-
1Academic Journal
Authors: V. B. Chernykh, Yu. L. Melyanovskaya, T. A. Kyian, E. E. Bragina, O. A. Solovova, E. I. Kondratyeva, В. Б. Черных, Ю. Л. Мельяновская, Т. А. Киян, Е. Е. Брагина, О. А. Соловова, Е. И. Кондратьева
Contributors: The study was carried out as part of the research project “Complex analysis of genophenotypic correlations in cystic fibrosis and primary ciliary dyskinesia” (registration number 122032300396-1), Исследование выполнено в рамках Научно-исследовательской работы «Комплексный анализ генофенотипических корреляций при муковисцидозе и первичной цилиарной дискинезии» (регистрационный номер 122032300396-1)
Source: PULMONOLOGIYA; Том 35, № 2 (2025); 269-275 ; Пульмонология; Том 35, № 2 (2025); 269-275 ; 2541-9617 ; 0869-0189
Subject Terms: полноэкзомное секвенирование, cilium, flagellum, spermatogenesis, asthenoteratozoospermia, primary ciliary dyskinesia, whole exome sequencing, ресничка, жгутик, сперматогенез, астенотератозооспермия, первичная цилиарная дискинезия
File Description: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/4691/3772; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4691/3264; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4691/3279; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4691/3280; World Health Organization. WHO laboratory manual for the examination and processing of human semen. World Health Organization; 2010. Available at: https://andrologylab.gr/wp-content/uploads/2020/09/WHO-Manual-2010.pdf; Брагина Е.Е., Арифулин Е.А., Сенченков Е.П. Генетически обусловленные нарушения подвижности сперматозоидов человека. Онтогенез. 2016; 47 (5): 271–286. Доступно на: http://ontogenez.org/archive/2016/5/Bragina_2016_5.pdf; Кондратьева Е.И., Авдеев С.Н., Мизерницкий Ю.Л. и др. Первичная цилиарная дискинезия : обзор проекта клинических рекомендаций 2022 года. Пульмонология. 2022; 32 (4): 517–538. DOI:10.18093/0869-0189-2022-32-4-517-538.; Aprea I., Nöthe-Menchen T., Dougherty G.W. et al. Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system. Mol. Hum. Reprod. 2021; 27 (3): gaab009. DOI:10.1093/molehr/gaab009.; Черных В.Б., Соловова О.А. Мужское бесплодие: взгляд генетика на актуальную проблему. Consilium Medicum. 2019; 21 (7): 19–24. DOI:10.26442/20751753.2019.7.190517.; Derichs N., Sanz J., Von Kanel T. et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010; 65 (7): 594–599. DOI:10.1136/thx.2009.125088.; Sedova A.O., Shtaut M.I., Bragina E.E. et al. Comprehensive semen examination in patients with pancreatic-sufficient and pancreatic-insufficient cystic fibrosis. Asian J. Androl. 2023; 25 (5): 591–597. DOI:10.4103/aja2022115.; Репина С.А., Красовский С.А., Сорокина Т.М. и др. Патогенный вариант 3849+10kbC>T гена CFTR как главный предиктор сохранения фертильности у мужчин с муковисцидозом. Генетика. 2019; 55 (12): 1481–1486. DOI:10.1134/S0016675819120105.; Репина С.А., Красовский С.А., Шмарина Г.В. и др. Состояние репродуктивной системы и алгоритм решения вопроса деторождения у мужчин с муковисцидозом. Альманах клинической медицины. 2019; 47 (1): 26–37. DOI:10.18786/2072-0505-2019-47-001.; Newman L., Chopra J., Dossett C. et al. The impact of primary ciliary dyskinesia on female and male fertility : a narrative review. Hum. Reprod. Update. 2023; 29 (3): 347–367. DOI:10.1093/humupd/dmad003.; https://journal.pulmonology.ru/pulm/article/view/4691
-
2Academic Journal
Authors: O. Ch. Mazur, S. V. Baiko, A. V. Kilchevsky, E. P. Mikhalenko, S. L. Morozov, Yu. S. Stankevich, T. S. Kursova, Yu. A. Poleshchuk, О. Ч. Мазур, С. В. Байко, А. В. Кильчевский, Е. П. Михаленко, С. Л. Морозов, Ю. С. Станкевич, Т. С. Курсова, Ю. А. Полещук
Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 110-117 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 110-117 ; 2500-2228 ; 1027-4065
Subject Terms: полноэкзомное секвенирование, frontometaphyseal dysplasia type 1, facial dysmorphism, congenital anomalies of the urinary tract and kidneys, congenital heart disease, bone dysplasia, whole exome sequencing, фронтометафизарная дисплазия 1-го типа, лицевой дисморфизм, врожденные аномалии мочевых путей и почек, врожденный порок сердца, костная дисплазия
File Description: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2012/1502; Gorlin R.J., Cohen M.M. Jr. Frontometaphyseal dysplasia. A Оnew syndrome. Am J Dis Child 1969; 118(3): 487-494. DOI:10.1001/archpedi.1969.02100040489014; Robertson S.P., Jenkins Z.A., Morgan T., Adès L., Aftimos S., Boute O. et al. Frontometaphyseal dysplasia: mutations in FLNA and phenotypic diversity. Am J Med Genet A 2006; 140(16): 1726-1736. DOI:10.1002/ajmg.a.31322; Wade E.M., Jenkins Z.A., Morgan T., Gimenez G., Gibson H., Peng H. et al. Exon skip-inducing variants in FLNA in an attenuated form of frontometaphyseal dysplasia. Am J Med Genet A 2021; 185(12): 3675-3682. DOI:10.1002/ajmg.a.62424.; FLNA filamin A. https://www.ncbi.nlm.nih.gov/gene/2316 / Ссылка активна на 08.01.2024 г.; Wade E.M., Halliday B.J., Jenkins Z.A., O’Neill A.C., Robertson S.P. The X-linked filaminopathies: Synergistic insights from clinical and molecular analysis. Hum Mutat 2020; 41(5): 865-883. DOI:10.1002/humu.24002; Iqbal N.S., Jascur T.A., Harrison S.M., Edwards A.B., Smith L.T., Choi E.S. et al. Prune belly syndrome in surviving males can be caused by Hemizygous missense mutations in the X-linked Filamin A gene. BMC Med Genet 2020; 21(1): 38. DOI:10.1186/s12881-020-0973-x; Robertson S.P. Otopalatodigital syndrome spectrum disorders: otopalatodigital syndrome types 1 and 2, frontometaphyseal dysplasia and Melnick-Needles syndrome. Eur J Hum Genet 2007; 15(1): 3-9. DOI:10.1038/sj.ejhg.5201654; Kim J., Lee D.W., Jang D.H. Case Report: Pansynostosis, Chiari I Malformation and Syringomyelia in a Child With Frontometaphyseal Dysplasia 1. Front Pediatr 2021; 9: 574402. DOI:10.3389/fped.2021.574402; Ye Q., Zhao J., Chang G., Wang Y., Ding Y., Li J. et al. [Frontometaphyseal dysplasia 1 caused by variant of FLNA gene in a case]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2021; 38(4): 355-358. (Chinese). DOI:10.3760/ cma.j.cn511374-20200523-00374; Kim J., Lee D.W., Jang J.H., Kim M., Yim J., Jang D.H. Case Report: Co-occurrence of Duchenne Muscular Dystrophy and Frontometaphyseal Dysplasia 1. Front Pediatr 2021; 9: 628190. DOI:10.3389/fped.2021.628190; Yapijakis C., Vylliotis A., Angelopoulou A., Adamopoulou M., Chrousos G.P., Voumvourakis C. Phenotype and Genotype Study in a Case of Frontometaphyseal Dysplasia 1. Adv Exp Med Biol 2021; 1339: 319-323. DOI:10.1007/978-3-030- 78787-5_38; Robertson S.P., Twigg S.R., Sutherland-Smith A.J., Biancalana V., Gorlin R.J., Horn D. et al. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet 2003; 33(4): 487-491. DOI:10.1038/ng1119; Wade E.M., Daniel P.B., Jenkins Z.A., McInerney-Leo A., Leo P., Morgan T. et al. Mutations in MAP3K7 that alter the activity of the TAK1 signaling complex cause frontometaphyseal dysplasia. Am J Hum Genet 2016; 99: 392-406. DOI:10.1016/j.ajhg.2016.05.024; Frontometaphyseal dysplasia. https://medlineplus.gov/genetics/ condition/frontometaphyseal-dysplasia/#inheritance / Ссылка активна на 08.01.2024 г.; Robertson S. X-Linked Otopalatodigital Spectrum Disorders. 2005 Nov 30 [Updated 2019 Oct 3]. In: M.P. Adam, J. Feldman, G.M. Mirzaa et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK1393.; Nakamura F., Stossel T.P., Hartwig J.H. The filamins: organizers of cell structure and function. Cell Adh Migr 2011; 5(2): 160-169. DOI:10.4161/cam.5.2.14401; Baldassarre M., Razinia Z., Burande C.F., Lamsoul I., Lutz P.G., Calderwood D.A. Filamins regulate cell spreading and initiation of cell migration. PLoS One 2009; 4(11): e7830. DOI:10.1371/journal.pone.0007830; Zhou J., Kang X., An H., Lv Y., Liu X. The function and pathogenic mechanism of filamin A. Gene 2021; 784: 145575. DOI:10.1016/j.gene.2021.145575; Frontometaphyseal dysplasia 1; FMD 1. https://www.omim.org/entry/305620?search=FMD1&highlight=fmd1 / Ссылка активна на 31.01.2024 г.; Gorlin R.J., Winter R.B. Frontometaphyseal dysplasia — evidence for X-linked inheritance. Am J Med Genet 1980; 5(1): 81-84. DOI:10.1002/ajmg.1320050111; Glass R.B., Rosenbaum K.N. Frontometaphyseal dysplasia: neonatal radiographic diagnosis. Am J Med Genet 1995; 57(1): 1-5. DOI:10.1002/ajmg.1320570102; Morava E., Illés T., Weisenbach J., Kárteszi J., Kosztolányi G. Clinical and genetic heterogeneity in frontometaphyseal dysplasia: severe progressive scoliosis in two families. Am J Med Genet A 2003; 116A(3): 272-277. DOI:10.1002/ ajmg.a.10831; Dissanayake R., Senanayake M.P., Fernando J., Robertson S.P., Dissanayake V.H.W., Sirisena N.D. Frontometaphyseal dysplasia 1 in a patient from Sri Lanka. Am J Med Genet A 2021; 185(4): 1317-1320. DOI:10.1002/ajmg.a.62058; Morava E., Illés T., Weisenbach J., Kárteszi J., Kosztolányi G. Clinical and genetic heterogeneity in frontometaphyseal dysplasia: severe progressive scoliosis in two families. Am J Med Genet A 2003; 116A(3): 272-277. DOI:10.1002/ajmg.a.10831; Medlar R.C., Crawford A.H. Frontometaphyseal dysplasia presenting as scoliosis. J Bone Joint Surg Am 1978; 60(3): 392-394.; Kanemura T., Orii T., Ohtani M. Frontometaphyseal dysplasia with congenital urinary tract malformations. Clin Genet 1979; 16(6): 399-404. DOI:10.1111/j.1399-0004.1979.tb01348.x; Giuliano F., Collignon P., Paquis-Flucklinger V., Bardot J., Philip N. A new three-generational family with frontometaphyseal dysplasia, male-to-female transmission, and a previously reported FLNA mutation. Am J Med Genet A 2005; 132A(2): 222. DOI:10.1002/ajmg.a.30396; Zenker M., Nährlich L., Sticht H., Reis A., Horn D. Genotype-epigenotype-phenotype correlations in females with frontometaphyseal dysplasia. Am J Med Genet A 2006; 140(10): 1069-1073. DOI:10.1002/ajmg.a.31213; Narang A., Uppilli B., Vivekanand A., Naushin S., Yadav A., Singhal K. et al. Frequency spectrum of rare and clinically relevant markers in multiethnic Indian populations (ClinIndb): A resource for genomic medicine in India. Hum Mutat 2020; 41(11): 1833-1847. DOI:10.1002/humu.24102; Ehrenstein T., Mäurer J., Liokumowitsch M., Mack M., Felix R., Bier J. CT and MR findings in frontometaphyseal dysplasia. J Comput Assist Tomogr 1997; 21(2): 218-220. DOI:10.1097/00004728-199703000-00009
-
3Academic Journal
Authors: V. V. Miroshnikova, K. V. Dracheva, L. G. Danilov, M. Yu. Donnikov, A. S. Vorobev, A. V. Morozkina, A. D. Izumchenko, A. V. Kusakin, Yu. А. Eismont, L. V. Kovalenko, I. A. Urvantseva, O. S. Glotov, S. N. Pchelina, В. В. Мирошникова, К. В. Драчева, Л. Г. Данилов, М. Ю. Донников, А. С. Воробьев, А. В. Морозкина, А. Д. Изюмченко, А. В. Кусакин, Ю. А. Эйсмонт, Л. В. Коваленко, И. А. Урванцева, О. С. Глотов, С. Н. Пчелина
Contributors: The study was carried out with financial support from the Ugra Scientific and Technological Development Foundation under scientific project No. 2023-126-05.
