhamd W. The role of serum nuclear factor erythroid 2-related factor 2 in childhood bronchial asthma. // J Asthma. – 2019. – P.1-6. doi:10.1080/02770903.2019.1571081.; Ben Anes A., Ben Nasr H., Fetoui H., Bchir S., Chahdoura H. et al. Alteration in systemic markers of oxidative and antioxidative status in Tunisian patients with asthma: relationships with clinical severity and airfl ow limitation. // J Asthma. – 2016. – V.53(3). – P.227-37. doi:10.3109/02770903.2015.1087559.; Youness E.R., Shady M,. Nassar M.S., Rehab M., Walaa Ab. The role of serum nuclear factor erythroid 2-relatedfactor 2 in childhood bronchial asthma. // Journal of Asthma. - 2019. – V.7. – P.1-6. doi:10.1080/02770903.2019.1571081; Liz M.A., Faro C.J, Saraiva M.J., Sousa M.M. Transthyretin, a new cryptic protease. // J Biol Chem. – 2004. – V.279(20). – P. :21431-8. DOI:10.1074/jbc.M402212200; Berry D.C., Croniger C.M., Ghyselinck N.B., Noy N. Transthyretin blocks retinol uptake and cell signaling by the holo-retinol-binding protein receptor STRA6. // Mol Cell Biol. – 2012. – V.32(19). – P.3851-9. doi:10.1128/MCB.00775-12.; Ejaz S., Nasim F.U., Ashraf M., Ahmad S. Serum Proteome Profi ling to Identify Proteins Promoting Pathogenesis of Non-atopic Asthma. // Protein Pept Lett. – 2018. – V.25(10). – P.933-942. doi:10.2174/0929866525666180925142119.; Mehrani H., Ghanei M., Aslani J., Golmanesh L. Bronchoalveolar lavage fl uid proteomic patterns of sulfur mustard-exposed patients. // Proteomics Clin Appl. – 2009. – V.3(10). – P.1191-200. doi:10.1002/prca.200900001.; Каримова Х.М., Намазова-Баранова Л.С., Клюшник Т.П., Мамедъяров А.М. Прогностическое значение показателей врожденного иммунитета у детей с последствиями перинатального поражения ЦНС гипоксически-ишемического генеза. // Практика педиатра. – 2012. - №3 – С. 6-12.; Marc MM, Korosec P, Kosnik M, Kern I, Flezar M, et al. Complement Factors C3a, C4a, and C5a in Chronic Obstructive Pulmonary Disease and Asthma. // J. Respir. Cell Mol. Biol. – 2004. – V.31. – P.216–219. doi:10.1165/rcmb.2003-0394OC.; Морозов С.Г., Кожевникова Е.Н., Петкевич Н.П., Иншакова В.М., Клюшник Т.П., Сидякин А.А. Нейроиммунный статус детей с перинатальной патологией нервной системы. // Вопросы гинекологии, акушерства и перинатологии. – 2014. – Том 13. - №5 – С.33-39.; Созаева Д.И., Бережанская С.Б. Роль иммуноцитокинов в генезе церебральной ишемии у новорожденных из группы высокого перинатального риска. // Кубанский научный медицинский вестник. – 2011. – №2(125) – С.151- 155.; https://www.medicalherald.ru/jour/article/view/939

  16. 16
  17. 17
    Academic Journal

    Πηγή: Неонатологія, хірургія та перинатальна медицина, Vol 5, Iss 2(16) (2015)
    Neonatology, surgery and perinatal medicine; Том 5, № 2(16) (2015): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 123-128
    Неонатологія, хірургія та перинатальна медицина; Том 5, № 2(16) (2015): Неонатологія, хірургія та перинатальна медицина; 123-128
    Неонатология, хирургия и перинатальная медицина; Том 5, № 2(16) (2015): НЕОНАТОЛОГИЯ, ХИРУРГИЯ И ПЕРИНАТАЛЬНАЯ МЕДИЦИНА; 123-128

    Περιγραφή αρχείου: application/pdf

  18. 18
    Academic Journal

    Πηγή: Current trends in the development of education system; 237-240 ; Современные тенденции развития системы образования; 237-240

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6041988-0-3; https://phsreda.com/e-articles/28/Action28-21824.pdf; Волкова Г.А. Методика обследования нарушений речи у детей / Г.А. Волкова. – СПб.: Владос, 2009. – 152 с.; Волкова Л.С. Логопедия / Л.С. Волкова. – М.: Владос, 2014. – 350 с.; Кирьянова Р.А. Комплексная диагностика и ее использование учителем-логопедом и коррекционной работе с детьми 5–6 лет, имеющими тяжелые нарушения речи / Р.А. Кирьянова. – СПб.: Дрофа, 2004. – 120 с.; Лопатина Л.В. Логопедическая работа с детьми дошкольного возраста с минимальными дизартрическими расстройствами: Учебное пособие / Л.В. Лопатина. – СПб.: Союз, 2007. – 130 с.; Лопатина Л.В. Преодоление речевых нарушений у дошкольников (коррекция стертой дизартрии): Учебное пособие / Л.В. Лопатина, Н.В. Серебрякова. – СПб.: Союз, 2011. – 110 с.; Лопухина И.С. Логопедия – речь, ритм, движение: Пособие для логопедов и родителей / И.С. Лопухина. – СПб.: Дельта, 2007. – 85 с.; Поваляева М.А. Справочник логопеда / М.А. Поваляева. – Ростов н/Д: Феникс, 2011. – 91 с.; https://phsreda.com/article/21824/discussion_platform

  19. 19
  20. 20