-
1Academic Journal
Συγγραφείς: Юдин Н.С, Игошин А.В, Ларкин Д.М.
Πηγή: Письма в Вавиловский журнал генетики и селекции, Vol 11, Iss 1, Pp 5-11 (2025)
Θεματικοί όροι: крупный рогатый скот, молочная порода, вес тела, полногеномный анализ ассоциаций, ген-кандидат, Genetics, QH426-470
Περιγραφή αρχείου: electronic resource
Relation: https://pismavavilov.ru/wp-content/uploads/2025/03/003-Pisma-VJ_Yudin.pdf; https://doaj.org/toc/2686-8482
Σύνδεσμος πρόσβασης: https://doaj.org/article/d3753772f0e74d949c3d265289e7854f
-
2Academic Journal
Συγγραφείς: M. V. Levchenko, G. G. Karlikova, G. K. Petryakova, I. A. Lashneva, A. A. Sermyagin, М. В. Левченко, Г. Г. Карликова, Г. К. Петрякова, И. А. Лашнева, А. А. Сермягин
Συνεισφορές: The research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst No. FGGN-2024-0013, theme No. 124020200029-4)., Работа выполнена при поддержке Минобрнауки России в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л. К. Эрнста» (№ FGGN-2024-0013, рег. № 124020200029-4).
Πηγή: Agricultural Science Euro-North-East; Том 26, № 5 (2025); 1112-1124 ; Аграрная наука Евро-Северо-Востока; Том 26, № 5 (2025); 1112-1124 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: сычужная свертываемость молока, Holstein breed, genome-wide association study, functional gene annotation, SNP markers, thermostability of milk, rennet coagulation of milk, голштинская порода, полногеномный анализ ассоциаций, функциональная аннотация генов, SNP-маркеры, термостабильность молока
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/2232/950; Суровцев В. Н. Тенденции и перспективы развития молочного животноводства России: риски и возможности. Молочная промышленность. 2023;(2):12–16. DOI: https://doi.org/10.31515/1019-8946-2023-02-12-16 EDN: UQGWLO DOI: https://doi.org/10.31515/1019-8946-2023-02-12-16; Ларкина Т. А., Ширяев Г. В. GWAS как инструмент обнаружения SNPs у крупного рогатого скота для изучения их связи с воспроизводством, продуктивностью, ростом, поведением, болезнями. Аграрная наука. 2024;1(8):124–131. DOI: https://doi.org/10.32634/0869-8155-2024-385-8-124-131 EDN: FIMLEZ DOI: https://doi.org/10.32634/0869-8155-2024-385-8-124-131; Сермягин А. А., Быкова О. А., Лоретц О. Г., Костюнина А. В., Зиновьева Н. А. Оценка геномной вариабельности продуктивных признаков у животных голштинизированной черно-пестрой породы на основе GWAS-анализа и ROH паттернов. Сельскохозяйственная биология. 2020;55(2):257–274. DOI: https://doi.org/10.15389/agrobiology.2020.2.257rus EDN: DTVHLI DOI: https://doi.org/10.15389/agrobiology.2020.2.257rus; Dadousis C., Biffani S., Cipolat-Gotet C., Nicolazzi E. L., Rosa G. J. M., Gianola D. et al. Genome-wide association study for cheese yield and curd nutrient recovery in dairy cows. Journal of Dairy Science. 2017;100(2):1259–1271. DOI: https://doi.org/10.3168/jds.2016-11586; Lu X., Arbab A. A. I., Abdalla I. M., Liu D., Zhang Zh., Xu T. et al. Genetic parameter estimation and genome-wide association study-based loci identification of milk-related traits in Chinese Holstein. Frontiers in Genetics. 2022;12:799664. DOI: https://doi.org/10.3389/fgene.2021.799664; Korkuć P., Neumann G. B., Hesse D., Arends D., Reißmann M., Rahmatalla S. et al. Whole-genome sequencing data reveal new loci affecting milk production in German Black Pied Cattle (DSN). Genes. 2023;14(3):581. DOI: https://doi.org/10.3390/genes14030581; Liu L., Zhou J., Chen Ch. J., Zhang J., Wen W., Tian J. et al. GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle. Animals. 2020;10(11):2048. DOI: https://doi.org/10.3390/ani10112048; Shamsollahi M., Zhang Sh. Genome wide association study associated with milk protein composition. Animal Science Research. 2024;34(1):31–44. DOI: https://doi.org/10.22034/as.2023.54694.1690; Левченко М. В., Гладырь Е. А., Зарипов О. Г., Петрякова Г. К., Лашнева И. А., Карликова Г. Г., Сермягин А. А., Зиновьева Н. А. Полногеномный анализ ассоциаций с технологическими свойствами молока коров голштинской породы. Молочное и мясное скотоводство. 2024;(6):3–9. DOI: https://doi.org/10.33943/MMS.2024.42.72.001 EDN: FQONYJ DOI: https://doi.org/10.33943/MMS.2024.42.72.001; Citek J., Brzakova M., Hanusova L., Hanuš O., Večerek L., Samková E. et al. Technological properties of cow’s milk: correlations with milk composition, effect of interactions of genes and other factors. Czech Journal of Animal Science. 2020;65(1):13–22. DOI: https://doi.org/10.17221/150/2019-CJAS; Dadousis C., Pegolo S., Rosa G. J. M., Gianola D., Bittante G., Cecchinato A. Pathway-based genomewide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science. 2017;100(2):1223–1231. DOI: https://doi.org/10.3168/jds.2016-11587; Marina H., Pelayo R., Suárez-Vega A., Gutiérrez-Gil B., Esteban-Blanco C., Arranz J. J. Genome-wide association studies (GWAS) and post-GWAS analyses for technological traits in Assaf and Churra dairy breeds. Journal of Dairy Science. 2021;104(11):11850–11866. DOI: https://doi.org/10.3168/jds.2021-20510; Pegolo S., Bergamaschi M., Gasperi F., Biasioli F., Cecchinato A., Bittante G. Integrated PTR-ToF-MS, GWAS and biological pathway analyses reveal the contribution of cow’s genome to cheese volatilome. Scientific Reports. 2018;8:17002. DOI: https://doi.org/10.1038/s41598-018-35323-5; Sanchez M. P., Ramayo Caldas Yu., Wolf V., Laithier C., El Jabri M., Michenet A. et al. Sequence based GWAS, network and pathway analyses reveal genes co associated with milk cheese making properties and milk composition in Montbéliarde cows. Genetics Selection Evolution. 2019;51:34. DOI: https://doi.org/10.1186/s12711-019-0473-7; Lagresle-Peyrou Ch., Six E. M., Picard C., Rieux-Laucat F., Michel V., Ditadi A. et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nature Genetics. 2009;41:106–111. DOI: https://doi.org/10.1038/ng.278; Riley D. G., Miller R. K., Nicholson K. L., Gill C. A., Herring A. D., Riggs P. K. et al. Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament. Livestock Science. 2019;229:150–158. DOI: https://doi.org/10.1016/j.livsci.2019.09.021; Yan X., Kuang B., Ma Sh., Wang R., Lin J., Zeng Y. et al. NOP14-mediated ribosome biogenesis is required for mTORC2 activation and predicts rapamycin sensitivity. Journal of Biological Chemistry. 2024;300(3):105681. DOI: https://doi.org/10.1016/j.jbc.2024.105681; Zhang L., Ning Y., Li P., Guo H., Zan L. Tissue expression analysis and characterization of SMAD3 promoter in bovine myoblasts and preadipocytes. DNA and Cell Biology. 2018;37(6):551–559. DOI: https://pmc.ncbi.nlm.nih.gov/articles/PMC5985903/; Abo-Ismail M. K., Voort G. V., Squires J. J., Swanson K. C., Mandell I. B., Liao X. et al. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genetics. 2014;15:14. DOI: http://www.biomedcentral.com/1471-2156/15/14; Chaiprasert T., Armartmuntree N., Techasen A., Sakonsinsiri Ch., Pinlaor S., Ungarreevittaya P. et al. Roles of Zinc Finger Protein 423 in Proliferation and Invasion of Cholangiocarcinoma through Oxidative Stress. Biomolecules. 2019;9(7):263. DOI: https://doi.org/10.3390/biom9070263; Pagani F., Tratta E., Dell’Era P., Cominelli M., Poliani P. L. EBF1 is expressed in pericytes and contributes to pericyte cell commitment. Histochemistry and Cell Biology. 2021;156:333–347. DOI: https://doi.org/10.1007/s00418-021-02015-7
-
3Academic Journal
Πηγή: Письма в Вавиловский журнал генетики и селекции, Vol 9, Iss 1, Pp 5-14 (2023)
Θεματικοί όροι: полногеномный анализ ассоциаций, геном, крупный рогатый скот, молекулярный маркер, местная порода, Genetics, сравнительная геномика, холодный климат, адаптация, QH426-470, признаки отбора
Σύνδεσμος πρόσβασης: https://doaj.org/article/3b0c505cdf5745289f0f0757cee4ea0f
-
4Academic Journal
Genotype imputation in human genomic studies ; Импутация генотипов в геномных исследованиях человека
Συγγραφείς: A. A. Berdnikova, I. V. Zorkoltseva, Y. A. Tsepilov, E. E. Elgaeva, А. А. Бердникова, И. В. Зоркольцева, Я. А. Цепилов, Е. Е. Елгаева
Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 6 (2024); 628-639 ; Вавиловский журнал генетики и селекции; Том 28, № 6 (2024); 628-639 ; 2500-3259 ; 10.18699/vjgb-24-64
Θεματικοί όροι: ДНК-микрочип, genotyping, sequencing, genome-wide association study, human, DNA-microarray, генотипирование, секвенирование, полногеномный анализ ассоциаций, человек
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4292/1870; Abraham G., Qiu Y., Inouye M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics. 2017; 33(17):2776-2778. DOI 10.1093/bioinformatics/btx299; Ali A.T., Liebert A., Lau W., Maniatis N., Swallow D.M. The hazards of genotype imputation in chromosomal regions under selection: A case study using the lactase gene region. Ann. Hum. Genet. 2022; 86(1):24-33. DOI 10.1111/ahg.12444; Anderson C.A., Pettersson F.H., Clarke G.M., Cardon L.R., Morris A.P., Zondervan K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010;5(9):1564-1573. DOI 10.1038/nprot.2010.116; Auton A., Abecasis G.R., Altshuler D.M., Durbin R.M., Abecasis G.R., Bentley D.R., … Min Kang H., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. DOI 10.1038/nature15393; Barton A.R., Sherman M.A., Mukamel R.E., Loh P.-R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 2021;53(8):1260-1269. DOI 10.1038/s41588-021-00892-1; Bhattacharyya A. On a measure of divergence between two multinomial populations. Sankhyā: Ind. J. Stat. 1946;7(4):401-406; Bourke P.M., Voorrips R.E., Visser R.G.F., Maliepaard C. Tools for genetic studies in experimental populations of polyploids. Front. Plant. Sci. 2018;9:513. DOI 10.3389/fpls.2018.00513; Brown A., Ampratwum P.O., Ray S.D. Microarray analysis. In: Encyclopedia of Toxicology. 4 ed. 2024;6:385-392. DOI 10.1016/B978-0-12-824315-2.00210-4; Browning B.L., Zhou Y., Browning S.R. A One-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 2018;103(3):338-348. DOI 10.1016/j.ajhg.2018.07.015; Browning B.L., Tian X., Zhou Y., Browning S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021;108(10): 1880-1890. DOI 10.1016/j.ajhg.2021.08.005; Browning S.R., Browning B.L. Haplotype phasing: existing methods and new developments. Nat. Rev. Genet. 