Source: Medical Genetics; Том 23, № 6 (2024); 20-28 ; Медицинская генетика; Том 23, № 6 (2024); 20-28 ; 2073-7998
Subject Terms: SYNPO2L, whole exome sequencing, полноэкзомное секвенирование
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2486/1796; Шальнова С.А., Драпкина О.М., Куценко В.А. и др. Инфаркт миокарда в популяции некоторых регионов России и его прогностическое значение. Российский кардиологический журнал. 2022;27(6):4952. doi:10.15829/15604071-2022-4952. EDN OCPROJ; Dai X., Wiernek S., Evans J. P., Runge, M. S. Genetics of coronary artery disease and myocardial infarction. World journal of cardiology. 2016;8(1),1-23. doi:10.4330/wjc.v8.i1.1; Holmen O.L., Zhang H., Zhou W., et al. No large-effect low-frequency coding variation found for myocardial infarction. Human molecular genetics. 2014;23(17), 4721-4728. doi:10.1093/hmg/ddu175; The CARDIoGRAMplusC4D Consortium., Deloukas, P., Kanoni, S. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1), 25–33. https://doi.org/10.1038/ng.2480; Do R., Stitziel N., Won H.H. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537), 102–106. https://doi.org/10.1038/nature13917; Jeon Y., Jeon S., Choi W.H., et al. Genome-wide analyses of earlyonset acute myocardial infarction identify 29 novel loci by whole genome sequencing. Human Genetics. 2023;142(2), 231-243. https://doi.org/10.1007/s00439-022-02495-0; Badescu M.C., Butnariu L.I., Costache A.D., et al. Acute Myocardial Infarction in Patients with Hereditary Thrombophilia—A Focus on Factor V Leiden and Prothrombin G20210A. Life. 2023;13(6), 1371. doi:10.3390/life13061371; Отева Э.А., Николаева А.А., Масленников А.Б. и др. Особенности липидно-гормональных взаимосвязей у молодых мужчин, перенесших инфаркт миокарда (по материалам семейных регистров в Новосибирске и Бишкеке). Терапевтический архив. 1994;66(9), 38-41.; Brænne I., Reiz B., Medack A. et al. Whole-exome sequencing in an extended family with myocardial infarction unmasks familial hypercholesterolemia. BMC Cardiovasc Disord. 2014;14, 108. https://doi. org/10.1186/1471-2261-14-108; Lee C., Cui Y., Song J., et al. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction. Lipids Health Dis. 2019;18;1-8, 95. https://doi.org/10.1186/ s12944-019-1042-3; Khattab M.N., Abbas A., Alhalabi N., Nouh G. Myocardial Infarction with ST Segment Elevation in 19-Year-Old Adult with Multiple Genetic Mutations: A Case Report. 2023;5(1):1044.; Cui Y., Li S., Zhang F., et al. Prevalence of familial hypercholesterolemia in patients with premature myocardial infarction. Clinical Cardiology, 2019;42(3), 385-390. https://doi.org/10.1002/clc.23154; Brænne I., Kleinecke M., Reiz B. et al. Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. Eur J Hum Genet. 2016;24(2),191–197. https://doi.org/10.1038/ejhg.2015.100; Khera A.V., Chaffin M., Zekavat S.M., et al. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation 2019;139(13),1593-1602. https://doi.org/10.1161/CIRCULATIONAHA.118.035658; Ghorbani M.J., Razmi N., Tabei S.M. et al. A substitution mutation in LRP8 gene is significantly associated with susceptibility to familial myocardial infarction. ARYA atherosclerosis. 2020;16(6), 301. https://doi.org/10.22122/arya.v16i6.1797; Shen G.Q., Girelli D., Li L., et al. A novel molecular diagnostic marker for familial and early-onset coronary artery disease and myocardial infarction in the LRP8 gene. Circ Cardiovasc Genet 2014;7(4):514-20 https://doi.org/10.1161/CIRCGENETICS.113.000321; Lee J.Y., Moon S., Kim Y.K., et al. Genome-based exome sequencing analysis identifies GYG1, DIS3L and DDRGK1 are associated with myocardial infarction in Koreans. Journal of Genetics. 2017;96(6), 1041–1046. doi:10.1007/s12041-017-0854-z; Мирошникова В.В., Пчелина С.Н., Донников М.Ю. и др. Генетическое тестирование в кардиологии с помощью NGS панели: от оценки риска заболевания до фармакогенетики. Фармакогенетика и фармакогеномика. 2023;(1):7–19. https://doi. org/10.37489/2588-0527-2023-1-7-19; Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/ btu170; Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009; 25(14), 1754–1760 https://doi.org/10.1093/bioinformatics/btp324; Poplin R., Chang P.C., Alexander D., et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology. 2018;36(10),983–987. doi: https://doi.org/10.1038/ nbt.4235; McLaren W., Gil L., Hunt S.E., et al. The Ensembl Variant Effect Predictor. Genome Biology. 2016;17(1):122. doi:10.1186/s13059-016-0974-4; Barbitoff Y.A., Khmelkova D.N., Pomerantseva E.A., et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples. MedRXiv, 2021;2021-11. doi: https://doi.org/10.1101/2021.11.02.21265801; Van Eldik W., Beqqali A., Monshouwer-Kloots J., Mummery C., Passier, R. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages. International Journal of Developmental Biology/ 2011;55(6). DOI:10.1387/ ijdb.103207wv; Beqqali A., Monshouwer-Kloots J., Monteiro R., et al. CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. J Cell Sci. 2010;123:1141–50. doi:10.1242/jcs.063859; Van Eldik W., Den Adel B., Monshouwer-Kloots J., et al. Z-disc protein CHAPb induces cardiomyopathy and contractile dysfunction in the postnatal heart. PLoS One. 2017;12(12), e0189139. https:// doi.org/10.1371/journal.pone.0189139; Lohanadan K., Molt S., Dierck F., et al. Isoform-specific functions of synaptopodin-2 variants in cytoskeleton stabilization and autophagy regulation in muscle under mechanical stress. Experimental Cell Research. 2021;408(2), 112865. https://doi. org/10.1016/j.yexcr.2021.112865; Williams Z.J., Velez-Irizarry D., Gardner K., Valberg S. J. Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC genomics. 2021;22, 1-20. https://doi.org/10.1186/s12864-021-07758-0; Banerjee A., Dashtban A., Chen S., et al. Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study. The Lancet Digital Health. 2023;5(6), e370-e379. DOI: https://doi. org/10.1016/S2589-7500(23)00065-1; Nielsen J.B., Fritsche L.G., Zhou W., et al. Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. The American Journal of Human Genetics. 2018;102(1), 103-115. https://doi.org/10.1016/j.ajhg.2017.12.003; Roberts J.D., Hu D., Heckbert S.R., et al. Genetic investigation into the differential risk of atrial fibrillation among black and white individuals. JAMA cardiology. 2016;1(4), 442-450. doi:10.1001/ jamacardio.2016.1185; Ellinor P.T, Lunetta K.L, Albert C.M., et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44(6): 670–675. https://doi.org/10.1038/ng.2261; Christophersen I.E., Rienstra M., Roselli C., et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 2017;49(6), 946–952 (2017). https://doi.org/10.1038/ng.3843; Hsu J., Gore-Panter S., Tchou G., et al. Genetic control of left atrial gene expression yields insights into the genetic susceptibility for atrial fibrillation. Circulation: Genomic and Precision Medicine. 2018;11(3), e002107. https://doi.org/10.1161/CIRCGEN.118.002107; Roselli C., Chaffin M.D., Weng L.C., et al. Multi-ethnic genomewide association study for atrial fibrillation. Nature Genetics. 2018;50(9),1225-1233. https://doi.org/10.1038/s41588-018-0133-9; Lin H., Yin X., Xie Z., et al. Methylome-wide Association Study of Atrial Fibrillation in Framingham Heart Study. Scientific Reports. 2017;7 (1):40377. doi:10.1038/srep40377. http://dx.doi.org/10.1038/srep40377.; Patel K.K., Venkatesan C., Abdelhalim H. et al. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics; 2023;17,47. https://doi. org/10.1186/s40246-023-00498-0; Shah S., Henry A., Roselli C., et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure Nature Communications. 2020;11(1), 163. https://doi.org/10.1038/s41467-019-13690-5; Shishkova K.Y., Nikulina S.Y., Shulman V.A., et al. The role of single-nucleotide polymorphism rs10824026 of the SYNPO2L gene in the development of atrial fibrillation in a study in the East-Siberian population. CardioSomatics. 2019;10(4).34-38. DOI:10.26442/222 17185.2019.4.190722; Thériault S., Imboden M., Biggs M. L., et al. Genome-wide analyses identify SCN5A as a susceptibility locus for premature atrial contraction frequency. Iscience. 2022;25(10). https://doi. org/10.1016/j.isci.2022.105210; Lubitz S.A, Brody J.A, Bihlmeyer N.A, et al. Whole Exome Sequencing in Atrial Fibrillation. PLo S genetics. 2016;12(9):e1006284. https://doi.org/10.1371/journal.pgen.1006284; Schmidt A.F., Bourfiss M., Alasiri A., et al. Druggable proteins influencing cardiac structure and function: Implications for heart failure therapies and cancer cardiotoxicity. Science advances. 2023;9(17), eadd4984. doi:10.1126/sciadv.add4984; Ning C., Fan L., Jin M. et al. Genome-wide association analysis of left ventricular imaging-derived phenotypes identifies 72 risk loci and yields genetic insights into hypertrophic cardiomyopathy. Nat Commun. 2023;14,7900. https://doi.org/10.1038/s41467-023-43771-5; Brugada R., Tapscott T., Czernuszewicz G.Z., et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997;336(13):905–911. DOI:10.1056/NEJM199703273361302; Clausen A.G., Vad O.B., Andersen J.H., Olesen M.S. Loss-offunction variants in the SYNPO2L gene are associated with atrial fibrillation. Frontiers in cardiovascular medicine. 2021;8, 650667. https://doi.org/10.3389/fcvm.2021.650667; Ruddox V., Sandven I., Munkhaugen J.,. et al. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. European journal of preventive cardiology. 2017;24(14),1555-1566. https://doi. org/10.1177/204748731771576; Mishra A., Malik R., Hachiya T. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature. 2022;611(7934), 115-123. https://doi.org/10.1038/s41586-022-05165-3; Kraja A.T., Cook J.P., Warren H.R., et al. New blood pressure– associated loci identified in meta-analyses of 475 000 individuals. Circulation: Cardiovascular Genetics. 2017;10(5), e001778. DOI:10.1161/CIRCGENETICS.117.001778; Wang F., Liu Y., Liao H., et al. Genetic variants on SCN5A, KCNQ1, and KCNH2 in patients with ventricular arrhythmias during acute myocardial infarction in a Chinese population. Cardiology. 2020;145(1), 38-45. https://doi.org/10.1159/000502833; Olszak-Waśkiewicz M., Dziuk M., Kubik L., Kaczanowski R., Kucharczyk K. Novel KCNQ1 mutations in patients after myocardial infarction. Cardiology Journal. 2008;15(3), 252-260.
-
4Academic Journal
Authors: A. A. Dokshukina, Je. Shubina, D. N. Maslennikov, I. O. Sadelov, E. R. Tolmacheva, S. V. Ionushene, T. A. Bairova, L. V. Rychkova, D. Yu. Trofimov, D. N. Degtyarev, А. А. Докшукина, Е. Шубина, Д. Н. Масленников, И. О. Саделов, Е. Р. Толмачева, С. В. Ионушене, Т. А. Баирова, Л. В. Рычкова, Д. Ю. Трофимов, Д. Н. Дегтярев
Contributors: Работа выполнена в рамках Соглашения с Минздравом России № 056-02-2024-214 от 15.02.2024.
Source: Acta Biomedica Scientifica; Том 9, № 4 (2024); 61-68 ; 2587-9596 ; 2541-9420
Subject Terms: генетические заболевания, selective screening, whole exome sequencing, chromosomal microarray analysis, phenotype assessment, genetic diseases, селективный скрининг, полноэкзомное секвенирование, хромосомный микроматричный анализ, оценка фенотипа
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4946/2858; Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. Environ Mol Mutagen. 2015; 56(5): 419-436. doi:10.1002/em.21943; Yuan H, Shangguan S, Li Z, Luo J, Su J, Yao R, et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet Med. 2021; 23(4): 669-678. doi:10.1038/s41436-020-01048-y; Harel T, Lupski JR. Genomic disorders 20 years on – Mechanisms for clinical manifestations. Clin Genet. 2018; 93(3): 439-449. doi:10.1111/cge.13146; 100,000 Genomes Project Pilot Investigators; Smedley D, Smith KR, Martin A, Thomas EA, McDonagh EM, et al. 100,000 genomes pilot on rare-disease diagnosis in health care – Preliminary report. N Engl J Med. 2021; 385(20): 1868-1880. doi:10.1056/NEJMoa2035790; Li YR, Glessner JT, Coe BP, Li J, Mohebnasab M, Chang X, et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat Commun. 2020; 11(1): 255. doi:10.1038/s41467-019-13624-1; Gabrielaite M, Torp MH, Rasmussen MS, Andreu-Sánchez S, Vieira FG, Pedersen CB, et al. A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers. 2021; 13(24): 6283. doi:10.3390/ cancers13246283; Louw N, Carstens N, Lombard Z; for DDD-Africa as members of the H3Africa Consortium. Incorporating CNV analysis improves the yield of exome sequencing for rare monogenic disorders – An important consideration for resource-constrained settings. Front Genet. 2023; 14: 1277784. doi:10.3389/fgene.2023.1277784; Померанцева Е.А., Докшукина А.А., Дегтярева А.В., Масленников Д.Н., Трофимов Д.Ю., Дегтярев Д.Н. Критерии оценки фенотипа новорожденного для формирования группы повышенного риска генетических заболеваний. Неонатология: новости, мнения, обучение. 2022; 10(4): 47-53. doi:10.33029/2308-2402-2022-10-4-47-53; Petit F, Andrieux J, Holder-Espinasse M, Bouquillon S, Pennaforte T, Storme L, et al. Xq12q13.1 microduplication encompassing the EFNB1 gene in a boy with congenital diaphragmatic hernia. Eur J Med Genet. 2011; 54(5): e525-e527. doi:10.1016/j.ejmg.2011.06.011; Krepischi ACV, Villela D, da Costa SS, Mazzonetto PC, Schauren J, Migliavacca MP, et al. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci Rep. 2022; 12(1): 15184. doi:10.1038/s41598-022-19274-6; Лебедев И.Н., Шилова Н.В., Юров И.Ю., Малышева О.В., Твеленева А.А., Миньженкова М.Е., и др. Рекомендации Российского общества медицинских генетиков по хромосомному микроматричному анализу. Медицинская генетика. 2023; 22(10): 3-47. doi:10.25557/20737998.2023.10.3-47; Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril. 2018; 109(2): 201-212. doi:10.1016/j.fertnstert.2018.01.005; Teles TM, Paula CM, Ramos MG, Costa HB, Andrade CR, Coxir SA, et al. Frequency of chromosomal abnormalities in products of conception. Rev Bras Ginecol Obstet. 2017; 39(03): 110-114. doi:10.1055/s-0037-1600521; Genovese A, Butler MG. Clinical assessment, genetics, and treatment approaches in autism spectrum disorder (ASD). Int J Mol Sci. 2020; 21(13): 4726. doi:10.3390/ijms21134726; Bedeschi MF, Novelli A, Bernardini L, Parazzini C, Bianchi V, Torres B, et al. Association of syndromic mental retardation with an Xq12q13.1 duplication encompassing the oligophrenin 1 gene. Am J Med Genet A. 2008; 146A: 1718-1724. doi:10.1002/ajmg.a.32365; https://www.actabiomedica.ru/jour/article/view/4946
-
5Academic Journal
Source: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :36-48
Subject Terms: 2. Zero hunger, аутосомно-рецессивная глухота, Арктика, type 103 (DFNB103), CLIC5 gene, 3. Good health, whole exome sequencing (WES), Республика Саха (Якутия), Arctic, полноэкзомное секвенирование (WES), тип 103 (DFNB103), Republic of Sakha (Yakutia), ген CLIC5, autosomal recessive deafness
-
6Academic Journal
Authors: G. E. Rudenskaya, S. S. Nikitin, O. L. Shatokhina, O. A. Shchagina, Г. Е. Руденская, С. С. Никитин, О. Л. Шатохина, О. А. Щагина
Contributors: The research was carried out within the state assignment of Ministry of Science and Higher Education of Russia for Research Centre for Medical Genetics with usage of RCMG “Genome” NGS Core Unit., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова» с применением оборудования Центра коллективного пользования «Геном» ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова».
Source: Neuromuscular Diseases; Том 12, № 3 (2022); 52-58 ; Нервно-мышечные болезни; Том 12, № 3 (2022); 52-58 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2022-12-3
Subject Terms: клиническое разнообразие, SETX gene, whole‑exome sequencing, novel mutation, electroneuromyography, clinical variability, ген SETX, полноэкзомное секвенирование, новая мутация, электронейромиография
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/500/329; OMIM (On-line Mendelian Inheritance in Man). Available at: https://www.ncbi.nlm.nih.gov/omim.; Washington University Neuromuscular Disease Center. Available at: https://neuromuscular.wustl.edu/.; Liu Z., Lin H., Wei Q. et al. Genetic spectrum and variability in Chinese patients with amyotrophic lateral sclerosis. Aging Dis 2019;10(6):1199–206. DOI:10.14336/AD.2019.0215; Myrianthopoulos N.C., Lane M.H., Silberberg D.H., Vincent B.L. Nerve conduction and other studies in families with Charcot–Marie–Tooth disease. Brain 1964;87:589–608. DOI:10.1093/brain/87.4.589; Chance P.F., Rabin B.A., Ryan S.G. et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet 1998;62:633–40. DOI:10.1086/301769; Rabin B.A., Griffin J.W., Crain B.J. et al. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 1999;122:1539–50. DOI:10.1093/brain/122.8.1539; De Jonghe P., Auer-Grumbach M., Irobi J. et al. Autosomal dominant juvenile amyotrophic lateral sclerosis and distal hereditary motor neuronopathy with pyramidal tract signs: synonyms for the same disorder? Brain 2002;125(Pt 6):1320–5. DOI:10.1093/brain/awf127; Chen Y.-Z., Bennett C.L., Huynh H.M. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004;74:1128–35. DOI:10.1086/421054; Bennett C., Dastidar S., Ling S. et al. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol 2018;136(3):425–43. DOI:10.1007/s00401-018-1852-9; Connolly O., Le Gal L., McCluskey G. et al. A systematic review of genotype-phenotype correlation across cohorts having causal mutations of different genes in ALS. J Pers Med 2020;10(3):58. DOI:10.3390/jpm10030058; Kannan A., Cuartas J., Gangwani P. et al. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 2022;awab464. DOI:10.1093/brain/awab464; HGMD (The Human Gene Mutation Database). Available at: https://portal.biobaseinternational.com/.; Руденская Г.Е., Куркина М.В., Захарова Е.Ю. Атаксии с окуломоторной апраксией: клинико-генетические характеристики и ДНК-диагностика. Журнал неврологии и психиатрии им. С.С. Корсакова 2012;112(10):58–63.; Avemaria F., Lunetta C., Tarlarini C. et al. Mutation in the senataxin gene found in a patient affected by familial ALS with juvenile onset and slow progression. Amyotroph Lateral Scler 2011;12(3):228–30. DOI:10.3109/17482968.2011.566930; Rudnik-Schöneborn S., Arning L., Epplen J.T., Zerres K. SETX gene mutation in a family diagnosed autosomal dominant proximal spinal muscular atrophy. Neuromuscul Disord 2012;22(3):258–62. DOI:10.1016/j.nmd.2011.09.00; Taniguchi T., Hokezu Y., Okada T. et al. Amyotrophic lateral sclerosis (ALS) 4 family misdiagnosed as hereditary spastic paraplegia: a case report. Rinsho Shinkeigaku 2017;57(11):685–90. DOI:10.5692/clinicalneurol.cn-000996; Ma L., Shi Y., Chen Z. et al. A novel SETX gene mutation associated with juvenile amyotrophic lateral sclerosis. Brain Behav 2018;8:e01066. DOI:10.1002/brb3.1066; Lei L., Chen H., Lu Y. et al. Unusual electrophysiological findings in a Chinese ALS 4 family with SETX-L389S mutation: a three-year follow-up. J Neurol 2021;268(3):1050–8. DOI:10.1007/s00415-020-10246-2; Kitao R., Honma Y., Hashiguchi A. et al. A case of motor and sensory polyneuropathy and respiratory failure with novel heterozygous mutation of the senataxin gene. Rinsho Shinkeigaku 2020;60(7):466–72. DOI:10.5692/clinicalneurol.60.cn-001415; Hadjinicolaou A., Ngo K.J., Conway D.Y. et al. De novo pathogenic variant in SETX causes a rapidly progressive neurodegenerative disorder of early childhood-onset with severe axonal polyneuropathy. Acta Neuropathol Commun 2021;9(1):194. DOI:10.1186/s40478-021-01277-5; Hirano M., Quinzii C., Mitsumoto H. et al. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011;12(3):223–7. DOI:10.3109/17482968.2010.545952; Saiga T., Tateishi T., Torii T. et al. Inflammatory radiculoneuropathy in an ALS4 patient with a novel SETX mutation. J Neurol Neurosurg Psychiatry 2012;83(7):763, 764. DOI:10.1136/jnnp-2012-302281; Tripolszki K., Török D., Goudenège D. et al. High-throughput sequencing revealed a novel SETX mutation in a Hungarian patient with amyotrophic lateral sclerosis. Brain Behav 2017;7(4):e00669. DOI:10.1002/brb3.669; Beppu S., Ikenaka K., Yabumoto T. et al. A case of sporadic amyotrophic lateral sclerosis (ALS) with senataxin (SETX) gene variant. Rinsho Shinkeigaku 2022;62(3):205–10. DOI:10.5692/clinicalneurol.cn-001675; Grunseich C., Patankar A., Amaya J. et al. Clinical and molecular aspects of senataxin mutations in amyotrophic lateral sclerosis 4. Ann Neurol 2020;87(4):547–55. DOI:10.1002/ana.25681; Rafiq M.K., Lee E., Bradburn M. et al. Creatine kinase enzyme level correlates positively with serum creatinine and lean body mass, and is a prognostic factor for survival in amyotrophic lateral sclerosis. Eur J Neurol 2016;23:1071–8. DOI:10.1111/ene.12995; Zhao Z., Chen W., Wu Z. et al. A novel mutation in the senataxin gene identified in a Chinese patient with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009;10(2):118–22. DOI:10.1080/17482960802572673; Andreini I., Moro F., Africa L.M. et al. Rare phenotype of ALS4 associated with heterozygous missense mutation c.5842A>G/p. M1948V in helicase domain of SETX gene. Amyotroph Lateral Scler 2020;21(3–4):312, 313. DOI:10.1080/21678421.2020.1740271; Kenna K.P., McLaughlin R.L., Byrne S. et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50(11):776–83. DOI:10.1136/jmedgenet-2013-101795; https://nmb.abvpress.ru/jour/article/view/500
-
7Academic Journal
Authors: M. Yu. Donnikov, R. A. Illarionov, T. A. Izotova, L. N. Kolbasin, L. V. Kovalenko, М. Ю. Донников, Р. А. Илларионов, Т. А. Изотова, Л. Н. Колбасин, Л. В. Коваленко
Source: Medical Genetics; Том 21, № 9 (2022); 38-40 ; Медицинская генетика; Том 21, № 9 (2022); 38-40 ; 2073-7998
Subject Terms: NGS, whole exome sequencing, полноэкзомное секвенирование
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2145/1612; Воинова В.Ю., Николаева Е.А., Щербакова Н.В., Яблонская М.И. Высокопроизводительное секвенирование ДНК для идентификации генетически детерминированных заболеваний в педиатрической практике. Российский вестник перинатологии и педиатрии. 2019;64(1):103-109. https://doi.org/10.21508/1027-4065-2019-64-1-103-109; Суспицын Е.Н., Тюрин В.И., Имянитов Е.Н., Соколенко А.П. Полноэкзомное секвенирование: принципы и диагностические возможности. Педиатрия. 2016;7(4):142-146. https://doi.org/10.17816/PED74142-146
-
8Academic Journal
Authors: E. E. Baranova, G. Yu. Zobkova, M. V. Vorontsova, V. L. Izhevskaya, Е. Е. Баранова, Г. Ю. Зобкова, М. В. Воронцова, В. Л. Ижевская