2011;12(10):703-714. DOI 10.1038/nrg3054; Cann H.M., de Toma C., Cazes L., Legrand M.F., Morel V., Piouffre L., Bodmer J., … Zhu S., Weber J.L., Greely H.T., Feldman M.W., Thomas G., Dausset J., Cavalli-Sforza L.L. A human genome diversity cell line panel. Science. 2002;296(5566):261-262. DOI 10.1126/science.296.5566.261b; Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4(1):7. DOI 10.1186/s13742-015-0047-8; Chat V., Ferguson R., Morales L., Kirchhoff T. Ultra low-coverage whole-genome sequencing as an alternative to genotyping arrays in genome-wide association studies. Front. Genet. 2022;12:790445. DOI 10.3389/fgene.2021.790445; Check Hayden E. Genome sequencing: the third generation. Nature. 2009;457(7231):768-769. DOI 10.1038/news.2009.86; Choi S.W., Mak T.S.-H., O’Reilly P.F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 2020;15(9):2759-2772. DOI 10.1038/s41596-020-0353-1; Chundru V.K., Marioni R.E., Prendergast J.G.D., Vallerga C.L., Lin T., Beveridge A.J., Gratten J., Hume D.A., Deary I.J., Wray N.R., Visscher P.M., McRae A.F. Examining the impact of imputation errors on fine-mapping using DNA methylation QTL as a model trait. Genetics. 2019;212(3):577-586. DOI 10.1534/genetics.118. 301861; Clark A.G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 1990;7(2):111-122. DOI 10.1093/oxfordjournals.molbev.a040591; Collister J.A., Liu X., Clifton L. Calculating polygenic risk scores (PRS) in UK biobank: A practical guide for epidemiologists. Front. Genet. 2022;13:818574. DOI 10.3389/fgene.2022.818574; Connell C., Fung S., Heiner C., Bridgham J., Chakerian V., Heron E., Jones B., Menchen S., Mordan W., Raff M., Recknor M., Smith L.M., Springer J., Woo S., Hunkapiller M. Automated DNA-sequence analysis. Biotechniques. 1987;5:342-348; Das S., Forer L., Schönherr S., Sidore C., Locke A.E., Kwong A., Vrieze S.I., Chew E.Y., Levy S., McGue M., Schlessinger D., Stambolian D., Loh P.-R., Iacono W.G., Swaroop A., Scott L.J., Cucca F., Kronenberg F., Boehnke M., Abecasis G.R., Fuchsberger C. Nextgeneration genotype imputation service and methods. Nat. Genet. 2016;48(10):1284-1287. DOI 10.1038/ng.3656; De Marino A., Mahmoud A.A., Bose M., Bircan K.O., Terpolovsky A., Bamunusinghe V., Bohn S., Khan U., Novković B., Yazdi P.G. A comparative analysis of current phasing and imputation software. PLoS One. 2022;17(10):e0260177. DOI 10.1371/journal.pone.0260177; Deamer D., Akeson M., Branton D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016;34(5):518-524. DOI 10.1038/nbt.3423; Delaneau O., Marchini J., Zagury J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2012;9(2):179- 181. DOI 10.1038/nmeth.1785; Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Society. 1977;39(1):1-38. DOI 10.1111/j.2517-6161.1977.tb01600.x; DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., McKenna A., Fennell T.J., Kernytsky A.M., Sivachenko A.Y., Cibulskis K., Gabriel S.B., Altshuler D., Daly M.J. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43(5):491-498. DOI 10.1038/ng.806; Drmanac R., Sparks A.B., Callow M.J., Halpern A.L., Burns N.L., Kermani B.G., Carnevali P., … Drmanac S., Oliphant A.R., Banyai W.C., Martin B., Ballinger D.G., Church G.M., Reid C.A. Human genome sequencing using unchained base reads on selfassembling DNA nanoarrays. Science. 2010;327(5961):78-81. DOI 10.1126/science.1181498; Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M., … Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 2003;68:69-78. DOI 10.1101/sqb.2003.68.69; Fatumo S., Mugisha J., Soremekun O.S., Kalungi A., Mayanja R., Kintu C., Makanga R., Kakande A., Abaasa A., Asiki G., Kalyesubula R., Newton R., Nyirenda M., Sandhu M.S., Kaleebu P. Uganda genome resource: A rich research database for genomic studies of communicable and non-communicable diseases in Africa. Cell Genom. 2022;2(11):100209. DOI 10.1016/j.xgen.2022.100209; Feng Z., Peng F., Xie F., Liu Y., Zhang H., Ma J., Xing J., Guo X. Comparison of capture-based mtDNA sequencing performance between MGI and illumina sequencing platforms in various sample types. BMC Genomics. 2024;25(1):41. DOI 10.1186/s12864-023-09938-6; Govindarajan R., Duraiyan J., Kaliyappan K., Palanisamy M. Microarray and its applications. J. Pharm. Bioallied Sci. 2012;4(6):310. DOI 10.4103/0975-7406.100283; Gresham D., Dunham M.J., Botstein D. Comparing whole genomes using DNA microarrays. Nat. Rev. Genet. 2008;9(4):291-302. DOI 10.1038/nrg2335; Guo Y., He J., Zhao S., Wu H., Zhong X., Sheng Q., Samuels D.C., Shyr Y., Long J. Illumina human exome genotyping array clustering and quality control. Nat. Protoc. 2014;9(11):2643-2662. DOI 10.1038/nprot.2014.174; Hayat M.A. DNA microarrays technology. In: Handbook of Immunohistochemistry and in situ Hybridization of Human Carcinomas. 2002;49-55. DOI 10.1016/S1874-5784(04)80015-1; Huang G.-H., Tseng Y.-C. Genotype imputation accuracy with different reference panels in admixed populations. BMC Proc. 2014;8(S1): S64. DOI 10.1186/1753-6561-8-S1-S64; Jeon S.A., Park J.L., Park S.-J., Kim J.H., Goh S.-H., Han J.-Y., Kim S.-Y. Comparison between MGI and illumina sequencing platforms for whole genome sequencing. Genes Genom. 2021;43(7): 713-724. DOI 10.1007/s13258-021-01096-x; Kolosov N., Rezapova V., Rotar O., Loboda A., Freylikhman O., Melnik O., Sergushichev A., Stevens C., Voortman T., Kostareva A., Konradi A., Daly M.J., Artomov M. Genotype imputation and polygenic score estimation in northwestern Russian population. PLoS One. 2022;17(6):e0269434. DOI 10.1371/journal.pone.; 0269434 Korostin D., Kulemin N., Naumov V., Belova V., Kwon D., Gorbachev A. Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS One. 2020;15(3):e0230301. DOI 10.1371/journal.pone.0230301; Kurg A., Tõnisson N., Georgiou I., Shumaker J., Tollett J., Metspalu A. Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet. Test. 2000;4(1):1-7. DOI 10.1089/109065700316408; Lam M., Awasthi S., Watson H.J., Goldstein J., Panagiotaropoulou G., Trubetskoy V., Karlsson R., Frei O., Fan C.-C., De Witte W., Mota N.R., Mullins N., Brügger K., Lee S.H., Wray N.R., Skarabis N., Huang H., Neale B., Daly M.J., Mattheisen M., Walters R., Ripke S. RICOPILI: rapid imputation for COnsortias PIpeLIne. Bioinformatics. 2020;36(3):930-933. DOI 10.1093/bioinformatics/btz633; Lamy P., Andersen C.L., Wikman F.P., Wiuf C. Genotyping and annotation of Affymetrix SNP arrays. Nucleic Acids Res. 2006;34(14):e100. DOI 10.1093/nar/gkl475; Lau W., Ali A., Maude H., Andrew T., Swallow D.M., Maniatis N. The hazards of genotype imputation when mapping disease susceptibility variants. Genome Biol. 2024;25(1):7. DOI 10.1186/s13059-023-03140-3; Li L., Huang P., Sun X., Wang S., Xu M., Liu S., Feng Z., Zhang Q., Wang X., Zheng X., Dai M., Bi Y., Ning G., Cao Y., Wang W. The ChinaMAP reference panel for the accurate genotype imputation in Chinese populations. Cell Res. 2021;31(12):1308-1310. DOI 10.1038/s41422-021-00564-z; Li N., Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics. 2003;165(4):2213-2233. DOI 10.1093/genetics/165.4.2213; Li Y., Willer C., Sanna S., Abecasis G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 2009;10(1):387-406. DOI 10.1146/annurev.genom.9.081307.164242; Lin P., Hartz S.M., Zhang Z., Saccone S.F., Wang J., Tischfield J.A., Edenberg H.J., Kramer J.R., Goate A.M., Bierut L.J., Rice J.P. A new statistic to evaluate imputation reliability. PLoS One. 2010; 5(3):e9697. DOI 10.1371/journal.pone.0009697; Loh P.-R., Danecek P., Palamara P.F., Fuchsberger C., Reshef Y.A., Finucane H.K., Schoenherr S., Forer L., McCarthy S., Abecasis G.R., Durbin R., L Price A. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 2016;48(11):1443-1448. DOI 10.1038/ng.3679; Marchini J., Howie B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 2010;11(7):499-511. DOI 10.1038/nrg2796; Marees A.T., de Kluiver H., Stringer S., Vorspan F., Curis E., Marie Claire C., Derks E.M. A tutorial on conducting genome wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018;27(2). DOI 10.1002/mpr.1608; Martin A.R., Atkinson E.G., Chapman S.B., Stevenson A., Stroud R.E., Abebe T., Akena D., … Ramesar R., Shiferaw W., Stein D.J., Teferra S., van der Merwe C., Zingela Z. Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations. Am. J. Hum. Genet. 2021;108(4):656-668. DOI 10.1016/j.ajhg.2021.03.012; Maxam A.M., Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 1977;74(2):560-564. DOI 10.1073/pnas.74. 2.560; Mills M.C., Barban N., Tropf F.C. An Introduction to Statistical Genetic Data Analysis. Cambridge, MA: MIT Press, 2020; Mirzabekov A.D. Biochips in the biology and medicine of the XXI century. Vestnik Rossiyskoj Akademii Nauk = Herald of the Russian Academy of Sciences. 2003;73(5):412 (in Russian); Moreland E., Borisov O.V., Semenova E.A., Larin A.K., Andryushchenko O.N., Andryushchenko L.B., Generozov E.V., Williams A.G., Ahmetov I.I. Polygenic profile of elite strength athletes. J. Strength. Cond. Res. 2022;36(9):2509-2514. DOI 10.1519/JSC.0000000000003901; O’Connell J., Yun T., Moreno M., Li H., Litterman N., Kolesnikov A., Noblin E., … Wang W., Weldon C.H., Wilton P., Wong C., Auton A., Carroll A., McLean C.Y. A population-specific reference panel for improved genotype imputation in African Americans. Commun. Biol. 2021;4(1):1269. DOI 10.1038/s42003-021-02777-9; Pasaniuc B., Rohland N., McLaren P.J., Garimella K., Zaitlen N., Li H., Gupta N., … Haas D.W., Liang L., Sunyaev S., Patterson N., de Bakker P.I.W., Reich D., Price A.L. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 2012;44(6):631-635. DOI 10.1038/ng.2283; Pinakhina D., Yermakovich D., Vergasova E., Kasyanov E., Rukavishnikov G., Rezapova V., Kolosov, … Plotnikov N., Ilinsky V., Neznanov N., Mazo G., Kibitov A., Rakitko A., Artomov M. GWAS of depression in 4,520 individuals from the Russian population highlights the role of MAGI2 (S-SCAM) in the gut-brain axis. Front. Genet. 2022;13:972196. DOI 10.3389/fgene.2022.972196; Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A., Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38(8):904-909. DOI 10.1038/ng1847; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. DOI 10.1086/519795; Ramirez A.H., Sulieman L., Schlueter D.J., Halvorson A., Qian J., Ratsimbazafy F., Loperena R., … Denny J.C., Carroll R.J., Glazer D., Harris P.A., Hripcsak G., Philippakis A., Roden D.M.; All of Us research program. The All of Us research program: Data quality, utility, and diversity. Patterns (N Y ). 2022;3(8):100570. DOI 10.1016/j.patter.2022.100570; Rhoads A., Au K.F. PacBio Sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13(5):278-289. DOI 10.1016/j.gpb.2015.08.002; Roshyara N.R., Kirsten H., Horn K., Ahnert P., Scholz M. Impact of pre-imputation SNP-filtering on genotype imputation results. BMC Genet. 2014;15(1):88. DOI 10.1186/s12863-014-0088-5; Rubinacci S., Delaneau O., Marchini J. Genotype imputation using the Positional Burrows Wheeler Transform. PLoS Genet. 2020;16(11): e1009049. DOI 10.1371/journal.pgen.1009049; Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74(12):5463- 5467. DOI 10.1073/pnas.74.12.5463; Scheet P., Stephens M. A fast and flexible statistical model for largescale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 2006;78(4): 629-644. DOI 10.1086/502802; Shendure J., Balasubramanian S., Church G.M., Gilbert W., Rogers J., Schloss J.A., Waterston R.H. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345-353. DOI 10.1038/nature 24286; Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B.H., Hood L.E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321(6071): 674-679. DOI 10.1038/321674a0; Stahl K., Gola D., König I.R. Assessment of imputation quality: comparison of phasing and imputation algorithms in real data. Front. Genet. 2021;12:724037. DOI 10.3389/fgene.2021.724037; Sudlow C., Gallacher J., Allen N., Beral V., Burton P., Danesh J., Downey P., Elliott P., Green J., Landray M., Liu B., Matthews P., Ong G., Pell J., Silman A., Young A., Sprosen T., Peakman T., Collins R. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. DOI 10.1371/journal.pmed.1001779; Sudmant P.H., Rausch T., Gardner E.J., Handsaker R.E., Abyzov A., Huddleston J., Zhang Y., … Gerstein M.B., Bashir A., Stegle O., Devine S.E., Lee C., Eichler E.E., Korbel J.O. An integrated map of structural variation in 2,504 human genomes. Nature. 2015; 526(7571):75-81. DOI 10.1038/nature15394; Taliun D., Harris D.N., Kessler M.D., Carlson J., Szpiech Z.A., Torres R., … Cupples L.A., Laurie C.C., Jaquish C.E., Hernandez R.D., O’Connor T.D., Abecasis G.R. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021; 590(7845):290-299. DOI 10.1038/s41586-021-03205-y; The Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016;48:1279- 1283. DOI 10.1038/ng.3643; Usoltsev D., Kolosov N., Rotar O., Loboda A., Boyarinova M., Moguchaya E., Kolesova E., … Laiho P., Kostareva A., Konradi A., Shlyakhto E., Palotie A., Daly M.J., Artomov M. Understanding complex trait susceptibilities and ethnical diversity in a sample of 4,145 Russians through analysis of clinical and genetic data. bioRxiv. 2023. DOI 10.1101/2023.03.23.534000; Wall J.D., Stawiski E.W., Ratan A., Kim H.L., Kim C., Gupta R., Suryamohan K., … Radha V., Mohan V., Majumder P.P., Seshagiri S., Seo J.-S., Schuster S.C., Peterson A.S. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature. 2019; 576(7785):106-111. DOI 10.1038/s41586-019-1793-z; Wang D.G., Fan J.-B., Siao C.-J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E., Robinson E., Mittmann M., Morris M.S., Shen N., Kilburn D., Rioux J., Nusbaum C., Rozen S., Hudson T.J., Lipshutz R., Chee M., Lander E.S. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077- 1082. DOI 10.1126/science.280.5366.1077; Wang Q.S., Huang H. Methods for statistical fine-mapping and their applications to auto-immune diseases. Semin. Immunopathol. 2022; 44(1):101-113. DOI 10.1007/s00281-021-00902-8; Weale M.E. A survey of current software for haplotype phase inference. Hum. Genomics. 2004;1(2):141. DOI 10.1186/1479-7364-1-2-141; Weng Z.-Q., Saatchi M., Schnabel R.D., Taylor J.F., Garrick D.J. Recombination locations and rates in beef cattle assessed from parentoffspring pairs. Gen. Select. Evol. 2014;46(1):34. DOI 10.1186/ 1297-9686-46-34; Wu D., Dou J., Chai X., Bellis C., Wilm A., Shih C.C., … Wong W.-C., Xie Z., Yeo K.K., Zhang L., Zhai W., Zhao Y. Large-scale wholegenome sequencing of three diverse Asian populations in Singapore. Cell. 2019;179(3):736-749.e15. DOI 10.1016/j.cell.2019.09.019; Yang H.-C., Lin H.-C., Kang M., Chen C.-H., Lin C.-W., Li L.-H., Wu J.-Y., Chen Y.-T., Pan W.-H. SAQC: SNP array quality control. BMC Bioinformatics. 2011;12(1):100. DOI 10.1186/1471-2105-12-100; Yoo S.-K., Kim C.-U., Kim H.L., Kim S., Shin J.-Y., Kim N., Yang J.S.W., Lo K.-W., Cho B., Matsuda F., Schuster S.C., Kim C., Kim J.-I., Seo J.-S. NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and lowfrequency variants. Genome Med. 2019;11(1):64. DOI 10.1186/ s13073-019-0677-z; Yu K., Das S., LeFaive J., Kwong A., Pleiness J., Forer L., Schönherr S., Fuchsberger C., Smith A.V., Abecasis G.R. Meta-imputation: An efficient method to combine genotype data after imputation with multiple reference panels. Am. J. Hum. Genet. 2022;109(6):1007-1015. DOI 10.1016/j.ajhg.2022.04.002; Zhao S., Jing W., Samuels D.C., Sheng Q., Shyr Y., Guo Y. Strategies for processing and quality control of Illumina genotyping arrays. Brief. Bioinform. 2018;19(5):765-775. DOI 10.1093/bib/bbx012; https://vavilov.elpub.ru/jour/article/view/4292
-
5Academic Journal
Συγγραφείς: S. V. Mikhailova, С. В. Михайлова
Συνεισφορές: This research was funded by Russian Science Foundation grant No. 22-28-00866. The English language was corrected by shevchuk-editing.com
Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 6 (2023); 684-693 ; Вавиловский журнал генетики и селекции; Том 27, № 6 (2023); 684-693 ; 2500-3259 ; 10.18699/VJGB-23-65
Θεματικοί όροι: полногеномный анализ ассоциаций, Homo sapiens, fertility, adaptation, polygenic index, genome-wide association study, фертильность, адаптация, полигенный индекс
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3940/1754; Abdellaoui A., Hugh-Jones D., Yengo L., Kemper K.E., Nivard M.G., Veul L., Holtz Y., Zietsch B.P., Frayling T.M., Wray N.R., Yang J., Verweij K.J.H., Visscher P.M. Genetic correlates of social stratification in Great Britain. Nat. Hum. Behav. 2019;3(12):13321342. DOI:10.1038/s41562-019-0757-5.; Abondio P., Cilli E., Luiselli D. Inferring signatures of positive selection in wholegenome sequencing data: an overview of haplotypebased methods. Genes. 2022;13(5):926. DOI:10.3390/genes13050926.; Arkhangelskiy V.N., Shulgin S.G., Zinkina Yu.V. Reproductive behavior of Russian women as depending on their level of education. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Sotsiologiya = RUDN Journal of Sociology. 2020;20(3):546559. DOI:10.22363/2313-2272-2020-20-3-546-559. (in Russian); Arkhangelskiy V.N., Rostovskaya T.K., Vasilieva E.N. Influence of the standard of living on the reproductive behavior of Russians: gender aspect. Zhenshchina v Rossiyskom Obshchestve = Woman in Russian Society. 2021;Spec.iss.:3-24. DOI:10.21064/WinRS.2021.0.1. (in Russian); Arner A.M., Grogan K.E., Grabowski M., ReyesCenteno H., Perry G.H. Patterns of recent natural selection on genetic loci associated with sexually differentiated human body size and shape phenotypes. PLoS Genet. 2021;17(6):e1009562. DOI:10.1371/journal.pgen.1009562.; Balbo N., Billari F.C., Mills M. Fertility in advanced societies: a review of research: La fécondité dans les sociétés avancées: un examen des recherches. Eur. J. Popul. 2013;29(1):1-38. DOI:10.1007/s106800129277y.; Barban N., Jansen R., de Vlaming R., Vaez A., Mandemakers J.J., Tropf F.C., Shen X., Wilson J.F., Chasman D.I., Nolte I.M., … Lee J.J., Benjamin D.J., Cesarini D., Koellinger P.D., den Hoed M., Snieder H., Mills M.C. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 2016;48(12): 1462-1472. DOI:10.1038/ng.3698.; Beauchamp J.P. Genetic evidence for natural selection in humans in the contemporary United States. Proc. Natl. Acad. Sci. USA. 2016; 113(28):7774-7779. DOI:10.1073/pnas.1600398113.; Boutwell B., Hinds D.; 23andMe Research Team; Tielbeek J., Ong K.K., Day F.R., Perry J.R.B. Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon. 2017;3(7):e00349. DOI:10.1016/j.heliyon.2017.e00349.; Byars S.G., Ewbank D., Govindaraju D.R., Stearns S.C. Colloquium papers: natural selection in a contemporary human population. Proc. Natl. Acad. Sci. USA. 2010;107(Suppl.1):1787-1792. DOI:10.1073/pnas.0906199106.; Charpin D., Gouitaa M. Why is the prevalence of allergic diseases increasing? A critical assessment of some classical risk factors. Mediators Inflamm. 2001;10(6):292-294. DOI:10.1080/09629350152700920.; Cohen A., Dehejia R., Romanov D. Financial incentives and fertility. Rev. Econ. Stat. 2013;95(1):1-20. DOI:10.1162/REST_a_00342.; Demontis D., Walters R.K., Martin J., Mattheisen M., Als T.D., Agerbo E., Baldursson G., Belliveau R., Bybjerg-Grauholm J., BækvadHansen M., … Werge T., Mors O., Mortensen P.B., Daly M.J., Faraone S.V., Børglum A.D., Neale B.M. Discovery of the first genome- wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019;51(1):63-75. DOI:10.1038/s41588-018-0269-7.; Fieder M., Huber S. Contemporary selection pressures in modern societies? Which factors best explain variance in human reproduction and mating? Evol. Hum. Behav. 2022;43(1):16-25. DOI:10.1016/j.evolhumbehav.2021.08.001.; Field Y., Boyle E.A., Telis N., Gao Z., Gaulton K.J., Golan D., Yengo L., Rocheleau G., Froguel P., McCarthy M.I., Pritchard J.K. Detection of human adaptation during the past 2000 years. Science. 2016;354(6313):760-764. DOI:10.1126/science.aag0776.; Grossman S.R., Andersen K.G., Shlyakhter I., Tabrizi S., Winnicki S., Yen A., Park D.J., Griesemer D., Karlsson E.K., Wong S.H., Cabili M., Adegbola R.A., Bamezai R.N., Hill A.V., Vannberg F.O., Rinn J.L.; 1000 Genomes Project; Lander E.S., Schaffner S.F., Sabeti P.C. Identifying recent adaptations in largescale genomic data. Cell. 2013;152(4):703-713. DOI:10.1016/j.cell.2013.01.035.; Hugh-Jones D., Abdellaoui A. Human capital mediates natural selection in contemporary humans. Behav. Genet. 