Source: Medical Genetics; Том 20, № 5 (2021); 3-14 ; Медицинская генетика; Том 20, № 5 (2021); 3-14 ; 2073-7998
Subject Terms: этические проблемы, whole-exome sequencing, opportunistic genomic screening, ethical issues, полноэкзомное секвенирование, оппортунистический генетический скрининг
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1907/1487; Biesecker, L.G., Green, R.C. Diagnostic clinical genome and exome sequencing. N Engl J Med. 2014; 370: 2418-2425.; Porta-Pardo E., Valencia A., Godzik, A. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era. FEBS Lett. 2020; 594(24):4233-4246. doi:10.1002/1873-3468.13781; Gregg A.R. Expanded carrier screening. Obstet Gynecol Clin North Am. 2018; 45:103-112.; Adams M.C., Evans J.P., Henderson G.E., Berg J.S. The promise and peril of genomic screening in the general population. Genet Med. 2016;18(6):593-9.; Zoltick E.S., Linderman M.D., McGinniss M.A., et al. Predispositional genome sequencing in healthy adults: design, participant characteristics, and early outcomes of the PeopleSeq Consortium. Genome Med. 2019;11(1):10. doi:10.1186/s13073-019-0619-9; Pinxten W., Howard H.C. Ethical issues raised by whole genome sequencing. Best Pract Res Clin Gastroenterol. 2014 Apr;28(2):269-79. doi:10.1016/j.bpg.2014.02.004.; Cooper D.N., Krawczak M., Polychronakos C., Tyler-Smith C., Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132(10):1077-130.; Voorwinden J.S., Buitenhuis A.H., Birnie E., et al. Expanded carrier screening: what determines intended participation and can this be influenced by message framing and narrative information?. Eur J Hum Genet. 2017;25(7):793-800. doi:10.1038/ejhg.2017.74; Manrai, A.K., Funke, B.H., Rehm, H.L. et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med. 2016; 375: 655-665.; Van Driest S.L., Wells Q.S., Stallings S. et al. Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records. JAMA. 2016; 315: 47-57.; Cassa C.A., Tong M.Y., Jordan D.M. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat. 2013; 34: 1216-1220.; Christensen K.D., Dukhovny D., Siebert U., Green RC. Assessing the costs and cost-effectiveness of genomic sequencing. J Pers Med. 2015;5(4):470-86.; Goldfeder R.L., Wall D.P., Khoury M.J., Ioannidis J.P.A., Ashley E.A. Human genome sequencing at the population scale: a primer on high-throughput DNA sequencing and analysis. Am J Epidemiol. 2017; 186: 1000-1009.; Butterfield R.M., Evans J.P., Rini C., et al. Returning negative results to individuals in a genomic screening program: lessons learned. Genet Med. 2019;21(2):409-416.; Захарова Е.Ю., Ижевская В.Л., Байдакова Г.В., Иванова Т.А., Чумакова О.В., Куцев С.И. Массовый скрининг на наследственные болезни: ключевые вопросы. Медицинская генетика. 2017;16(10):3-13.; Scherokman B. Selecting and interpreting diagnostic tests. The Permanente Journal. 1997;1(2):4-7.; Hart M.R., Biesecker B.B., Blout C.L., et al. Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment and healthcare costs from a multi-site study. Genet Med. 2019;21(5):1100-1110.; Lebo M.S., Yu T.W., Fayer S., et al. Genomic sequencing reveals previously unrecognized phenotypes in a high proportion of those with unanticipated monogenic disease risk. Presented at: American Society of Human Genetics, San Diego, California, October 17, 2018.; Green R.C., Berg J.S., Grody W.W. et al. American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013; 15: 565-574.; Green R.C., Lupski J.R., Biesecker L.G. Reporting genomic sequencing results to ordering clinicians: incidental, but not exceptional. JAMA. 2013; 310: 365-366.; ACMG Board of Directors. ACMG policy statement: updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing. Genet Med. 2015; 17: 68-69.; Kalia S.S., Adelman K., Bale S.J. et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017; 19: 249-255.; Van El C.G., Cornel M.C., Borry P., Hastings R.J., Fellmann F., Hodgson S.V., et al. Public and Professional Policy Committee. Whole-genome sequencing in health care: recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2013;21:580-4.; de Wert, G., Dondorp, W., Clarke, A. et al. Opportunistic genomic screening. Recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2021; 29, 365-377. https://doi.org/10.1038/s41431-020-00758-w; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3-23.; Scripps Center for Executive Health Genetic testing. San Diego, CA: Scripps Health; 2015.; Linderman M.D., Nielsen D.E., Green R.C. Personal genome sequencing in ostensibly healthy individuals and the PeopleSeq Consortium. J Pers Med. 2016; 6 (2):14.; Foulkes W.D., Knoppers B.M., Turnbull, C. Population genetic testing for cancer susceptibility: founder mutations to genomes. Nat Rev Clin Oncol. 2016; 13: 41-54.; Adams M.C., Berg J.S., Pearlman M.D., Vora N.L. Look before you leap: genomic screening in obstetrics and gynecology. Obstet Gynecol. 2015; 125: 1299-1305.; Stavropoulos D.J., Merico D., Jobling R., et al. Whole Genome Sequencing Expands Diagnostic Utility and Improves Clinical Management in Pediatric Medicine. NPJ Genom Med. 2016;1:15012. doi:10.1038/npjgenmed.2015.12; ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med. 2012; 14: 759-761.; Home - U.S. Preventive Services Task Force. Vol. 2016. Rockville, MD: USPSTF Program Office; 2014.; Tsubono Y., Hisamichi S. A halt to neuroblastoma screening in Japan. N Engl J Med. 2004; 350: 2010-2011.; McGrath S.P., Coleman J., Najjar L., Fruhling A., Bastola D.R. Comprehension and data-sharing behavior of direct-to-consumer genetic test customers. Public Health Genomics. 2016; 19: 116-124.; Krieger J.L., Murray F., Roberts J.S., Green R.C. The impact of personal genomics on risk perceptions and medical decision-making. Nat Biotechnol. 2016; 34: 912-918.; van der Hout S., Holtkamp K.C., Henneman L., de Wert G., Dondorp W.J. Advantages of expanded universal carrier screening: what is at stake?. Eur J Hum Genet. 2016;25(1):17-21. doi:10.1038/ejhg.2016.12535.; Mathijssen I.B., Holtkamp K.C.A., Ottenheim C.P.E., et al. Preconception carrier screening for multiple disorders: evaluation of a screening offer in a Dutch founder population. Eur J Hum Genet. 2019;26(2):166-175. doi:10.1038/s41431-017-0056-4; Abul-Husn N.S., Manickam K., Jones L.K., Wright E.A., Hartzel D.N, GonzagaJauregui C, et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016;354(6319):aaf7000. doi:10.1126/science.aaf7000. PMID: 28008010.; Perkins B.A., Caskey C.T., Brar P., Dec E., Karow D.S., Kahn A.M., et al. Precision medicine screening using whole-genome sequencing and advanced imaging to identify disease risk in adults. Proc Natl Acad Sci U S A. 2018; 115(14):3686-91.; Dewey F.E., Murray M.F., Overton J.D., Habegger L., Leader J.B., Fetterolf S.N., et al. Distribution and clinical impact of functional variants in 50,726 whole exome sequences from the DiscovEHR study. Science. 2016;354(6319): aaf6814. https://doi.org/10.1126/science.aaf6814.; Vassy J.L., Christensen K.D., Schonman E.F., Blout C.L., Robinson J.O., Krier J.B., et al. The impact of whole-genome sequencing on the primary care and outcomes of healthy adult patients: a pilot randomized trial. Ann Intern Med. 2017;167(3):159-69.; Johnston J.J., Lewis K.L., Ng D., Singh L.N., Wynter J., Brewer C., et al. Individualized iterative phenotyping for genome-wide analysis of loss-offunction mutations. Am J Hum Genet. 2015;96(6):913-25.; Collins F.S., Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-795.; Botkin J.R., Belmont J.W., Berg J.S., et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am J Hum Genet. 2015;97(1):6-21.; Goldenberg A.J., Dodson D.S., Davis M.M., Tarini B.A. Parents’ interest in whole genome sequencing of newborns. Genet Med. 2014;16(1):78-84.; Roche M.I., Berg J.S. Incidental findings with genomic testing: implications for genetic counseling practice. Curr Genet Med Rep. 2015;3(4):166-176.; Waisbren S.E., Bäck D.K., Liu C., et al. Parents are interested in newborn genomic testing during the early postpartum period. Genet Med. 2015;17(6):501-504; Van Steijvoort E., Chokoshvili D, Cannkn D.W., et al. Interest in expanded carrier screening among individuals and couples in the general population: systematic review of the literature. Hum Reprod Update. 2020 Feb 25. pii: dmaa001. doi:10.1093/humupd/dmaa001.; VanNoy G.E., Genetti C.A., McGuire A.L., Green R.C., Beggs A.H., Holm I.A.; BabySeq Project Group. Challenging the Current Recommendations for Carrier Testing in Children. Pediatrics. 2019 Jan;143(Suppl 1):S27-S32. doi:10.1542/peds.2018-1099F.; Wang T., Ma J., Zhang Q., et al. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Genet. 2019;10:1052. Published 2019 Oct 29. doi:10.3389/fgene.2019.01052; Boone P. M. Adolescents, Family History, and Inherited Disease Risk: An Opportunity. Pediatrics; 2016, 138 (2): e20160579. DOI:10.1542/peds.2016-0579; Vears D.F., Metcalfe S.A. Carrier testing in children and adolescents. Eur J Med Genet. 2015;58(12):659-67. doi:10.1016/j.ejmg.2015.11.006.; Malpas P.J. Why tell asymptomatic children of the risk of an adult-onset disease in the family but not test them for it? J Med Ethics 2006; 32: 639 - 642.; Wilfond B.S., Fernandez C.V., Green R.C. Disclosing secondary fi ndings from pediatric sequencing to families: considering the “benefi t to families”. J Law Med Ethics. 2015;43(3):552-558.; Bredenoord A.L., de Vries M.C., van Delden H. The right to an open future concerning genetic information. Am J Bioeth. 2014;14(3):21-23.; Летов О. В. Этические принципы исследований в области генетики. Культурология. 2007; 4: 26-4; Ross L.F., Clayton E.W. Ethical Issues in Newborn Sequencing Research: The Case Study of BabySeq. Pediatrics. 2019 Dec;144(6): e20191031. doi:10.1542/peds.2019-1031.; Ceyhan-Birsoy O., Murry J.B., Machini K., Lebo M.S., Yu T.W., Fayer S., Genetti C.A., Schwartz T.S., Agrawal P.B., Parad R.B., Holm I.A., McGuire A.L., Green R.C., Rehm H.L., Beggs A.H.; BabySeq Project Team. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am J Hum Genet. 2019;104(1):76-93. doi:10.1016/j.ajhg.2018.11.016.; Adhikari A.N., Gallagher R.C., Wang Y. et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020; 26: 1392-1397. https://doi.org/10.1038/s41591-020-0966-5; Bunnik E.M., de Jong A., Nijsingh N., et al. The new genetics and informed consent: differentiating choice to preserve autonomy. Bioethics 2013;27(6):348-55; Parker M., Lucassen A. Using a genetic test result in the care of family members: how does the duty of confidentiality apply?. Eur J Hum Genet. 2018; 26: 955-959. (2018). https://doi.org/10.1038/s41431-018-0138-y; Horn R., Parker M. Opening Pandora’s box?: ethical issues in prenatal whole genome and exome sequencing. Prenat Diagn. 2018;38(1):20-25. doi:10.1002/pd.5114; Practice Committee of the American Society for Reproductive Medicine, Practice Committee of the Society for Assisted Reproductive Technology. Recommendations for gamete and embryo donation: a committee opinion. Fertil Steril. 2013;99:47-62.; Zhang T., Madeira J., Lu Y. Expanded Preconception Carrier Screening in Clinical Practice: Review of Technology, Guidelines, Implementation Challenges, and Ethical Quandaries. Clin Obstet Gynecol. 2019 Jun;62(2):217-227. doi:10.1097/GRF.0000000000000437.; Silver A.J., Larson J.L., Silver M.J., Lim R.M., Borroto C., Spurrier B., et al. Carrier screening is a deficient strategy for determining sperm donor eligibility and reducing risk of disease in recipient children. Genet Test Mol Biomarkers. 2016;20:276-84.
-
9Academic Journal
Authors: O. A. Shchagina, O. P. Ryzhkova, A. L. Chukhrova, T. V. Milovidova, P. Gundorova, O. L. Mironovich, A. A. Orlova, M. D. Orlova, A. V. Poliakov, О. А. Щагина, О. П. Рыжкова, А. Л. Чухрова, Т. Б. Миловидова, П. Гундорова, О. Л. Миронович, А. А. Орлова, М. Д. Орлова, А. В. Поляков
Source: Neuromuscular Diseases; Том 10, № 4 (2020); 12-26 ; Нервно-мышечные болезни; Том 10, № 4 (2020); 12-26 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2020-10-4
Subject Terms: наследственная периферическая нейропатия, HMSN, Charcot–Marie–Tooth disease, CMT, whole exome sequencing, WES, inherited peripheral neuropathy, болезнь Шарко–Мари–Тута, полноэкзомное секвенирование
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/404/279; Barreto L.C.L.S., Oliveira F.S., Nunes P.S. et al. Epidemiologic study of Charcot–Marie–Tooth disease: a systematic review. Neuroepidemiology 2016;46(3):157–65. DOI:10.1159/000443706. PMID: 26849231.; Baets J., Timmerman V. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain 2011;134(6):1587–90. DOI:10.1093/brain/awr114.; Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. DOI:10.1002/mgg3.126. PMID: 25802885.; Hartley T., Wagner J.D., WarmanChardon J. et al. Whole-exome sequencing is a valuable diagnostic tool for inherited peripheral neuropathies: Outcomes from a cohort of 50 families. Clin Genet 2018;93(2):301–9. DOI:10.1111/cge.13101. PMID: 28708278.; Schabhüttl M., Wieland T., Senderek J. et al. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol 2014;(261):970–82. DOI:10.1007/s00415-014-7289-8. PMID: 24627108.; Gonzaga-Jauregui C., Harel T., Gambin T. et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 2015;12(7):1169–83. DOI:10.1016/j.celrep.2015.07.023. PMID: 26257172.; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;(17):405–23. DOI:10.1038/gim.2015.30. PMID: 25741868.; Щагина О.А., Дадали Е.Л., Федотов В.П., Поляков А.В. Спектр мутаций в гене MFN2 у больных наследственной моторно-сенсорной нейропатией II А типа. Медицинская генетика 2006;5(9):21–6.; Дадали Е.Л., Щагина О.А., Федотов В.П. Клинико-генетические особенности моторно-сенсорной нейропатии IIА типа. Анналы клинической и экспериментальной неврологии 2007;1(4):10–5.; Миловидова Т.Б., Дадали Е.Л., Федотов В.П. и др. Клинико-генетичекие корреляции при наследственной моторно-сенсорной нейропатии, вызванной мутациями в гене МРZ (P0). Журнал неврологии и психиатрии им. С.С. Корсакова 2011;111(12):48–55.; Latour P., Thauvin-Robinet C., BaudeletMéry C. et al. A major determinant for binding and aminoacylation of tRNAAla in cytoplasmic alanyl-trna synthetase is mutated in dominant axonal charcotmarie-tooth disease. Am J Hum Genet 2010;86(1):77–82. DOI:10.1016/j.ajhg.2009.12.005. PMID: 20045102.; Shchagina O.A., Milovidova T.B., Murtazina A.F. et al. HINT1 gene pathogenic variants: the most common cause of recessive hereditary motor and sensory neuropathies in Russian patients. Mol Biol Rep 2020;(47):1331–7. DOI:10.1007/s11033-019-05238-z.; Дадали Е.Л., Никитин С.С., Курбатов С.А. и др. Клинико-генетические характеристики аутосомно-рецессивной аксональной нейропатии с нейромиотонией у больных из России. Нервно-мышечные болезни 2017;7(3): 47–55. DOI:10.17650/2222-8721-2017-7-3-47-55.; https://nmb.abvpress.ru/jour/article/view/404
-
10Academic Journal
Authors: A. M. Zlotina, Yu. V. Fomicheva, T. L. Vershinina, A. A. Kozyreva, A. M. Kiselev, T. M. Pervunina, E. S. Vasichkina, A. A. Kostareva, А. М. Злотина, Ю. В. Фомичева, Т. Л. Вершинина, А. А. Козырева, А. М. Киселёв, Т. М. Первунина, Е. С. Васичкина, А. А. Костарева
Source: Medical Genetics; Том 19, № 5 (2020); 16-17 ; Медицинская генетика; Том 19, № 5 (2020); 16-17 ; 2073-7998
Subject Terms: TBX5, врожденный порок сердца, полноэкзомное секвенирование, MYH7, dilated cardiomyopathy, congenital heart defects, whole-exome sequencing
File Description: application/pdf
-
11Academic Journal
Authors: A. A. Ivanova, E. S. Melnikova, A. A. Gurazheva, S. K. Maljutina, V. P. Novoselov, I. A. Rodina, O. V. Hamovich, V. N. Maksimov, А. А. Иванова, Е. С. Мельникова, А. А. Гуражева, С. К. Малютина, В. П. Новоселов, И. А. Родина, О. В. Хамович, В. Н. Максимов
Source: Medical Genetics; Том 19, № 5 (2020); 33-35 ; Медицинская генетика; Том 19, № 5 (2020); 33-35 ; 2073-7998
Subject Terms: rs34643859, однонуклеотидный полиморфизм, полноэкзомное секвенирование, rs77270326, внезапная сердечная смерть, sudden cardiac death, single nucleotide polymorphism, whole-exome sequencing
File Description: application/pdf
-
12Academic Journal
Authors: V. G. Pshennikova, G. P. Romanov, T. M. Nikolaeva, F. M. Teryutin, T. V. Borisova, I. F. Komar’Kov, A. V. Antonets, A. V. Solovyev, L. A. Klarov, A. A. Bondar, I. V. Morozov, O. L. Posukh, E. K. Khusnutdinova, S. A. Fedorova, N. A. Barashkov, В. Г. Пшенникова, Г. П. Романов, Т. М. Николаева, Ф. М. Терютин, Т. В. Борисова, И. Ф. Комарьков, А. В. Антонец, А. В. Соловьев, Л. А. Кларов, А. А. Бондарь, И. В. Морозов, О. Л. Посух, Э. К. Хуснутдинова, С. А. Федорова, Н. А. Барашков
Source: Medical Genetics; Том 18, № 10 (2019); 36-48 ; Медицинская генетика; Том 18, № 10 (2019); 36-48 ; 2073-7998
Subject Terms: Republic of Sakha (Yakutia), тип 103 (DFNB103), ген CLIC5, полноэкзомное секвенирование (WES), Арктика, Республика Саха (Якутия), autosomal recessive deafness, type 103 (DFNB103), CLIC5 gene, whole exome sequencing (WES), Arctic
File Description: application/pdf
Availability: https://www.medgen-journal.ru/jour/article/view/732
-
13Academic Journal
Authors: Yu. D. Davydova, R. F. Enikeeva, A. V. Kazantseva, R. N. Mustafin, A. R. Romanova, S. B. Malykh, E. K. Khusnutdinov, Ю. Д. Давыдова, Р. Ф. Еникеева, А. В. Казанцева, Р. Н. Мустафин, А. Р. Романова, С. Б. Малых, Э. К. Хуснутдинова
Contributors: The present study was supported by the Russian Foundation for Basic Research (project No. 17-29-02195) "Genomics of aggressive and depressive human behavior”
Source: Vavilov Journal of Genetics and Breeding; Том 23, № 4 (2019); 465-472 ; Вавиловский журнал генетики и селекции; Том 23, № 4 (2019); 465-472 ; 2500-3259
Subject Terms: полноэкзомное секвенирование, serotonin, hypothalamic-pituitary adrenal axis, neurotrophin, apoptosis, cytokines, GWAS, whole-exome sequencing, серотонин, гипоталамо-гипофизарная система, нейротрофин, апоптоз, цитокины
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2140/1238; Amin N., Belonogova N.M., Jovanova O., Brouwerc R.W.W., van Rooij J.G.J., van den Hout M.C.G.N., Svishcheva G.R., Kraaij R., Zorkoltseva I.V., Kirichenko A.V., Hofman A., Uitterlinden A.G., van IJcken W.F.J., Tiemeier H., Axenovich T.I., van Duijn C.M. Nonsynonymous variation in NKPD1 increases depressive symptoms in european populations. Biol. Psychiatry. 2017a;81(8):702707. DOI 10.1016/j.biopsych.2016.08.008.; Amin N., Jovanova O., Adams H.H., Dehghan A., Kavousi M., Vernooij M.W., Peeters R.P., de Vrij F.M.S., van der Lee S.J., van Rooij J.G.J., van Leeuwen E.M., Chaker L., Demirkan A., Hofman A., Brouwer R.W.W., Kraaij R., van Dijk K.W., Hankemeier T., van Ijcken W.F.J., Uitterlinden A.G., Niessen W.J., Franco O.H., Kushner S.A., Ikram M.A., Tiemeier H., van Duijn C.M. Exome-sequencing in a large population-based study reveals a rare Asn396Ser variant in the LIPG gene associated with depressive symptoms. Mol. Psychiatry. 2017b;22(4):537-543. DOI 10.1038/mp.2016.101.; Amin N., de Vrij F.M.S., Baghdadi M., Brouwer R.W.W., van Rooij J.G.J., Jovanova O., Uitterlinden A.G., Hofman A., Janssen H.L.A., Darwish Murad S., Kraaij R., Stedehouder J., van den Hout M.C.G.N., Kros J.M., van IJcken W.F.J., Tiemeier H., Kushner S.A.C., van Duijn M. A rare missense variant in RCL1 segregates with depression in extended families. Mol. Psychiatry. 2018; 23(5):1120-1126. DOI 10.1038/mp.2017.49.; Bachis A., Cruz M.I., Nosheny R.L., Mocchetti I. Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci. Lett. 2008;442(2):104-108. DOI 10.1016/j.neulet.2008.06.081.; Bîlc M.I., Vulturar R., Chiș A., Buciuman M., Nuţu D., Bunea I., Szentágotai-Tătar A., Miu A.C. Childhood trauma and emotion regulation: The moderator role of BDNF Val66Met. Neurosci. Lett. 2018;685:7-11. DOI 10.1016/j.neulet.2018.07.018.; Bleys D., Luyten P., Soenens B., Claes S. Gene-environment interactions between stress and 5-HTTLPR in depression: A meta-analytic update. J. Affect. Disord. 2018;226:339-345. DOI 10.1016/j.jad.2017.09.050.; CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523(7562): 588-591. DOI 10.1038/nature14659.; Culverhouse R.C., Saccone N.L., Horton A.C., Weinstein M., Whooley M., Nurnberger J.I.Jr. Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Mol. Psychiatry. 2018;23(1):133-142. DOI 10.1038/mp.2017.44.; Cusin C., Yang H., Yeung A., Fava M. Rating scales for depression. Eds. L. Baer, M.A. Blais. Handbook of Clinical Rating Scales and Assessment in Psychiatry and Mental Health. Totowa, N.J.: Humana Press, 2010;7-35.; Daches S., Vine V., Layendecker K.M., George C.J., Kovacs M. Family functioning as perceived by parents and young offspring at high and low risk for depression. J. Affect. Disord. 2018;226:355-360. DOI 10.1016/j.jad.2017.09.031.; Demirkan A., Lahti J., Direk N., Tiemeier H., van Duijn C.M., Räikkönen K. Somatic, positive and negative domains of the Center for Epidemiological Studies Depression (CES-D) scale: a metaanalysis of genome-wide association studies. Psychol. Med. 2016; 6(8):1613-1623. DOI 10.1017/S0033291715002081.; Direk N., Williams S., Smith J.A., Zhao W., Tiemeier H., Sullivan P.F. An analysis of two genome-wide association meta-analyses identifies a new locus for broad depression phenotype. Biol. Psychiatry. 2017;82(5):322-329. DOI 10.1016/j.biopsych.2016.11.013.; Dreval A.V. Age changes in the functioning of the reproductive system of men. RMJ: Endocrinologiya = Russian Medical Journal: Endocrinology. 2017;25(22):1661-1664. (in Russian); Fitzgerald P.B., Laird A.R., Maller J., Daskalakis Z.J. A meta-analytic study of changes in brain activation in depression. Hum. Brain Mapp. 2008;29(6):683-695. DOI 10.1002/hbm.20426.; Gardiner S.L., van Belzen M.J., Boogaard M.W., van RoonMom W.M.C., Rozing M.P., van Hemert A.M., Smit J.H., Beekman A.T.F., van Grootheest G., Schoevers R.A., Oude Voshaar R.C., Comijs H.C., Penninx B.W.J.H., van der Mast R.C., Roos R.A.C., Aziz N.A. Large normal-range TBP and ATXN7 CAG repeat lengths are associated with increased lifetime risk of depression. Transl. Psychiatry. 2017;7(6):e1143. DOI 10.1038/tp.2017.116.; Gatt J.M., Burton K.L., Williams L.M., Schofield P.R. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J. Psychiatr. Res. 2015;60:1-13. DOI 10.1016/j.jpsychires.2014.09.014.; Gerhard D.M., Duman R.S. Sex-specific molecular changes in depression. Biol. Psychiatry. 2018;84(1)2-4. DOI 10.1016/j.biopsych.2018.05.005.; Girgus J.S., Yang K. Gender and depression. Curr. Opin. Psychol. 2015; 4:53-60. DOI 10.1016/j.copsyc.2015.01.019.; Guo L., Costanzo-Garvey D.L., Smith D.R., Neilsen B.K., MacDonald R.G., Lewis R.E. Kinase Suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis. Mol. Metab. 2016;6(2):194-205. DOI 10.1016/j.molmet.2016.12.004.; Hajek T., Kozeny J., Kopecek M., Alda M., Höschl C. Reduced subgenual cingulate volumes in mood disorders: a meta-analysis. J. Psychiatry Neurosci. 2008;33:91-99.; Howard D.M., Adams M.J., Shirali M., … Breen G., Deary I.J., McIntosh A.M. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 2018;9:1470. DOI 10.1038/s41467-018-03819-3.; ICD-10: International Statistical Classification of Diseases and Related Health Problems 10th Revision, version 2018. Available at: http://mkb-10.com/. (in Russian); Jiang P., Dang R.-L., Li H.-D., Zhang L.H., Zhu W.Y., Xue Y., Tang M.M. The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress. Evid. Based Complement. Alternat. Med. 2014; 729827. DOI 10.1155/2014/729827.; Kazantseva A., Gaysina D., Kutlumbetova Y., Kanzafarova R., Malykh S., Lobaskova M., Khusnutdinova E. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2015;56:58-65. DOI 10.1016/j.pnpbp.2014.08.001.; Kazantseva A.V., Kutlumbetova Y.Y., Malykh S.B., Lobaskova M.M., Khusnutdinova E.K. Arginine-vasopressin receptor gene (AVPR1A, AVPR1B) polymorphisms and their relation to personality traits. Russ. J. Genet. 