2022;52(45):205234. DOI:10.1007/s10519-022-10107-w.; Kerner G., Laval G., Patin E., BoissonDupuis S., Abel L., Casanova J.L., Quintana-Murci L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am. J. Hum. Genet. 2021;108(3):517-524. DOI:10.1016/j.ajhg.2021.02.009.; Klunk J., Vilgalys T.P., Demeure C.E., Cheng X., Shiratori M., Madej J., Beau R., Elli D., Patino M.I., Redfern R., DeWitte S.N., Gamble J.A., Boldsen J.L., Carmichael A., Varlik N., Eaton K., Grenier J.C., Golding G.B., Devault A., Rouillard J.M., Yotova V., Sindeaux R., Ye C.J., Bikaran M., Dumaine A., Brinkworth J.F., Missiakas D., Rouleau G.A., Steinrücken M., Pizarro-Cerdá J., Poinar H.N., Barreiro L.B. Evolution of immune genes is associated with the Black Death. Nature. 2022;611(7935):312319. DOI:10.1038/s41586-022-05349-x.; Kong A., Frigge M.L., Thorleifsson G., Stefansson H., Young A.I., Zink F., Jonsdottir G.A., Okbay A., Sulem P., Masson G., Gudbjartsson D.F., Helgason A., Bjornsdottir G., Thorsteinsdottir U., Stefansson K. Selection against variants in the genome associated with educational attainment. Proc. Natl. Acad. Sci. USA. 2017;114(5): E727-E732. DOI:10.1073/pnas.1612113114.; Kuijpers Y., Domínguez-Andrés J., Bakker O.B., Gupta M.K., Grasshoff M., Xu C.J., Joosten L.A.B., Bertranpetit J., Netea M.G., Li Y. Evolutionary trajectories of complex traits in European populations of modern humans. Front. Genet. 2022;13:833190. DOI:10.3389/fgene.2022.833190.; Lewandowska M., Jędrychowska-Dańska K., Płoszaj T., Witas P., Zamerska A., Mańkowska-Pliszka H., Witas H.W. Searching for signals of recent natural selection in genes of the innate immune response – ancient DNA study. Infect. Genet. Evol. 2018;63:6272. DOI:10.1016/j.meegid.2018.05.008.; Marnetto D., Pankratov V., Mondal M., Montinaro F., Pärna K., Vallini L., Molinaro L., Saag L., Loog L., Montagnese S., Costa R.; Estonian Biobank Research Team; Metspalu M., Eriksson A., Pagani L. Ancestral genomic contributions to complex traits in contemporary Europeans. Curr. Biol. 2022;32(6):14121419.e3. DOI:10.1016/j.cub.2022.01.046.; Mathieson I., Terhorst J. Direct detection of natural selection in Bronze Age Britain. Genome Res. 2022;32(1112):20572067. DOI:10.1101/gr.276862.122.; Mathieson I., Lazaridis I., Rohland N., Mallick S., Patterson N., Roodenberg S.A., Harney E., Stewardson K., Fernandes D., Novak M., Sirak K., Gamba C., Jones E.R., Llamas B., Dryomov S., Pickrell J., Arsuaga J.L., de Castro J.M., Carbonell E., Gerritsen F., Khokhlov A., Kuznetsov P., Lozano M., Meller H., Mochalov O., Moiseyev V., Guerra M.A., Roodenberg J., Vergès J.M., Krause J., Cooper A., Alt K.W., Brown D., Anthony D., LaluezaFox C., Haak W., Pinhasi R., Reich D. Genomewide patterns of selection in 230 ancient Eurasians. Nature. 2015;528(7583):499503. DOI:10.1038/nature16152.; Mathieson I., Day F.R., Barban N., Tropf F.C., Brazel D.M.; eQTLGen Consortium; BIOS Consortium; Vaez A., van Zuydam N., Bitarello B.D., … Zhao W., Zhao Y., Snieder H., den Hoed M., Ong K.K., Mills M.C., Perry J.R.B. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat. Hum. Behav. 2023;7(5):790-801. DOI:10.1038/s41562023015286.; Mikhailova S.V., Ivanoshchuk D.E., Yushkevich E.A., Bairqdar A., Anisimenko M.S., Shcherbakova L.V., Denisova D.V., Orlov P.S. Prevalence of common alleles of some stress resilience genes among adolescents born in different periods relative to the socioeconomic crisis of the 1990s in Russia. Curr. Issues Mol. Biol. 2022;45(1):5165. DOI:10.3390/cimb45010004.; Mills M.C., Mathieson I. The challenge of detecting recent natural selection in human populations. Proc. Natl. Acad. Sci. USA. 2022; 119(15):e2203237119. DOI:10.1073/pnas.2203237119.; Mitteroecker P., Huttegger S.M., Fischer B., Pavlicev M. Cliff-edge model of obstetric selection in humans. Proc. Natl. Acad. Sci. USA. 2016;113(51):14680-14685. DOI:10.1073/pnas.1612410113.; Palamara P.F., Terhorst J., Song Y.S., Price A.L. High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. Nat. Genet. 2018;50(9):13111317. DOI:10.1038/s41588-018-0177-x.; Pankratov V., Yunusbaeva M., Ryakhovsky S., Zarodniuk M.; Estonian Biobank Research Team; Yunusbayev B. Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection. Nat. Commun. 2022;13(1):7069. DOI:10.1038/s41467-022-34461-9.; Raj T., Kuchroo M., Replogle J.M., Raychaudhuri S., Stranger B.E., De Jager P.L. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 2013;92(4): 517-529. DOI:10.1016/j.ajhg.2013.03.001.; Reeve C.L., Heeney M.D., Woodley of Menie M.A. A systematic review of the state of literature relating parental general cognitive ability and number of offspring. Pers. Individ. Differ. 2018;134:107118. DOI:10.1016/j.paid.2018.05.036.; Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018;20(2):12. DOI:10.1007/s11906-0180812z.; Sanjak J.S., Sidorenko J., Robinson M.R., Thornton K.R., Visscher P.M. Evidence of directional and stabilizing selection in contemporary humans. Proc. Natl. Acad. Sci. USA. 2018;115(1):151156. DOI:10.1073/pnas.1707227114.; Schork A.J., Peterson R.E., Dahl A., Cai N., Kendler K.S. Indirect paths from genetics to education. Nat. Genet. 2022;54(4):372373. DOI:10.1038/s41588-021-00999-5.; Sohail M., Maier R.M., Ganna A., Bloemendal A., Martin A.R., Turchin M.C., Chiang C.W., Hirschhorn J., Daly M.J., Patterson N., Neale B., Mathieson I., Reich D., Sunyaev S.R. Polygenic adaptation on height is overestimated due to uncorrected stratification in genomewide association studies. eLife. 2019;8:e39702. DOI:10.7554/eLife.39702.; Song W., Shi Y., Wang W., Pan W., Qian W., Yu S., Zhao M., Lin G.N. A selection pressure landscape for 870 human polygenic traits. Nat. Hum. Behav. 2021;5(12):1731-1743. DOI:10.1038/s41562021012314.; Speidel L., Forest M., Shi S., Myers S.R. A method for genomewide genealogy estimation for thousands of samples. Nat. Genet. 2019; 51(9):1321-1329. DOI:10.1038/s41588-019-0484-x.; Suvorov A. Population numbers and reproductive health. Endocrinology. 2021;162(11):bqab154. DOI:10.1210/endocr/bqab154.; Testa M.R. On the positive correlation between education and fertility intentions in Europe: individual and countrylevel evidence. Adv. Life Course Res. 2014;21:28-42. DOI:10.1016/j.alcr.2014.01.005.; Tropf F.C., Stulp G., Barban N., Visscher P.M., Yang J., Snieder H., Mills M.C. Human fertility, molecular genetics, and natural selection in modern societies. PLoS One. 2015;10(6):e0126821. DOI:10.1371/journal.pone.0126821.; Turner N., Robbins K. Association between countylevel natality and income in the US, 2000–2020. JAMA Pediatr. 2023;177(2):198202. DOI:10.1001/jamapediatrics.2022.4814.; Wolf E., Sonenklar N., Schefft M., Haskell H., James J. Is there evidence of ADHD overdiagnosis in children? Am. Fam. Physician. 2023;107(3):292296.; Wu Y., Furuya S., Wang Z., Nobles J.E., Fletcher J.M., Lu Q. GWAS on birth year infant mortality rates provides evidence of recent natural selection. Proc. Natl. Acad. Sci. USA. 2022;119(12):e2117312119. DOI:10.1073/pnas.2117312119.; Yasumizu Y., Sakaue S., Konuma T., Suzuki K., Matsuda K., Murakami Y., Kubo M., Palamara P.F., Kamatani Y., Okada Y. Genomewide natural selection signatures are linked to genetic risk of modern phenotypes in the Japanese population. Mol. Biol. Evol. 2020; 37(5):1306-1316. DOI:10.1093/molbev/msaa005.; Zeidan J., Fombonne E., Scorah J., Ibrahim A., Durkin M.S., Saxena S., Yusuf A., Shih A., Elsabbagh M. Global prevalence of autism: a systematic review update. Autism Res. 2022;15(5):778790. DOI:10.1002/aur.2696.; https://vavilov.elpub.ru/jour/article/view/3940
-
6Academic Journal
Συγγραφείς: E. V. Ignatieva, N. S. Yudin, D. M. Larkin, Е. В. Игнатьева, Н. С. Юдин, Д. М. Ларкин
Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 3 (2023); 283-292 ; Вавиловский журнал генетики и селекции; Том 27, № 3 (2023); 283-292 ; 2500-3259 ; 10.18699/VJGB-23-24
Θεματικοί όροι: функциональный анализ, candidate genes, genome-wide association study, functional classification, гены-кандидаты, полногеномный анализ ассоциаций
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3739/1707; Aviv A., Shay J.W. Reflections on telomere dynamics and ageing-related diseases in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373(1741):20160436. DOI 10.1098/rstb.2016.0436.; Bichet C., Bouwhuis S., Bauch C., Verhulst S., Becker P.H., Vedder O. Telomere length is repeatable, shortens with age and reproductive success, and predicts remaining lifespan in a long-lived seabird. Mol. Ecol. 2020;29(2):429-441. DOI 10.1111/mec.15331.; Bizarro J., Bhardwaj A., Smith S., Meier U.T. Nopp140-mediated concentration of telomerase in Cajal bodies regulates telomere length. Mol. Biol. Cell. 2019;30(26):3136-3150. DOI 10.1091/mbc.E19-080429.; Chen L., Roake C.M., Galati A., Bavasso F., Micheli E., Saggio I., Schoeftner S., Cacchione S., Gatti M., Artandi S.E., Raffa G.D. Loss of human TGS1 hypermethylase promotes increased telomerase RNA and telomere elongation. Cell Rep. 2020;30(5):1358-1372.e5. DOI 10.1016/j.celrep.2020.01.004.; Chen L.Y., Redon S., Lingner J. The human CST complex is a terminator of telomerase activity. Nature. 2012;488(7412):540-544. DOI 10.1038/nature11269.; Chik H.Y.J., Sparks A.M., Schroeder J., Dugdale H.L. A meta-analysis on the heritability of vertebrate telomere length. J. Evol. Biol. 2022;35(10):1283-1295. DOI 10.1111/jeb.14071.; Claussnitzer M., Dankel S.N., Kim K.-H., Quon G., Meuleman W., Haugen C., Glunk V., Sousa I.S., Beaudry J.L., Puviindran V., Abdennur N.A., Liu J., Svensson P.-A., Hsu Y.-H., Drucker D.J., Mellgren G., Hui C.-Ch., Hauner H., Kellis M. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 2015; 373:895-907. DOI 10.1056/NEJMoa1502214.; Codd V., Nelson C.P., Albrecht E., Mangino M., Deelen J., Buxton J.L., Hottenga J.J., Fischer K., Esko T., Surakka I., … Boomsma D.I., Jarvelin M.R., Slagboom P.E., Thompson J.R., Spector T.D., van der Harst P., Samani N.J. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 2013; 45(4):422-427. DOI 10.1038/ng.2528.; Codd V., Wang Q., Allara E., Musicha C., Kaptoge S., Stoma S., Jiang T., Hamby S.E., Braund P.S., Bountziouka V., Budgeon C.A., Denniff M., Swinfield C., Papakonstantinou M., Sheth S., Nanus D.E., Warner S.C., Wang M., Khera A.V., Eales J., Ouwehand W.H., Thompson J.R., Di Angelantonio E., Wood A.M., Butterworth A.S., Danesh J.N., Nelson C.P., Samani N.J. Polygenic basis and biomedical consequences of telomere length variation. Nat. Genet. 2021;53(10):1425-1433. DOI 10.1038/s41588-021-00944-6.; Cook D.E., Zdraljevic S., Tanny R.E., Seo B., Riccardi D.D., Noble L.M., Rockman M.V., Alkema M.J., Braendle C., Kammenga J.E., Wang J., Kruglyak L., Félix M.A., Lee J., Andersen E.C. The genetic basis of natural variation in Caenorhabditis elegans telomere length. Genetics. 2016;204(1):371-383. DOI 10.1534/genetics.116.191148.; Crocco P., De Rango F., Dato S., Rose G., Passarino G. Telomere length as a function of age at population level parallels human survival curves. Aging (Albany NY ). 2021;13(1):204-218. DOI 10.18632/aging.202498.; de Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018;52:223-247. DOI 10.1146/annurev-genet-032918-021921.; Diotti R., Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus. 2011;2(2):119-135. DOI 10.4161/nucl.2.2.15135.; Dorajoo R., Chang X., Gurung R.L., Li Z., Wang L., Wang R., Beckman K.B., Adams-Haduch J., M Y., Liu S., Meah W.Y., Sim K.S., Lim S.C., Friedlander Y., Liu J., van Dam R.M., Yuan J.M., Koh W.P., Khor C.C., Heng C.K. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat. Commun. 2019;10(1):2491. DOI 10.1038/s41467-019-10443-2.; Egan E.D., Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18(10):1747-1759. DOI 10.1261/rna.034629.112.; Fan H.C., Chang F.W., Tsai J.D., Lin K.M., Chen C.M., Lin S.Z., Liu C.A., Harn H.J. Telomeres and cancer. Life (Basel ). 2021; 11(12):1405. DOI 10.3390/life11121405.; Ilska-Warner J.J., Psifidi A., Seeker L.A., Wilbourn R.V., Underwood S.L., Fairlie J., Whitelaw B., Nussey D.H., Coffey M.P., Banos G. The genetic architecture of bovine telomere length in early life and association with animal fitness. Front. Genet. 2019;10: 1048. DOI 10.3389/fgene.2019.01048.; Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8(1):69. DOI 10.1186/s13073-0160324-x.; Joyce B.T., Zheng Y., Nannini D., Zhang Z., Liu L., Gao T., Kocherginsky M., Murphy R., Yang H., Achenbach C.J., Roberts L.R., Hoxha M., Shen J., Vokonas P., Schwartz J., Baccarelli A., Hou L. DNA methylation of telomere-related genes and cancer risk. Cancer Prev. Res. (Phila). 2018;11(8):511-522. DOI 10.1158/1940-6207.CAPR17-0413.; Kong C.M., Lee X.W., Wang X. Telomere shortening in human diseases. FEBS J. 2013;280(14):3180-3193. DOI 10.1111/febs.12326.; Kroustallaki P., Lirussi L., Carracedo S., You P., Esbensen Q.Y., Götz A., Jobert L., Alsøe L., Sætrom P., Gagos S., Nilsen H. SMUG1 promotes telomere maintenance through telomerase RNA processing. Cell Rep. 2019;28(7):1690-1702.e10. DOI 10.1016/j.celrep.2019.07.040.; Li C., Stoma S., Lotta L.A., Warner S., Albrecht E., Allione A., Arp P.P., Broer L., Buxton J.L., Da Silva Couto Alves A., … Butterworth A.S., Danesh J., Samani N.J., Wareham N.J., Nelson C.P., Langenberg C., Codd V. Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am. J. Hum. Genet. 2020;106(3):389-404. DOI 10.1016/j.ajhg.2020.02.006.; Mangino M., Christiansen L., Stone R., Hunt S.C., Horvath K., Eisenberg D.T., Kimura M., Petersen I., Kark J.D., Herbig U., Reiner A.P., Benetos A., Codd V., Nyholt D.R., Sinnreich R., Christensen K., Nassar H., Hwang S.J., Levy D., Bataille V., Fitzpatrick A.L., Chen W., Berenson G.S., Samani N.J., Martin N.G., Tishkoff S., Schork N.J., Kyvik K.O., Dalgård C., Spector T.D., Aviv A. DCAF4, a novel gene associated with leucocyte telomere length. J. Med. Genet. 2015; 52(3):157-162. DOI 10.1136/jmedgenet-2014-102681.; Mangino M., Richards J.B., Soranzo N., Zhai G., Aviv A., Valdes A.M., Samani N.J., Deloukas P., Spector T.D. A genome-wide association study identifies a novel locus on chromosome 18q12.2 influencing white cell telomere length. J. Med. Genet. 2009;46(7):451-454. DOI 10.1136/jmg.2008.064956.; Monaghan P., Ozanne S.E. Somatic growth and telomere dynamics in vertebrates: relationships, mechanisms and consequences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373(1741):20160446. DOI 10.1098/rstb.2016.0446.; Nagpal N., Wang J., Zeng J., Lo E., Moon D.H., Luk K., Braun R.O., Burroughs L.M., Keel S.B., Reilly C., Lindsley R.C., Wolfe S.A., Tai A.K., Cahan P., Bauer D.E., Fong Y.W., Agarwal S. Smallmolecule PAPD5 inhibitors restore telomerase activity in patient stem cells. Cell Stem Cell. 2020;26(6):896-909.e8. DOI 10.1016/j.stem.2020.03.016.; Nersisyan L., Nikoghosyan M., Genome of the Netherlands consortium, Arakelyan A. WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene. Sci. Rep. 2019;9(1):18758. DOI 10.1038/s41598-01955109-7.; Oh W., Ghim J., Lee E.W., Yang M.R., Kim E.T., Ahn J.H., Song J. PML-IV functions as a negative regulator of telomerase by interacting with TERT. J. Cell Sci. 2009;122(Pt.15):2613-2622. DOI 10.1242/jcs.048066.; Ohira T., Kojima H., Kuroda Y., Aoki S., Inaoka D., Osaki M., Wanibuchi H., Okada F., Oshimura M., Kugoh H. PITX1 protein interacts with ZCCHC10 to regulate hTERT mRNA transcription. PLoS One. 2019;14(8):e0217605. DOI 10.1371/journal.pone.0217605.; Pepke M.L., Kvalnes T., Lundregan S., Boner W., Monaghan P., Saether B.E., Jensen H., Ringsby T.H. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol. Ecol. 2021. DOI 10.1111/mec.16288.; Podlevsky J.D., Bley C.J., Omana R.V., Qi X., Chen J.J. The telomerase database. Nucleic Acids Res. 2008;36(Database issue):D339-D343. DOI 10.1093/nar/gkm700.; Potts P.R., Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 2007;14(7):581-590. DOI 10.1038/nsmb1259.; Saxena R., Bjonnes A., Prescott J., Dib P., Natt P., Lane J., Lerner M., Cooper J.A., Ye Y., Li K.W., Maubaret C.G., Codd V., Brackett D., Mirabello L., Kraft P., Dinney C.P., Stowell D., Peyton M., Ralhan S., Wander G.S., Mehra N.K., Salpea K.D., Gu J., Wu X., Mangino M., Hunter D.J., De Vivo I., Humphries S.E., Samani N.J., Spector T.D., Savage S.A., Sanghera D.K. Genome-wide association study identifies variants in casein kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi Sikh diabetic cohort. Circ. Cardiovasc. Genet. 2014;7(3):287-295. DOI 10.1161/CIRCGENETICS.113.000412.; Schrumpfová P.P., Fajkus J. Composition and function of telomerase-A polymerase associated with the origin of eukaryotes. Biomolecules. 2020;10(10):1425. DOI 10.3390/biom10101425.; Seeker L.A., Underwood S.L., Wilbourn R.V., Dorrens J., Froy H., Holland R., Ilska J.J., Psifidi A., Bagnall A., Whitelaw B., Coffey M., Banos G., Nussey D.H. Telomere attrition rates are associated with weather conditions and predict productive lifespan in dairy cattle. Sci. Rep. 2021;11(1):5589. DOI 10.1038/s41598-02184984-2.; Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-221. DOI 10.1093/nar/gkac194.; Snow B.E., Erdmann N., Cruickshank J., Goldman H., Gill R.M., Robinson M.O., Harrington L. Functional conservation of the telomerase protein Est1p in humans. Curr. Biol. 2003;13(8):698-704. DOI 10.1016/s0960-9822(03)00210-0.; Sobinoff A.P., Pickett H.A. Alternative lengthening of telomeres: DNA repair pathways converge. Trends Genet. 2017;33(12):921-932. DOI 10.1016/j.tig.2017.09.003.; Sobinoff A.P., Pickett H.A. Mechanisms that drive telomere maintenance and recombination in human cancers. Curr. Opin. Genet. Dev. 2020;60:25-30. DOI 10.1016/j.gde.2020.02.006.; Stuparević I., Novačić A., Rahmouni A.R., Fernandez A., Lamb N., Primig M. Regulation of the conserved 3′-5′ exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol. Rev. Camb. Philos. Soc. 2021;96(4):1092-1113. DOI 10.1111/brv.12693.; Tennen R.I., Bua D.J., Wright W.E., Chua K.F. SIRT6 is required for maintenance of telomere position effect in human cells. Nat. Commun. 2011;2:433. DOI 10.1038/ncomms1443.; Tseng C.K., Wang H.F., Burns A.M., Schroeder M.R., Gaspari M., Baumann P. Human telomerase RNA processing and quality control. Cell Rep. 2015;13(10):2232-2243. DOI 10.1016/j.celrep.2015.10.075.; Tutton S., Azzam G.A., Stong N., Vladimirova O., Wiedmer A., Monteith J.A., Beishline K., Wang Z., Deng Z., Riethman H., McMahon S.B., Murphy M., Lieberman P.M. Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres. EMBO J. 2016;35(2):193-207. DOI 10.15252/embj.201490880.; Van de Vosse D.W., Wan Y., Lapetina D.L., Chen W.M., Chiang J.H., Aitchison J.D., Wozniak R.W. A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell. 2013;152(5):969-983. DOI 10.1016/j.cell.2013.01.049.; Vera E., Bernardes de Jesus B., Foronda M., Flores J.M., Blasco M.A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2012;2(4):732-737. DOI 10.1016/j.celrep.2012.08.023.; Wilbourn R.V., Moatt J.P., Froy H., Walling C.A., Nussey D.H., Boonekamp J.J. The relationship between telomere length and mortality risk in non-model vertebrate systems: a meta-analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373(1741):20160447. DOI 10.1098/rstb.2016.0447.; Wright W.E., Piatyszek M.A., Rainey W.E., Byrd W., Shay J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 1996;18(2):173-179. DOI 10.1002/(SICI)1520-6408(1996)18:23.0.CO;2-3.; Zeiger A.M., White M.J., Eng C., Oh S.S., Witonsky J., Goddard P.C., Contreras M.G., Elhawary J.R., Hu D., Mak A.C.Y., Lee E.Y., Keys K.L., Samedy L.A., Risse-Adams O., Magaña J., Huntsman S., Salazar S., Davis A., Meade K., Brigino-Buenaventura E., LeNoir M.A., Farber H.J., Bibbins-Domingo K., Borrell L.N., Burchard E.G. Genetic determinants of telomere length in African American youth. Sci. Rep. 2018;8(1):13265. DOI 10.1038/s41598018-31238-3.; https://vavilov.elpub.ru/jour/article/view/3739
-
7Academic Journal
Συγγραφείς: Алали, О. М., Чурносов, М. И.
Θεματικοί όροι: медицина, медицинская генетика, миома матки, полиморфизмы, полногеномный анализ ассоциаций, ассоциация, секвенирование экзонов, гены-кандидаты, репликативные исследования
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/61838
-
8Academic Journal
Συγγραφείς: A. Y. Krivoruchko, O. A. Yatsyk, E. Y. Safaryan, А. Ю. Криворучко, О. А. Яцык, Е. Ю. Сафарян
Πηγή: Vavilov Journal of Genetics and Breeding; Том 24, № 8 (2020); 836-843 ; Вавиловский журнал генетики и селекции; Том 24, № 8 (2020); 836-843 ; 2500-3259 ; 10.18699/VJ20.67
Θεματικοί όροι: российский мясной меринос, SNP, genome-wide association study, GWAS, candidate gene, Russian meat merino, однонуклеотидный полиморфизм, полногеномный поиск ассоциаций, полногеномный анализ ассоциаций, ген-кандидат
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2843/1452; Abdoli R., Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Moradi M.H., Ferdosi M.H., Gondro C. Genome-wide association study of first lambing age and lambing interval in sheep. Small Rumin. Res. 2019;178:43-45. DOI 10.1016/j.smallrumres.2019.07.014.; Amerhanov H.A., Egorov M.V., Selionova M.I., Shumaenko S.N., Efimova N.I. A new breed of sheep: Russian meat Merino. Sel’skokhozyajstvennyj Zhurnal = Agricultural Journal. 2018; 1(11):50-56. DOI 10.25930/0372-3054-2018-1-11-65-71. (in Russian); Bermingham M.L., Bishop S.C., Woolliams J.A., Pong-Wong R., Allen A.R., McBride S.H., Ryder J.J., Wright D.M., Skuce R.A., McDowell S.W., Glass E.J. Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity. 2014;112(5):543-551. DOI 10.1038/hdy.2013.137.; Boudon S., Henry-Berger J., Cassar-Malek I. Aggregation of omic data and secretome prediction enable the discovery of candidate plasma biomarkers for beef tenderness. In Int. J. Mol. Sci. 2020; 21(2):54-63. DOI 10.3390/ijms21020664.; Buhr E.D., Vemaraju S., Diaz N., Lang R.A., Van Gelder R.N. Neuropsin (OPN5) Mediates Local Light-Dependent Induction of Circadian Clock Genes and Circadian Photoentrainment in Exposed Murine Skin. Curr. Biol. 2019;29(20):3478-3487. DOI 10.1016/j.cub.2019.08.063.; Burkitt Wright E.M.M., Spencer H.L., Daly S.B., Manson F.D.C., Zeef L.A.H., Urquhart J., Zoppi N., Bonshek R., Tosounidis I., Mohan M., Madden C., Dodds A., Chandler K. E., Banka S., Au L., Clayton-Smith J., Khan N., Biesecker L.G., Wilson M., Black G.C.M. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance. Am. J. Hum. Genet. 2011;88(6):767-777. DOI 10.1016/j.ajhg.2011.05.007.; Dakhlan A., Moghaddar N., Gondro C., Werf J.H.J. Gene by birth type interaction in merino lamb. Proc. Assoc. Advmt. Anim. Breed. Genet. 2018;22:45-48.; Dapas B., Pozzato G., Zorzet S., Capolla S., Paolo M., ScaggianteB., Coan M., Guerra C., Gnan C., Gattei V., Zanconati F., Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int. J. Pharm. 2020;57(4):48-59. DOI 10.1016/j.ijpharm.2019.118895.; Dominik S., Henshall J.M., Hayes B.J. A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep. Anim. Genet. 2012; 43(4):468-470. DOI 10.1111/j.1365-2052.2011.02271.x.; Duijvesteijn N., Bolormaa S., Daetwyler H.D., Van Der Werf J.H.J. Genomic prediction of the polled and horned phenotypes in Merino sheep. Genet. Sel. Evol. 2018;50(1):1-11. DOI 10.1186/s12711-018-0398-6.; Edea Z., Jeoung Y.H., Shin S.S., Ku J., Seo S., Kim I.H., Kim S.W., Kim K.S. Genome–wide association study of carcass weight in commercial Hanwoo cattle. Asian-Australas. J. Anim. Sci. 2018; 31(3): 327-334. DOI 10.5713/ajas.17.0276.; García-Gámez E., Gutiérrez-Gil B., Sahana G., Sánchez J.P., Bayón Y., Arranz J.J. GWA Analysis for Milk Production Traits in Dairy Sheep and Genetic Support for a QTN Influencing Milk Protein Percentage in the LALBA Gene. PLoS ONE. 2012; 7(10):1-9. DOI 10.1371/journal.pone.0047782.; Georges M., Charlier C., Hayes B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 2019;20(3): 135-156. DOI 10.1038/s41576-018-0082-2.; Gudmundsdottir O.O. Genome-wide association study of muscle traits in Icelandic sheep. Agricultural University of Iceland, 2015.; Johnston S.E., Gratten J., Berenos C., Pilkington J.G., CluttonBrock T.H., Pemberton J.M., Slate J. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature. 2013;502(7469):93-95. DOI 10.1038/nature12489.; Johnston S.E., McEwan J.C., Pickering N.K., Kijas J.W., Beraldi D., Pilkington J.G., Pemberton J. M., Slate J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 2011;20(12):2555-2566. DOI 10.1111/j.1365-294X.2011.05076.x.; Kamiński S., Hering D.M., Oleński K., Lecewicz M., Kordan W. Genome-wide association study for sperm membrane integrity in frozen-thawed semen of Holstein-Friesian bulls. Anim. Reprod. Sci. 2016;170:135-140. DOI 10.1016/j.anireprosci.2016.05.002.; Kijas J.W., Serrano M., Mcculloch R., Li Y., Salces Ortiz J., Calvo J.H., Pérez-Guzmán M.D. Genomewide association for a dominant pigmentation gene in sheep. J. Anim. Breed. Genet. 2013;130(6):468-475. DOI 10.1111/jbg.12048.; Lee J.R. Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development. BMB Rep. 2015; 48(5):249-255. DOI 10.5483/BMBRep.2015.48.5.037.; Liu Y., Chen X., Gong Z., Zhang H., Fei F., Tang X., Wang J., Xu P., Zarbl H., Ren X. Fry Is Required for Mammary Gland Development During Pregnant Periods and Affects the Morphology and Growth of Breast Cancer Cells. Front. Oncol. 2019;4(2):1-12. DOI 10.3389/fonc.2019.01279.; Mastrangelo S., Moioli B., Ahbara A., Latairish S., Portolano B., Pilla F., Ciani E. Genome-wide scan of fat-tail sheep identifies signals of selection for fat deposition and adaptation. Anim. Prod. Sci. 2019;59(5):835-842. DOI 10.1071/AN17753.; Moioli B., Pilla F., Ciani E. Signatures of selection identify loci associated with fat tail in sheep. J. Anim. Sci. 2015;93(10):4660- 4669. DOI 10.2527/jas.2015-9389.; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007; 81(3):559-575. DOI 10.1086/519795.; Rossi U.A., Hasenauer F.C., Caffaro M.E., Neumann R., Salatin A., Poli M.A., Rossetti C.A. A haplotype at intron 8 of PTPRT gene is associated with resistance to Brucella infection in Argentinian creole goats. Vet. Microbiol. 2017;2(3):133 137. DOI 10.1016/j.vetmic.2017.06.001.; Rovadoscki G.A., Pertile S.F.N., Alvarenga A.B., Cesar A.S.M., Pértille F., Petrini J., Franzo V., Soares W.V.B., Morota G., Spangler M.L., Pinto L.F.B., Carvalho G.G.P., Lanna D.P.D., Coutinho L.L., Mourão G.B. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inеs sheep. BMC Genom. 2018;19(1):1-14. DOI 10.1186/ s12864-018-4777-8.; Scott D.J., Rosengren K.J., Bathgate R.A.D. The different ligandbinding modes of relaxin family peptide receptors RXFP1 and RXFP2. Mol. Endocrinol. 2012;26(11):1896-1906. DOI 10.1210/me.2012-1188.; Selionova M.I., Shumaenko S.N., Efimova N.I. Surov A.I. Bobrishov S.S. Target indicators and characteristics of the Russian Meat Merino breed: Proceedings of the Research Institute for Sheep and Goat Farming. Sel’skokhozyajstvennyj Zhurnal = Agricultural Journal. 2017;2(10):10-16. (in Russian); Wang J., Kudoh J., Takayanagi A., Shimizu N. Novel human BTB/ POZ domain-containing zinc finger protein ZNF295 is directly associated with ZFP161. Biochem. Biophys. Res. Commun. 2005;327(2):615-627. DOI 10.1016/j.bbrc.2004.12.048.; Wang Z., Zhang H., Yang H., Wang S., Rong E., Pei W., Li H., Wang N. Genome-wide association study for wool production traits in a Chinese merino sheep population. PLoS ONE. 2014; 9(9):3-10. DOI 10.1371/journal.pone.0107101.; Weh E., Takeuchi H., Muheisen S., Haltiwanger R.S., Semina E.V. Functional characterization of zebrafish orthologs of the human Beta 3-Glucosyltransferase B3GLCT gene mutated in Peters Plus Syndrome. PLoS ONE. 2017;12(9):e0184903. DOI 10.1371/journal.pone.0184903.; Wiedemar N., Drögemüller C.A 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep. Anim. Genet. 2015;46(4):457-461. DOI 10.1111/age.12309.; Xu S.S., Gao L., Xie X.L., Ren Y.L., Shen Z.Q., Wang F., Shen M., Eypórsdóttir E., Hallsson J.H., Kiseleva T., Kantanen J., Li M.H. Genome-wide association analyses highlight the potential for dif¬ferent genetic mechanisms for litter size among sheep breeds. Front. Genet. 2018;6(2):1-14. DOI 10.3389/fgene.2018.00118.; Yan J., Dukkipati V., Blair H.T., Biggs P.J., Hamie J.C., Aw G. A genome-wide scan of positive selection signature using Ovine Infinium HD SNP BeadChip in two Romney lines, selected for resistance or resilience to nematodes. Anim. Genet. 2017;4: 87-94.; Zhang H., Chen X., Sairam M.R. Novel genes of visceral adiposity: Identification of mouse and human Mesenteric Estrogen-Dependent Adipose (MEDA)-4 gene and its adipogenic function. Endocrinology. 2012;153(6):2665-2676. DOI 10.1210/en.2011- 2008.; Zhang T., Gao H., Sahana G., Zan Y., Fan H., Liu J., Shi L., Liu J., Du L., Wang L., Zhao F. Genome-wide association studies revealed candidate genes for tail fat deposition and body size in the Hulun Buir sheep. J. Anim. Breed. Genet. 2019;6(1):1-9. DOI 10.1111/jbg.12402.; https://vavilov.elpub.ru/jour/article/view/2843
-
9Academic Journal
Συγγραφείς: I. V. Zorkoltseva, N. M. Belonogova, G. R. Svishcheva, A. V. Kirichenko, T. I. Axenovich, И. В. Зоркольцева, Н. М. Белоногова, Г. Р. Свищёва, А. В. Кириченко, Т. И. Аксенович
Συνεισφορές: This work was supported by the Russian Ministry of Education and Science (project 0324-2019-0040) and the Russian Foundation for Basic Research (project 18-04-00076).