2014;50(3):298-307. DOI 10.1134/S1022795414030041.; Kendler K.S., Gatz M., Gardner C.O., Pedersen N.L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry. 2006;163(1):109-114. DOI 10.1176/appi.ajp.163.1.109.; Keyes K., Agnew-Blais J., Roberts A.L., Hamilton A., de Vivo I., Ranu H., Koenen K. The role of allelic variation in estrogen receptor genes and major depression in the Nurses Health Study. Soc. Psychiatry Psychiatr. Epidemiol. 2015;50(12):1893-1904. DOI 10.1007/s00127-015-1087-1.; Kim M., Kim Y.-S., Kim D.-H., Yang T.W., Kwon O.Y. Major depressive disorder in epilepsy clinics: A meta-analysis. Epilepsy Behav. 2018;84:56-69. DOI 10.1016/j.yebeh.2018.04.015.; Kishi T., Yoshimura R., Fukuo Y., Okochi T., Matsunaga S., UmeneNakano W., Nakamura J., Serretti A., Correll C.U., Kane J.M., Iwata N. The serotonin 1A receptor gene confer susceptibility to mood disorders: results from an extended meta-analysis of patients with major depression and bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2013;263(2):105-118. DOI 10.1007/s00406-0120337-4.; Koolschijn P.C., van Haren N.E., Lensvelt-Mulders G.J., Hulshoff Pol H.E., Kahn R.S. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum. Brain Mapp. 2009;30(11):3719-3735. DOI 10.1002/hbm.20801.; Köhler C.A., Freitas T.H., Maes M., de Andrade N.Q., Liu C.S., Fernandes B.S., Stubbs B., Solmi M., Veronese N., Herrmann N., Raison C.L., Miller B.J., Lanctôt K.L., Carvalho A.F. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017; 135(5):373-387. DOI 10.1111/acps.12698.; Kushner S.C., Herzhoff K., Vrshek-Schallhorn S., Tackett J.L. Depression in early adolescence: Contributions from relational aggression and variation in the oxytocin receptor gene. Aggress. Behav. 2018;44(1):60-68. DOI 10.1002/ab.21724.; Liu Y., Ho R.C., Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord. 2012;139(3):230-239. DOI 10.1016/j.jad.2011.08.003.; Liu Z., Huang L., Luo X.J., Wu L., Li M. MAOA Variants and genetic susceptibility to major psychiatric disorders. Mol. Neurobiol. 2016;53(7):4319-4327. DOI 10.1007/s12035-015-9374-0.; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry. 2013;18(4):497511. DOI 10.1038/mp.2012.21.; Mbarek H., Milaneschi Y., Hottenga J.J., Ligthart L., de Geus E.J.C., Ehli E.A., Willemsen G., Davies G.E., Smit J.H., Boomsma D.I., Penninx B.W.J.H. Genome-wide significance for PCLO as a gene for major depressive disorder. Twin Res. Hum. Genet. 2017;20(4):267270. DOI 10.1017/thg.2017.30.; Miller A.H., Raison C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016;16(1):22-34. DOI 10.1038/nri.2015.5.; Mustafin R.N., Enikeeva R.F., Davydova Y.D., Khusnutdinova E.K. The role of epigenetic factors in the development of depressive disorders. Russ. J. Genet. 2018;54(12):1397-1409. DOI 10.1134/S1022795418120104.; Myung W., Kim J., Lim S.-W., Shim S., Won H.-H., Kim S., Kim S., Lee M.-S., Chang H.S., Kim J.-W., Carroll B.J., Kim D.K. A genome-wide association study of antidepressant response in Koreans. Transl. Psychiatry. 2015;5:e633. DOI 10.1038/tp.2015.127.; Naughton M., Dinan T.G., Scott L.V. Corticotropin-releasing hormone and the hypothalamic-pituitary-adrenal axis in psychiatric disease. Handb. Clin. Neurol. 2014;124:69-91. DOI 10.1016/B978-0-44459602-4.00005-8.; Neumann I.D., Landgraf R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012;35(11):649-659. DOI 10.1016/j.tins.2012.08.004.; Okbay A., Baselmans B.M., de Neve J.E.,Benjamin D.J., Bartels M., Cesarini D. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 2016;48(6):624-633. DOI 10.1038/ng.3552.; Popova N.K., Ilchibaeva T.V., Naumenko V.S. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochemistry (Moscow). 2017;82(3):308-317. DOI 10.1134/S0006297917030099.; Rai V. Association of C677T polymorphism (rs1801133) in MTHFR gene with depression. Cell. Mol. Biol. 2017;63(6):60-67. DOI 10.14715/cmb/2017.63.6.13.; Rui H., Qian H., Shi M., Zhang G., Wang L. Meta-analysis on the association between norepinephrine transporter gene rs2242446, rs5569 polymorphisms and risk of major depressive disorder. Arch. Med. Res. 2018;49(4):261-269. DOI 10.1016/j.arcmed.2018.08.010.; Sahu A., Gupta P., Chatterjee B. Depression is more than just sadness: a case of excessive anger and its management in depression. Indian J. Psychol. Med. 2014;36(1):77-79. DOI 10.4103/0253-7176.127259.; Sankar J.S., Hampson E. Testosterone levels and androgen receptor gene polymorphism predict specific symptoms of depression in young men. Gend. Med. 2012;9(4):232-243. DOI 10.1016/j.genm.2012.05.001.; Shadrina M., Bondarenko E.A., Slominsky P.A. Genetics factors in major depression disease. Front. Psychiatry. 2018;9:334. DOI 10.3389/fpsyt.2018.00334.; Smulevich A.B. Depression in Psychiatric and Medical Practices. Moscow: Medical Information Agency Publ., 2015. (in Russian); Sullivan P.F., de Geus E.J., Willemsen G., James M.R., Smit J.H., Zandbelt T., Arolt V., Baune B.T., Blackwood D., Cichon S., Coventry W.L., Domschke K., Farmer A., Fava M., Gordon S.D., He Q., Heath A.C., Heutink P., Holsboer F., Hoogendijk W.J., Hottenga J.J., Hu Y., Kohli M., Lin D., Lucae S., MacIntyre D.J., Maier W., McGhee K.A., McGuffin P., Montgomery G.W., Muir W.J., Nolen W.A., Nöthen M.M., Perlis R.H., Pirlo K., Posthuma D., Rietschel M., Rizzu P., Schosser A., Smit A.B., Smoller J.W., Tzeng J.-Y., van Dyck R., Verhage M., Zitman F.G., Martin N.G., Wray N.R., Boomsma D.I., Penninx B.W. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol. Psychiatry. 2009;14(4):359-375. DOI 10.1038/mp.2008.125.; Tammiste A., Jiang T., Fischer K., Mägi R., Krjutškov K., Pettai K., Esko T., Li Y., Tansey K.E., Carroll L.S., Uher R., McGuffin P., Võsa U., Tšernikova N., Saria A., Ng P.C., Eller T., Vasar V., Nutt D.J., Maron E., Wang J., Metspalu A. Whole-exome sequencing identifies a polymorphism in the BMP5 gene associated with SSRI treatment response in major depression. J. Psychopharmacol. 2013;27(10):915-920. DOI 10.1177/0269881113499829.; Taylor S. Association between COMT Val158Met and psychiatric disorders: A comprehensive meta-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2018;177(2):199-210. DOI 10.1002/ajmg.b.32556.; Torres-Berrío A., Lopez J.P., Bagot R.C., Nouel D., Bo G.D., Cuesta S., Zhu L., Manitt C., Eng C., Cooper H.M., Storch K.-F., Turecki G., Nestler E.J., Flores C. DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Biol. Psychiatry. 2017;81(4):306-315. DOI 10.1016/j.biopsych.2016.08.017.; Wang M., Ma Y., Yuan W., Su K., Li M.D. Meta-analysis of the COMT Val158Met polymorphism in major depressive disorder: effect of ethnicity. J. Neuroimmune Pharmacol. 2016;11(3):434-445. DOI 10.1007/s11481-016-9651-3.; Wang S.S., Kamphuis W., Huitinga I., Zhou J.N., Swaab D.F. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol. Psychiatry. 2008;13(8):786-799. DOI 10.1038/mp.2008.38.; Weisberg I., Tran P., Christensen B., Sibani S., Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab. 1998;64(3):169-172. DOI 10.1006/mgme.1998.2714.; WHO: Depression and Other Common Mental Disorders. Global Health Estimates. 2017. available at: http://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf.; Wong M.L., Dong C., Maestre-Mesa J., Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol. Psychiatry. 2008; 13(8):800-812. DOI 10.1038/mp.2008.59.; Xiao X., Zheng F., Chang H., Ma Y., Yao Y.G., Luo X.J., Li M. The gene encoding protocadherin 9 (PCDH9), a novel risk factor for major depressive disorder. Neuropsychopharmacology. 2018;43(5):11281137. DOI 10.1038/npp.2017.241.; Yankina M.A., Saik O.V., Ivanisenko V.A., Demenkov P.S., Khusnutdinova E.K. Evaluation of prioritization methods of extrinsic apoptotic signaling pathway genes for retrieval of the new candidates associated with major depressive disorder. Genetika = Genetics (Moscow). 2018;54(11):1338-1348. DOI 10.1134/S0016675818110176. (in Russian); Youssef M.M., Underwood M.D., Huang Y.Y., Hsiung S., Liu Y., Simpson N.R., Bakalian M.J., Rosoklija G.B., Dwork A.J., Arango V., Mann J.J. Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide. Int. J. Neuropsychopharmacol. 2018;21(6):528-538. DOI 10.1093/ijnp/pyy008.; Zhao X., Sun L., Sun Y.H., Ren C., Chen J., Wu Z.Q., Jiang Y.H., Lv X.L. Association of HTR2A T102C and A-1438G polymorphisms with susceptibility to major depressive disorder: a metaanalysis. Neurol. Sci. 2014;35(12):1857-1866. DOI 10.1007/s10072-014-1970-7.; https://vavilov.elpub.ru/jour/article/view/2140
-
14Academic Journal
Authors: V. Yu. Voinova, E. A. Nikolaeva, N. V. Shсherbakova, M. I. Yuablonskaya, В. Ю. Воинова, Е. А. Николаева, Н. В. Щербакова, М. И. Яблонская
Contributors: Ministry of Health of Russia, Министерство здравоохранения Российской Федерации
Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 64, № 1 (2019); 103-109 ; Российский вестник перинатологии и педиатрии; Том 64, № 1 (2019); 103-109 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2019-64-1
Subject Terms: прогностический вторичный вариант, hereditary diseases, full-excinal sequencing, new generation sequencing, interpretation of sequencing data, primary diagnosis, possible diagnosis, double diagnosis, prognostic secondary variant, наследственные болезни, полноэкзомное секвенирование, секвенирование нового поколения, интерпретация данных секвенирования, первичный диагноз, возможный диагноз, двойной диагноз
File Description: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/829/753; McCandless S.E., Brunger J.W., Cassidy S.B. The burden of genetic disease on inpatient care in a children’s hospital. Am J Hum Genet 2004; 74(1): 121–127.; Robin N.H. It does matter: The importance of making the diagnosis of a genetic syndrome. Curr Opin Pediatr 2006; 18(6): 595–597. DOI:10.1097/01.mop.0000247536.78273.78; Miller D.T., Adam M.P., Aradhya S., Biesecker L.G., Brothman A.R., Carter N.P., Church D.M. et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86(5): 749–764. DOI:10.1016/j.ajhg.2010.04.006; Stavropoulos D.J., Merico D., Jobling R., Bowdin S., Monfared N., Thiruvahindrapuram B., Nalpathamkalam T. et al. Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. NPJ Genom Med 2016; 1: 15012. DOI:10.1038/npjgenmed.2015.12; Thiffault I., Lantos J. The challenge of analyzing the results of next-generation sequencing in children. Pediatrics 2016; 137(Suppl 1): S3–7. DOI:10.1542/peds.2015-3731C; Шагам Л.И., Воинова В.Ю. Возможности и ограничения высокопроизводительного секвенирования в диагностике моногенных заболеваний. Российский вестник перинатологии и педиатрии 2016; 61(2): 105–109. DOI:10.21508/1027-4065-2016-61-2-105-109; Bowdin S., Gilbert A., Bedoukian E., Carew C., Adam M.P., Belmont J., Bernhardt B. et al. Recommendations for the integration of genomics into clinical practice. Genet Med 2016; 18(11): 1075–1084. DOI:10.1038/gim.2016.17; UK10K Consortium, Walter K., Min J.L., Huang J., Crooks L., Memari Y., McCarthy S. et al. The UK10K project identifies rare variants in health and disease. Nature 2015; 526(7571): 82–90. DOI:10.1038/nature14962; Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W. et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 2015; 17(5): 405–424. DOI:10.1038/gim.2015.30; Joshi C., Kolbe D.L., Mansilla M.A., Mason S.O., Smith R.J., Campbell C.A. Reducing the cost of the diagnostic odyssey in early onset epileptic encephalopathies. Biomed Res Int 2016; 2016: 6421039. DOI:10.1155/2016/6421039.; Warman Chardon J., Beaulieu C., Hartley T., Boycott K.M., Dyment D.A. Axons to exons: The molecular diagnosis of rare neurological diseases by next-generation sequencing. Curr Neurol Neurosci Rep 2015; 15(9): 64. DOI:10.1007/s11910-015-0584-7.; Kernohan K.D., Dyment D.A., Pupavac M., Cramer Z., McBride A., Bernard G., Straub I. et al. Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene. Hum Mutat 2017; 38(5): 511–516. DOI:10.1002/humu.23196.; Matchmaker Exchange. http://www.matchmakerexchange.org/; Undiagnosed Disease Network. https://undiagnosed.hms.harvard.edu/; Wenger A.M., Guturu H., Bernstein J.A., Bejerano G. Systematic reanalysis of clinical exome data yields additional diagnoses: Implications for providers. Genet Med 2017; 19(2): 209–214. DOI:10.1038/gim.2016.88.; Balci T.B., Hartley T., Xi Y., Beaulieu C.L., Bernier F.P., Dupuis L., Horvath G.A. et al. Debunking Occam’s razor: Diagnosing multiple genetic diseases in families by whole-exome sequencing. Clin Genet 2017; 92(3): 281–289. DOI:10.1111/cge.12987; Kalia S.S., Adelman K., Bale S.J., Chung W.K., Eng C., Evans J.P., Herman G.E. et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017; 19(2): 249–255. DOI:10.1038/gim.2016.190; Shahmirzadi L., Chao E.C., Palmaer E., Parra M.C., Tang S., Gonzalez K.D. Patient decisions for disclosure of secondary findings among the first 200 individuals undergoing clinical diagnostic exome sequencing. Genet Med 2014; 16(5): 395–399. DOI:10.1038/gim.2013.153; Fowler S.A., Saunders C.J., Hoffman M.A. Variation among Consent Forms for Clinical Whole Exome Sequencing. J Genet Couns 2018; 27(1): 104–114. DOI:10.1007/s10897-017-0127-2; Roche M.I., Berg J.S. Incidental Findings with Genomic Testing: Implications for Genetic Counseling Practice. Current Genetic Medicine Reports 2015; 3(4): 166–176. DOI:10.1007/s40142-015-0075-9; Schwarz U.I., Gulilat M., Kim R.B. The Role of Next-Generation Sequencing in Pharmacogenetics and Pharmacogenomics. Cold Spring Harb Perspect Med 2018; pii: a033027. DOI:10.1101/cshperspect.a033027; PharmGKB. Available at http://www.pharmgkb.org.; https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm; Cohn I., Paton T.A., Marshall C.R., Basran R., Stavropoulos D.J., Ray P.N., Monfared N. et al. Genome sequencing as a platform for pharmacogenetic information: A cohort study in children. NPJ Genomic Medicine 2017; 2: 19. DOI:10.1038/s41525-017-0021-8; Yohe S., Thyagarajan B. Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med 2017; 141(11): 1544–1557. DOI:10.5858/arpa.2016-0501-RA; Bell C.J., Dinwiddie D.L., Miller N.A., Hateley S.L., Ganusova E.E., Mudge J., Langley R.J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 2011; 3(65): 65ra4. DOI:10.1126/scitranslmed.3001756; Cassa C.A., Tong M.Y., Jordan D.M. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat 2013; 34(9): 1216–1220. DOI:10.1002/humu.22375; Gray V.E., Kukurba K.R., Kumar S. Performance of computational tools in evaluating the functional impact of laboratoryinduced amino acid mutations. Bioinformatics 2012; 28(16): 2093–2096. DOI:10.1093/bioinformatics/bts336; Kankirawatana P., Leonard H., Ellaway C., Scurlock J., Mansour A., Makris C.M., Dure L.S. et al. Early progressive encephalopathy in boys and MECP2 mutations. Neurology 2006; 67(1): 164–166. DOI:10.1212/01.wnl.0000223318.28938.45
-
15Academic Journal
Authors: S. N. Bardakov, R. V. Deev, M. O. Mavlikeev, Z. R. Umakhanova, P. G. Akhmedova, R. M. Magomedova, K. Z. Zulfugarov, V. A. Tsargush, I. A. Chekmareva, I. A. Yakovlev, G. D. Dalgatov, G. I. Yakubovsky, A. A. Isaev, С. Н. Бардаков, Р. В. Деев, М. О. Мавликеев, З. Р. Умаханова, П. Г. Ахмедова, Р. М. Магомедова, К. З. Зульфугаров, В. А. Царгуш, И. А. Чекмарева, И. А. Яковлев, Г. Д. Далгатов, Г. И. Якубовский, А. А. Исаев
Contributors: This work was funded by a grant from the Russian Science Foundation (14-15-00916). Rabbit anti-pectin antiserum was kindly provided by Professor Dr. Gerhard Wiech (Vienna, Austria). Our gratitude to the head of the laboratory “GeneticO” (Moscow) E.A. Pomerantseva and her staff, Работа финансирована грантом Российского научного фонда (14-15-00916). Кроличья анти-плектин антисыворотка была любезно предоставлена профессором доктором Герхардом Вихом (Вена, Австрия). Выражаем благодарность заведующей лабораторией “GeneticO” (г. Москва) Е.А. Померанцевой и ее сотрудникам
Source: Neuromuscular Diseases; Том 9, № 3 (2019); 40-55 ; Нервно-мышечные болезни; Том 9, № 3 (2019); 40-55 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2019-9-3
Subject Terms: мышечные дистрофии, limb-girdle muscle dystrophy 2Q, PLEC gene, PLEC 1f isoform, whole-exome sequencing, hypercreatinephos-phatemia, myopathy, myasthenic syndrome, non-infection bronchiolitis, muscular dystrophies, поясно-конечностная мышечная дистрофия 2Q, ген PLEC, изоформа плектина 1f полноэкзомное секвенирование, гиперкреатинфосфатемия, миопатия, миастенический синдром, неинфекционный бронхиолит
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/343/245; Winter L., Wiche G. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol 2013;125(1):77—93. DOI:10.1007/s00401-012-1026-0. PMID: 22864774.; Winter L., Staszewska I., Mihailovska E. et al. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle. J Clin Invest 2014;124(3):1144— 57. DOI:10.1172/JCI71919. PMID: 24487589.; Rezniczek G.A., Winter L., Wafko G., Wiche G. Functional and Genetic Analysis of Plectin in Skin and Muscle. Methods Enzymol 2016;569:235-59. DOI:10.1016/bs.mie.2015.05.003. PMID: 26778562.; Gostynska K.B., Lemmink H., Bremer J. et al. A PLEC Isoform Identified in Skin, Muscle, and Heart. J Invest Dermatol 2017;137(2):518—22. DOI:10.1016/j.jid.2016.09.032. PMID: 27769846.; Uniprot. URL https://www.uniprot.org/uniprot/Q15149.; Castanon M.J., Walko G., Winter L., Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol 2013;140(1):33—53. DOI:10.1007/s00418-013-1102-0. PMID: 23748243.; Winter L., Kuznetsov A.V., Grimm M. et al. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum Mol Genet 2015;24(16):4530—44. DOI:10.1093/hmg/ddv184. PMID: 26019234.; Winter L., Turk M., Harter P.N. et al. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol Commun 2016;4(1):44. DOI:10.1186/s40478-016-0314-7. PMID: 27121971.; Wiche G., Krepler R., Artlieb U. et al. Identification of plectin in different human cell types and immunolocalization at epithelial basal cell surface membranes. Exp Cell Res 1984;155(1):43—9. DOI:10.1016/0014-4827(84)90766-3. PMID: 6386498.; Rezniczek G.A., Konieczny P., Nikolicet B. et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 2007;176(7):965—77. DOI:10.1083/jcb.200604179. PMID: 17389230.; Johnson M.A., Polgar J., Weightman D., Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 1973;18(1):111—29. DOI:10.1016/0022-510x(73)90023-3. PMID: 4120482.; Gundesli H., Cirak S., Dincer P. Pitfall of identifying a disease locus by using low-resolution SNP arrays. J Mol Genet Med 2011;5:264-5. DOI:10.4172/1747-0862.1000047. PMID: 22190979.; Fattahi Z., Kahrizi K., Nafissi S. et al. Report of a patient with limb-girdle muscular dystrophy, ptosis and ophthalmoparesis caused by plectinopathy. Arch Iran Med 2015;18(1):60—4. DOI: 0151801/AIM.0014. PMID: 25556389.; Takawira D., Scott Budinger G.R., Hopkinson S.B., Jones J.C.R. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem 2011;286(8):6301—10. DOI:10.1074/jbc.M110.178988. PMID: 21149456.; Bonni A., Brunet A., West A.E. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999;286(5443):1358—62. DOI:10.1126/science.286.5443.1358.; Budinger G.R., Urich D., DeBiase P.J. et al. Stretch-induced activation of AMP kinase in the lung requires dystroglycan. Am J Respir Cell Mol Biol 2008;39(6):666—72. DOI:10.1165/rcmb.2007-0432OC. PMID: 18556591.; Eisenberg J.L., Beaumont K.G., Takawira D. et al. Plectin-containing, centrally localized focal adhesions exert traction forces in primary lung epithelial cells. J Cell Sci 2013;126(Pt16):3746—55. DOI:10.1242/jcs.128975. PMID: 23750011.; Babic I., Karaman-Ilic M., Pustisek N. et al. Respiratory tract involvement in a child with epidermolysis bullosa simplex with plectin deficiency: a case report. Int J Pediatr Otorhinolaryngol 2010;74(3):302—5. DOI:10.1016/j.ijporl.2009.10.002. PMID: 20044146.; Mihailovska E., Raith M., Valencia R.G. et al. Neuromuscular synapse integrity requires linkage of acetylcholine receptors to postsynaptic intermediate filament networks via rapsyn-plectin 1f complexes. Mol Biol Cell 2014;25(25):4130—49. DOI:10.1091/mbc.E14-06-1174. PMID: 25318670.; Gundesli H., Talim B., Korkusuz P. et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet 2010;87(6):834—41. DOI:10.1016/j.ajhg.2010.10.017. PMID: 21109228.; Forrest K., Mellerio J.E., Robb S. et al. Congenital muscular dystrophy, myasthenic symptoms and epidermolysis bullosa simplex (EBS) associated with mutations in the PLEC1 gene encoding plectin. Neuromuscul Disord 2010;20(11):709—11. DOI:10.1016/j.nmd.2010.06.003. PMID: 20624679.; Banwell B.L., Russel J., Fukudome T. et al. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J Neuropathol Exp Neurol 1999;58(8):832—46. DOI:10.1097/00005072-199908000-00006. PMID: 10446808.; Selcen D., Juel V.C., Hobson-Webb L.D. et al. Myasthenic syndrome caused by plectinopathy. Neurology 2011;76(4):327—36. DOI:10.1212/WNL.0b013e31820882bd. PMID: 21263134.; Bolling M.C., Pas H.H., de Visser M. et al. PLEC1 mutations underlie adult-onset dilated cardiomyopathy in epidermolysis bullosa simplex with muscular dystrophy. J Invest Dermatol 2010;130(4):1178—81. DOI:10.1038/jid.2009.390. PMID: 20016501.; Celik C., Uysal H., Heper A.O., Karaoglan B. Epidermolysis bullosa simplex associated with muscular dystrophy and cardiac involvement. J Clin Neuromuscul Dis 2005;6(4):157—61. DOI:10.1097/01.cnd.0000159779.32828.e7. PMID: 19078768.; Villa C.R., Ryan T.D., Collins J.J. et al. Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation. Neuromuscul Disord 2015;25(2):165—8. DOI:10.1016/j.nmd.2014.09.011. PMID: 25454730.; Andra K., Lassmann H., Bittner R. et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes 1997;11(23):3143— 56. DOI:10.1101/gad.11.23.3143. PMID: 9389647.; Osmanagic-Myers S., Rus S., Wolfram M. et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci 2015;128(22):4138—50. DOI:10.1242/jcs.172056. PMID: 26519478.; https://nmb.abvpress.ru/jour/article/view/343
-
16Academic Journal
Authors: T. V. Kozhanova, S. S. Zhilina, T. I. Mescheryakova, M. Yu. Shorina, I. F. Demenshin, G. G. Prokopiev, A. G. Prityko, Т. В. Кожанова, С. С. Жилина, Т. И. Мещерякова, М. Ю. Шорина, И. Ф. Деменьшин, Г. Г. Прокопьев, А. Г. Притыко
Source: Medical Genetics; Том 17, № 10 (2018); 42-45 ; Медицинская генетика; Том 17, № 10 (2018); 42-45 ; 2073-7998
Subject Terms: whole-exome sequencing, врожденный миастенический синдром, дыхательная недостаточность, мышечная гипотония, полноэкзомное секвенирование, SLC5A7 gene, congenital myasthenic syndrome, respiratory failure, muscle hypotonia
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/593/374; Агафонов Б.В., Котов С.В., Сидорова О.П. «Миастения и врожденные миастенические синдромы» - 2013. Медицинское информационное агентство. - М. - 224с.; Abicht A., Muller J., Lochmuller Н. Congenital Myasthenic Syndromes. GeneReviews® [Internet]. 2016; Black, S.A., and Rylett, R.J. Choline transporter CHT regulation and function in cholinergic neurons. Cent. Nerv. Syst. Agents Med. Chem.2012;12:114-121.; Haga, T. Molecular properties of the high-affinity choline transporter CHT1. J. Biochem. 2014;156:181-194.; Engel, A.G., Shen, X.M., Selcen, D., and Sine, S.M. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:420-434.; Byring, R.F., Pihko, H., Tsujino, A., Shen, X.M., Gustafsson, B., Hackman, P., Ohno, K., Engel,A.G. and Udd,B. Congenital myasthenic syndrome associated with episodic apnea and sudden infant death. Neuromuscul. Disord. 2002;12:548-553.; Ohno, K., Tsujino, A., Brengman, J.M., Harper, C.M., Bajzer, Z., Udd, B., Beyring, R., Robb, S., Kirkham, F.J., and Engel, A.G. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc. Natl. Acad. Sci. 2001;98:2017-2022.; База данных OMIM - https://www.omim.org/entry/617143.; База данных Orphanet - https://www.orpha.net.; Bauche, S., O’Regan, S., Azuma, Y., Laffargue, F., McMacken, G., Sternberg, D., Brochier, G., Buon, C., Bouzidi, N., Topf, A., Lacene, E., Remerand, G. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am. J. Hum. Genet. 2016;99:753-761.; McMacken G., Whittaker R., Evangelista T., Abicht А., Dus М., Lochmuller Н. Congenital myasthenic syndrome with episodic apnoea: clinical, neurophysiological and genetic features in the long-term follow-up of 19 patients. J Neurol. 2018; 265(1): 194-203.; Wang H., Salter C., Refai O., Hardy H., Barwick K., Akpulat U., Kvarnung M., Chioza B., Harlalka G., Taylan F., Sejersen T., Wright J., Zimmerman H., Karakaya M., Stuve B., Weis J., Schara U., Russell M., Abdul-Rahman O., Chilton J., Blakely R., Baple E., Cirak S., Crosby A. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization. Brain. 2017;140(11):2838-2850.
-
17Academic Journal
Source: Cancer Urology; Том 13, № 4 (2017); 133-140 ; Онкоурология; Том 13, № 4 (2017); 133-140 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2017-13-4
Subject Terms: мутационная нагрузка, sequential targeted therapy, combination immunotherapy with nivolumab and ipilimumab, cabozantinib, lenvatinib in combination with pembrolizumab, monoclonal antibody VEGFR-2 antagonist, ramucirumab, whole exome sequencing of tumor DNA, tumor mutation burden, последовательная таргетная терапия, комбинированная иммунотерапия ниволумабом и ипилимумабом, кабозантиниб, комбинация ленватиниба и пембролизумаба, моноклональное антитело к рецептору 2-го типа эндотелиального фактора роста сосудов, рамуцирумаб, полноэкзомное секвенирование опухолевой ДНК
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/779/728; https://oncourology.abvpress.ru/oncur/article/view/779
-
18Academic Journal
Authors: A. I. Stukan, R. A. Murashko, V. N. Bodnya, O. Yu. Chukhray, E. V. Dulina, А. И. Стукань, Р. А. Мурашко, В. Н. Бодня, О. Ю. Чухрай, Е. В. Дулина
Source: Head and Neck Tumors (HNT); Том 7, № 3 (2017); 66-73 ; Опухоли головы и шеи; Том 7, № 3 (2017); 66-73 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2017-7-3
Subject Terms: пути дифференцировки ПРГШ, whole-exome sequencing, human papillomavirus type 16, mutations in tumor suppressors, target therapy, ways of HNSCC differentiation, полноэкзомное секвенирование, вирус папилломы человека 16-го типа, мутации супрессоров опухолевого роста, таргетная терапия
File Description: application/pdf
Relation: https://ogsh.abvpress.ru/jour/article/view/291/288; Globocan 2012. Estimated cancer incidence, mortality and prevalence worldwide in 2012. International Agency for Research on Cancer. World Health Organisation. Available at: http:// globocan.iarc.fr/pages/fact_sheets_cancer. aspx.; Rothenberg S.M., Ellisen L.W. The molecular pathogenesis of head and neck squamous cell carcinoma. Jnl of Clin Invest 2012;122(6):1951–7. DOI:10.1172/ JCI59889. PMID: 22833868.; Machiels J.P., Lambrecht M., Hanin F.X. et al. Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep 2014;6:44. DOI:10.12703/P6-44. PMID: 24991421.; National Cancer Institute Head and Neck Cancer, 2014. Available at: https://www. cancer.gov/types/head-and-neck/patient/ oropharyngeal-treatmentpdq#section/_48.; Bonilla-Velez J., Mroz E.A., Hammon R.J. et al. Impact of human papillomavirus on oropharyngeal cancer biology and response to therapy: implications for treatment. Otolaryngol Clin North Am 2013;46(4):521–43. DOI:10.1016/j. otc.2013.04.009. PMID: 23910468.; Joseph A.W., D'Souza G. Epidemiology of human papillomavirus-related head and neck cancer. Otolaryngol Clin North Am 2012;45(4):739–64. DOI:10.1016/S14702045(10)70017-6. PMID: 20451455.; Marur S., D'Souza G., Westra W.H., Forastiere A.A. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 2010;11(8):781– 9. DOI:10.1016/S1470-2045(10)70017-6. PMID: 20451455.; Nigro J.M., Baker S.J., Preisinger A.C. et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342(6250):705–8. DOI:10.1038/342705a0. PMID: 2531845.; Gasco M., Crook T. The p53 network in head and neck cancer. Oral Oncol 2003;39(3):222–31. PMID: 12618194.; Somers K.D., Merrick M.A., Lopez M.E. et al. Frequent p53 mutations in head and neck cancer. Cancer Res 1992;52(21):5997–6000. Available at: http://cancerres.aacrjournals.org/ content/52/21/5997. PMID: 1394225.; Ohnishi K., Ota I., Takahashi A., Yane K. et al. Transfection of mutant p53 gene depresses X-ray-or CDDP-induced apoptosis in a human squamous cell carcinoma of the head and neck. Apoptosis 2002;7(4):367–72. PMID: 12101396.; Stransky N., Egloff A.M., Tward A.D. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011;333(6046):1157–60. PMID: 1394225.; Cancer Genome Atlas. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517(7536):576–82. DOI:10.1038/ nature14129. PMID: 25631445.; Tassone P., Old M., Teknos T.N. et al. p53-based therapeutics for head and neck squamous cell carcinoma. Oral Oncol 2013;49(8):733–7. DOI:10.1016/j.oraloncology.2013.03.447. PMID: 23623836.; Qiu W., Schonleben F., Li X. et al. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett 2007;245(1– 2):163–70. DOI:10.1016/j. canlet.2006.01.003. PMID: 16478646.; Han G., Lu S.L., Li A.G. et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005;115(7):1714–23. DOI:10.1172/JCI24399. PMID: 15937546.; Nagaraj N.S., Datta P.K. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 2010;19(1):77–91. DOI:10.1517/13543780903382609. PMID: 20001556.; Doody R.S., Raman R., Farlow M. et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N Engl J Med 2013;369(4):341–50. DOI:10.1056/NEJMoa1210951. PMID: 23883379.; Morris L.G., Kaufman A.M., Gong Y. et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet 2013;45(3):253–61. DOI:10.1038/ ng.2538. PMID: 23354438.; Nishikawa Y., Miyazaki T., Nakashiro K. et al. Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of β-catenin. Oncol Rep 2011;26(3):587– 92. DOI:10.3892/or.2011.1324. PMID: 21617878.; Jerby-Arnon L., Pfetzer N., Waldman Y.Y. et al. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 2014;158(5):1199–209. DOI:10.1016/j. cell.2014.07.027. PMID: 25171417.; McLornan D.P., List A., Mufti G.J. Applying synthetic lethality for the selective targeting of cancer. N Engl J Med 2014;371(18):1725–35. DOI:10.1056/NEJMra1407390. PMID: 25354106.; Martin S.A., McCabe N., Mullarkey M. et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH or MLH1. Cancer Cell 2010;17:235–48. DOI:10.1016/j. ccr.2009.12.046. PMID: 20227038.; Martin S.A., McCarthy A., Barber L.J. et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol Med 2009;1:323–37. DOI:10.1002/ emmm.200900040.; Puram S.V., Rocco J.W. Molecular Aspects of Head and Neck Cancer Therapy/ Hematol Oncol Clin North Am 2015; 29(6): 971–92. DOI: http://dx.doi. org/10.1016/j.hoc.2015.07.003. PMID: 20049736.; Wang X., Simon R. Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med Genomics 2013;6:30. DOI:10.1186/1755-8794-6-30.; Kalyankrishna S., Grandis J.R. Epidermal growth factor biology in head and neck cancer. J Clin Oncol 2006;24:2666–72. DOI:10.1186/1755-8794-6-30. PMID: 24025726.; Ang K.K., Zhang Q., Rosenthal D.I., Nguyen-Tan P.F. et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 2014;32(27):2940–50. DOI:10.1200/ JCO.2013.53.5633. PMID: 25154822.; Anderson J.A., Irish J.C., McLachlin C.M. et al. H-ras oncogene mutation and human papillomavirus infection in oral carcinomas. Arch Otolaryngol Head Neck Surg. 1994;120(7):755–60. PMID: 7912510.; Rocco J.W., Li D., Liggett W.H. et al. p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer. Clin Cancer Res. 1998;4(7):1697–704. PMID: 9676844.; Grønhøj Larsen C., Gyldenløve M., Jensen D.H. et al. Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours: a systematic review. Br J Cancer 2014;110(6):1587–94. DOI:10.1038/bjc.2014.42. PMID: 24518594.; Lewis J.S., Jr. p16 Immunohistochemistry as a standalone test for risk stratification in oropharyngeal squamous cell carcinoma. Head Neck Pathol 2012;6(1):75–82. DOI:10.1007/s12105012-0369-0. PMID: 22782226.; Spanos W.C., Nowicki P., Lee D.W. et al. Immune response during therapy with cisplatin or radiation for human papillomavirus-related head and neck cancer. Arch Otolaryngol Head Neck Surg 2009;135(11):1137–46. DOI:10.1001/ archoto.2009.159. PMID: 19917928.; el-Naggar A.K., Hurr K., Luna M.A. et al. Intratumoral genetic heterogeneity in primary head and neck squamous carcinoma using microsatellite markers. Diagn Mol Pathol. 1997;6(6):305–8. PMID: 9559289.; Götte K., Schäfer C., Riedel F. et al. Intratumoral genomic heterogeneity in primary head and neck cancer and corresponding metastases detected by dual-FISH. Oncol Rep 2004;11(1): 17–23. PMID: 14654897.; Mroz E.A., Tward A.D., Pickering C.R. et al. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 2013;119(16):3034–42. DOI:10.1002/ cncr.28150. PMID: 23696076.; Sethi N., Wright A., Wood H. et al. MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer 2014;50(15):2619–35. DOI:10.1016/j.ejca.2014.07.012. PMID: 25103455.; Cao P., Zhou L., Zhang J. et al. Comprehensive expression profiling of microRNAs in laryngeal squamous cell carcinoma. Head Neck 2013;35:720–8. DOI:10.1002/hed.23011. PMID: 22605671.; Avissar M., Christensen B.C., Kelsey K.T. et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res 2009;15:2850–5. DOI:10.1158/10780432.CCR-08-3131. PMID: 19351747.; Yan B., Fu Q., Lai L. et al. Downregulation of microRNA 99a in oral squamous cell carcinomas contributes to the growth and survival of oral cancer cells. Mol Med Rep 2012;6:675–81. DOI:10.3892/ mmr.2012.971. PMID: 22751686.; Le J.M., Squarize C.H., Castilho R.M. Histone modifications: Targeting head and neck cancer stem cells. World J Stem Cells 2014;6(5):511–25. DOI:10.4252/wjsc. v6.i5.511. PMID: 25426249.; Almeida L.O., Abrahao A.C., RosselliMurai L.K. et al. NFκB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC). FEBS Open Bio 2014;4:96– 104. DOI:10.1016/j.fob.2013.12.003. PMID: 24490130.; Giudice F.S., Pinto D.S., Jr., Nör J.E. et al. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One 2013;8(3). DOI:10.1371/journal.pone.0058672. PMID: 23527004.; Haigentz M., Kim M., Sarta C. et al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol 2012;48(12):1281–8. DOI:10.1016/j.oraloncology.2012.05.024. PMID: 22748449.; https://ogsh.abvpress.ru/jour/article/view/291
-
19Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: болезнь Паркинсона, полноэкзомное секвенирование, мутации
Access URL: https://openrepository.ru/article?id=190806
-
20Academic Journal
Authors: Шадрина Мария Игоревна, Шульская Марина Вадимовна, Пчелина Софья Николаевна, Иллариошкин Сергей Николаевич
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: полноэкзомное секвенирование, болезнь Паркинсона, мутации
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190806/1/nora.pdf; https://openrepository.ru/article?id=190806
Availability: https://openrepository.ru/article?id=190806