Πηγή: Vavilov Journal of Genetics and Breeding; Том 23, № 8 (2019); 1037-1046 ; Вавиловский журнал генетики и селекции; Том 23, № 8 (2019); 1037-1046 ; 2500-3259
Θεματικοί όροι: in silico картирование, gene-based association analysis, genome-wide association analysis, summary statistics, in silico mapping, полногеномный анализ ассоциаций, региональный анализ ассоциаций, суммарные статистики
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2396/1328; Abifadel M., Varret M., Rabes J.P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D., Derre A., Villeger L., Farnier M., Beucler I., Bruckert E., Chambaz J., Chanu B., Lecerf J.M., Luc G., Moulin P., Weissenbach J., Prat A., Krempf M., Junien C., Seidah N.G., Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003; 34:154156. DOI 10.1038/ng1161.; Bakshi A., Zhu Z., Vinkhuyzen A.A., Hill W.D., McRae A.F., Visscher P.M., Yang J. Fast setbased association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci. Rep. 2016;6:32894. DOI 10.1038/srep32894.; Bang C., Batkai S., Dangwal S., Gupta S.K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., Ponimaskin E., Schmiedl A., Yin X., Mayr M., Halder R., Fischer A., Engelhardt S., Wei Y., Schober A., Fiedler J., Thum T. Cardiac fibroblastderived microRNA passenger strandenriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 2014;124:21362146. DOI 10.1172/JCI70577.; Bhattacharya R., Kwon J., Li X., Wang E., Patra S., Bida J.P., Baj zer Z., ClaessonWelsh L., Mukhopadhyay D. Distinct role of PLCβ3 in VEGFmediated directional migration and vascular sprouting. J. Cell Sci. 2009;122:10251034. DOI 10.1242/jcs.041913.; Brown M.S., Goldstein J.L. A receptormediated pathway for cholesterol homeostasis. Science. 1986;232:3447.; BulikSullivan B.K., Loh P.R., Finucane H.K., Ripke S., Yang J., Schizophrenia Working Group of the Psychiatric Genomics Comsortium, Patterson N., Daly M.J., Price A.L., Neale B.M. LD Score regression distinguishes confounding from polygenicity in genomewide association studies. Nat. Genet. 2015;47:291295. DOI 10.1038/ng.3211.; Cohen J.C., Boerwinkle E., Mosley T.H., Jr., Hobbs H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 2006;354:12641272. DOI 10.1056/NEJMoa054013.; de Leeuw C.A., Mooij J.M., Heskes T., Posthuma D. MAGMA: generalized geneset analysis of GWAS data. PLoS Comput. Biol. 2015;11:e1004219. DOI 10.1371/journal.pcbi.1004219.; Ehret G.B., Munroe P.B., Rice K.M., Bochud M., Johnson A.D., Chasman D.I., Smith A.V., … van Duijn C.M., NewtonCheh C., Levy D., Caulfield M.J., Johnson T. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103109. DOI 10.1038/nature10405.; Eichler E.E., Flint J., Gibson G., Kong A., Leal S.M., Moore J.H., Nadeau J.H. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 2010;11:446450. DOI 10.1038/nrg2809.; Erdmann J., Grosshennig A., Braund P.S., Konig I.R., Hengstenberg C., Hall A.S., LinselNitschke P., … Deloukas P., Thompson J.R., Ziegler A., Samani N.J., Schunkert H. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 2009; 41:280282. DOI 10.1038/ng.307.; Eto M., Shindou H., Shimizu T. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem. Biophys. Res. Commun. 2014;443:718724. DOI 10.1016/j.bbrc.2013.12.043.; Gudbjartsson D.F., Holm H., Gretarsdottir S., Thorleifsson G., Walters G.B., Thorgeirsson G., Gulcher J., Mathiesen E.B., Njolstad I., Nyrnes A., Wilsgaard T., Hald E.M., Hveem K., Stoltenberg C., Kucera G., Stubblefield T., Carter S., Roden D., Ng M.C., Baum L., So W.Y., Wong K.S., Chan J.C., Gieger C., Wichmann H.E., Gschwendtner A., Dichgans M., Kuhlenbaumer G., Berger K., Ringelstein E.B., Bevan S., Markus H.S., Kostulas K., Hillert J., Sveinbjornsdottir S., Valdimarsson E.M., Lochen M.L., Ma R.C., Darbar D., Kong A., Arnar D.O., Thorsteinsdottir U., Stefansson K. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet. 2009;41:876878. DOI 10.1038/ng.417.; Hartiala J., Schwartzman W.S., Gabbay J., Ghazalpour A., Bennett B.J., Allayee H. The genetic architecture of coronary artery disease: current knowledge and future opportunities. Curr. Atheroscler. Rep. 2017;19:6. DOI 10.1007/s1188301706416.; Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Jonasdottir A., Sigurdsson A., Baker A., Palsson A., Masson G., Gudbjartsson D.F., Magnusson K.P., Andersen K., Levey A.I., Backman V.M., Matthiasdottir S., Jonsdottir T., Palsson S., Einarsdottir H., Gunnarsdottir S., Gylfason A., Vaccarino V., Hooper W.C., Reilly M.P., Granger C.B., Austin H., Rader D.J., Shah S.H., Quyyumi A.A., Gulcher J.R., Thorgeirsson G., Thorsteinsdottir U., Kong A., Stefansson K. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:14911493. DOI 10.1126/science.1142842.; Howson J.M.M., Zhao W., Barnes D.R., Ho W.K., Young R., Paul D.S., Waite L.L., … Nordestgaard B.G., Assimes T.L., Danesh J., Butterworth A.S., Saleheen D. Fifteen new risk loci for coronary artery disease highlight arterialwallspecific mechanisms. Nat. Genet. 2017;49:11131119. DOI 10.1038/ng.3874.; Johnson A.D., NewtonCheh C., Chasman D.I., Ehret G.B., Johnson T., Rose L., Rice K., Verwoert G.C., Launer L.J., Gudnason V., Larson M.G., Chakravarti A., Psaty B.M., Caulfield M., van Duijn C.M., Ridker P.M., Munroe P.B., Levy D., on behalf of the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium, Global BPgen Consortium, Women’s Genome Health Study. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57:903910. DOI 10.1161/HYPERTENSIONAHA.110.158667.; Klarin D., Zhu Q.M., Emdin C.A., Chaffin M., Horner S., McMillan B.J., Leed A., Weale M.E., Spencer C.C.A., Aguet F., Segre A.V., Ardlie K.G., Khera A.V., Kaushik V.K., Natarajan P., Consortium C.A.D., Kathiresan S. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat. Genet. 2017;49:13921397. DOI 10.1038/ng.3914.; Li B., Leal S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 2008;83:311321. DOI 10.1016/j.ajhg.2008.06.024.; McPherson R., Pertsemlidis A., Kavaslar N., Stewart A., Roberts R., Cox D.R., Hinds D.A., Pennacchio L.A., TybjaergHansen A., Folsom A.R., Boerwinkle E., Hobbs H.H., Cohen J.C. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:14881491. DOI 10.1126/science.1142447.; Muhammad E., Levitas A., Singh S.R., Braiman A., Ofir R., Etzion S., Sheffield V.C., Etzion Y., Carrier L., Parvari R. PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum. Mol. Genet. 2015;24:72277240. DOI 10.1093/hmg/ddv423.; Nelson C.P., Goel A., Butterworth A.S., Kanoni S., Webb T.R., Marouli E., Zeng L., … Farrall M., Danesh J., Samani N.J., Watkins H., Deloukas P. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 2017;49: 13851391. DOI 10.1038/ng.3913.; Nikpay M., Goel A., Won H.H., Hall L.M., Willenborg C., Kanoni S., Saleheen D., … McPherson R., Deloukas P., Schunkert H., Samani N.J., Farrall M. A comprehensive 1,000 Genomesbased genomewide association metaanalysis of coronary artery disease. Nat. Genet. 2015;47:11211130. DOI 10.1038/ng.3396.; Nioi P., Sigurdsson A., Thorleifsson G., Helgason H., Agustsdottir A.B., Norddahl G.L., Helgadottir A., … Holm H., Gudbjartsson D., Sulem P., Thorsteinsdottir U., Stefansson K. Variant ASGR1 associated with a reduced risk of coronary artery disease. N. Engl. J. Med. 2016;374:21312141. DOI 10.1056/NEJMoa1508419.; O’Donnell C.J., Cupples L.A., D’Agostino R.B., Fox C.S., Hoffmann U., Hwang S.J., Ingellson E., Liu C., Murabito J.M., Polak J.F., Wolf P.A., Demissie S. Genomewide association study for subclinical atherosclerosis in major arterial territories in the NHLBI’s Framingham Heart Study. BMC Med. Genet. 2007;8(Suppl.1):S4. DOI 10.1186/147123508S1S4.; Pasaniuc B., Price A.L. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. 2017;18:117127. DOI 10.1038/nrg.2016.142.; Peden J.F., Farrall M. Thirtyfive common variants for coronary artery disease: the fruits of much collaborative labour. Hum. Mol. Genet. 2011;20:R198205. DOI 10.1093/hmg/ddr384.; Samani N.J., Braund P.S., Erdmann J., Gotz A., Tomaszewski M., LinselNitschke P., Hajat C., Mangino M., Hengstenberg C., Stark K., Ziegler A., Caulfield M., Burton P.R., Schunkert H., Tobin M.D. The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J. Mol. Med. (Berl). 2008;86:12331241. DOI 10.1007/s0010900803872.; Samani N.J., Deloukas P., Erdmann J., Hengstenberg C., Kuulasmaa K., McGinnis R., Schunkert H., Soranzo N., Thompson J., Tiret L., Ziegler A. Large scale association analysis of novel genetic loci for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2009;29:774780. DOI 10.1161/ATVBAHA.108.181388.; Samani N.J., Erdmann J., Hall A.S., Hengstenberg C., Mangino M., Mayer B., Dixon R.J., Meitinger T., Braund P., Wichmann H.E., Barrett J.H., Konig I.R., Stevens S.E., Szymczak S., Tregouet D.A., Iles M.M., Pahlke F., Pollard H., Lieb W., Cambien F., Fischer M., Ouwehand W., Blankenberg S., Balmforth A.J., Baessler A., Ball S.G., Strom T.M., Braenne I., Gieger C., Deloukas P., Tobin M.D., Ziegler A., Thompson J.R., Schunkert H., WTCCC and the Cardiogenics Consortium. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007;357:443453. DOI 10.1056/NEJMoa072366.; Schunkert H., Konig I.R., Kathiresan S., Reilly M.P., Assimes T.L., Holm H., Preuss M., … O’Donnell C.J., McPherson R., Erdmann J., Consortium C.A., Samani N.J. Largescale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011;43:333338. DOI 10.1038/ng.784.; Stitziel N.O., the Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Variants in ANGPTL4 and the risk of coronary artery disease. N. Engl. J. Med. 2016;375:2306. DOI 10.1056/NEJMc1607380.; Svishcheva G.R. A generalized model for combining dependent SNPlevel summary statistics and its extensions to statistics of other levels. Sci. Rep. 2019;9:5461. DOI 10.1038/s41598019418275.; Svishcheva G.R., Belonogova N.M., Zorkoltseva I.V., Kirichenko A.V., Axenovich T.I. Genebased association tests using GWAS summary statistics. Bioinformatics. 2019;35(19):37013708. DOI 10.1093/bioinformatics/btz172.; The CARDIoGRAMplusC4D Consortium (Deloukas P., Kanoni S., Willenborg C., Farrall M., Assimes T.L., Thompson J.R., Ingelsson E., … Palmer C.N., Roberts R., Watkins H., Schunkert H., Samani N.J.) Largescale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 2013;45:2533. DOI 10.1038/ng.2480.; Tregouet D.A., Konig I.R., Erdmann J., Munteanu A., Braund P.S., Hall A.S., Grosshennig A., LinselNitschke P., Perret C., DeSuremain M., Meitinger T., Wright B.J., Preuss M., Balmforth A.J., Ball S.G., Meisinger C., Germain C., Evans A., Arveiler D., Luc G., Ruidavets J.B., Morrison C., van der Harst P., Schreiber S., Neureuther K., Schafer A., Bugert P., El Mokhtari N.E., Schrezenmeir J., Stark K., Rubin D., Wichmann H.E., Hengstenberg C., Ouwehand W., Ziegler A., Tiret L., Thompson J.R., Cambien F., Schunkert H., Samani N.J. Genomewide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat. Genet. 2009;41:283285. DOI 10.1038/ng.314.; van der Harst P., Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 2018;122:433443. DOI 10.1161/CIRCRESAHA.117.312086.; Vilne B., Schunkert H. integrating genes affecting coronary artery disease in functional networks by multiomics approach. Front. Cardiovasc. Med. 2018;5:89. DOI 10.3389/fcvm.2018.00089.; Wang M., Huang J., Liu Y., Ma L., Potash J.B., Han S. COMBAT: A Combined Association Test for genes using summary statistics. Genetics. 2017;207:883891. DOI 10.1534/genetics.117.300257.; Webb T.R., Erdmann J., Stirrups K.E., Stitziel N.O., Masca N.G., Jansen H., Kanoni S., … Samani N.J., Schunkert H., Deloukas P., Kathiresan S., for the Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J. Am. Coll. Cardiol. 2017;69:823836. DOI 10.1016/j.jacc.2016.11.056.; Willer C.J., Schmidt E.M., Sengupta S., Peloso G.M., Gustafsson S., Kanoni S., Ganna A., … Deloukas P., Kathiresan S., Mohlke K.L., Ingelsson E., Abecasis G.R. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013;45:12741283. DOI 10.1038/ng.2797.; Yang J., Chen S., Abecasis G., IAMDGC. Improved score statistics for metaanalysis in singlevariant and genelevel association studies. Genet. Epidemiol. 2018;42:333343. DOI 10.1002/gepi.22123.; Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J., Lisheng L., on behalf of the INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): casecontrol study. Lancet. 2004; 364:937952. DOI 10.1016/S01406736(04)170189.; Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103141. DOI 10.1016/j.pharmthera.2012.12.007.; Zheng J., Erzurumluoglu A.M., Elsworth B.L., Kemp J.P., Howe L., Haycock P.C., Hemani G., Tansey K., Laurin C., Early Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium, Pourcain B.S., Warrington N.M., Finucane H.K., Price A.L., BulikSullivan B.K., Anttila V., Paternoster L., Gaunt T.R., Evans D.M., Neale B.M. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272279. DOI 10.1093/bioinfor-matics/btw613.; Zhou K., Donnelly L.A., Kimber C.H., Donnan P.T., Doney A.S., Leese G., Hattersley A.T., McCarthy M.I., Morris A.D., Palmer C.N., Pearson E.R. Reducedfunction SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes. 2009;58:14341439. DOI 10.2337/db080896.; https://vavilov.elpub.ru/jour/article/view/2396
-
10Academic Journal
Συγγραφείς: N. S. Yudin, N. M. Belonogova, D. M. Larkin, Н. С. Юдин, Н. М. Белоногова, Д. М. Ларкин
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 2 (2018); 217-223 ; Вавиловский журнал генетики и селекции; Том 22, № 2 (2018); 217-223 ; 2500-3259
Θεματικοί όροι: доместикация, native populations, breed, colouring, white face, genome-wide association studies, SLC41A2, domestication, аборигенный скот, порода, окраска, белая голова, полногеномный анализ ассоциаций, ген SLC41A2
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1444/1052; Ahi E.P., Sefc K.M. A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species. PeerJ. 2017;5:e2843. DOI 10.7717/ peerj.2843.; Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2001;2(2):130-138. DOI 10.1038/35052563.; Andersson L. Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica. 2009;136:341-349. DOI 10.1007/s10709-008-9312-4.; Basu Mallick C., Iliescu F.M., Möls M., Hill S., Tamang R., Chaubey G., Goto R., Ho S.Y., Gallego Romero I., Crivellaro F., Hudjashov G., Rai N., Metspalu M., Mascie-Taylor C.G., Pitchappan R., Singh L., Mirazon-Lahr M., Thangaraj K., Villems R., Kivisild T. The light skin allele of SLC24A5 in South Asians and Europeans shares identity by descent. PLoS Genet. 2013;9(11):e1003912. DOI 10.1371/journal.pgen.1003912.; Belyaev D.K. Destabilizing selection as a factor in domestication. J. Hered. 1979;70:301-308. BioGPS. SLC41A2 (solute carrier family 41 member 2). 2017. Available at http://biogps.org/#goto=genereport&id=84102.; Branicki W., Brudnik U., Draus-Barini J., Kupiec T., Wojas-Pelc A. Association of the SLC45A2 gene with physiological human hair colour variation. J. Hum. Genet. 2008;53(11-12):966-971. DOI 10.1007/s10038-008-0338-3.; Caduff M., Bauer A., Jagannathan V., Leeb T. A single base deletion in the SLC45A2 gene in a Bullmastiff with oculocutaneous albinism. Anim. Genet. 2017;48(5):619-621. DOI 10.1111/age.12582.; Cieslak M., Reissmann M., Hofreiter M., Ludwig A. Colours of domestication. Biol. Rev. Camb. Philos. Soc. 2011;86(4):885-899. DOI 10.1111/j.1469-185X.2011.00177.x. D’Mello S.A., Finlay G.J., Baguley B.C., Askarian-Amiri M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016;17(7). pii: E1144. DOI 10.3390/ijms17071144.; Drögemüller C., Demmel S., Engensteiner M., Rieder S., Leeb T. A shared 336 kb haplotype associated with the belt pattern in three divergent cattle breeds. Anim. Genet. 2010;41:304-307. DOI 10.1111/ j.1365-2052.2009.01987.x.; Drögemüller C., Engensteiner M., Moser S., Rieder S., Leeb T. Genetic mapping of the belt pattern in Brown Swiss cattle to BTA3. Anim. Genet. 2009;40:225-229. DOI 10.1111/j.1365-2052.2008.01826.x.; Fan Y., Wang P., Fu W., Dong T., Qi C., Liu L., Guo G., Li C., Cui X., Zhang S., Zhang Q., Zhang Y., Sun D. Genome-wide association study for pigmentation traits in Chinese Holstein population. Anim. Genet. 2014;45(5):740-744. DOI 10.1111/age.12189.; Fontanesi L., Scotti E., Russo V. Analysis of SNPs in the KIT gene of cattle with different coat colour patterns and perspectives to use these markers for breed traceability and authentication of beef and dairy products. Ital. J. Anim. Sci. 2010;9:e42. DOI 10.4081/ijas.2010.e42.; Fontanesi L., Scotti E., Russo V. Haplotype variability in the bovine MITF gene and association with piebaldism in Holstein and Simmental cattle breeds. Anim. Genet. 2012;43:250-256. DOI 10.1111/ j.1365-2052.2011.02242.x.; Galván I., Moraleda V., Otero I., Álvarez E., Inácio Â. Genetic favouring of pheomelanin-based pigmentation limits physiological benefits of coloniality in lesser kestrels Falco naumanni. Mol. Ecol. 2017; 26(20):5594-5602. DOI 10.1111/mec.14322.; Goytain A., Quamme G.A. Functional characterization of the human solute carrier, SLC41A2. Biochem. Biophys. Res. Commun. 2005; 330:701-705. DOI 10.1016/j.bbrc.2005.03.037.; Grosz M.D., MacNeil M.D. The ‘‘spotted’’ locus maps to bovine chromosome 6 in a Hereford-cross population. J. Hered. 1999;90:233-236.; Hardman J.A., Haslam I.S., Farjo N., Farjo B., Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS ONE. 2015;10(3):e0121878. DOI 10.1371/ journal.pone.0121878.; Hayes B.J., Pryce J., Chamberlain A.J., Bowman P.J., Goddard M.E. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet. 2010;6(9):e1001139. DOI 10.1371/journal.pgen.1001139.; Izagirre N., García I., Junquera C., de la Rúa C., Alonso S. A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol. Biol. Evol. 2006;23(9):1697-1706. DOI 10.1093/molbev/msl030.; Kang H.M., Sul J.H., Service S.K., Zaitlen N.A., Kong S.Y., Freimer N.B., Sabatti C., Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010;42(4):348-354. DOI 10.1038/ng.548.; Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006.; Klungland H., Vage D.I. Molecular genetics of pigmentation in domestic animals. Curr. Genomics. 2000;1:232-242. Larkin D.M., Yudin N.S. The genomes and history of domestic animals. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology. 2016;4:123-128. (in Russian); Liu L., Harris B., Keehan M., Zhang Y. Genome scan for the degree of white spotting in dairy cattle. Anim. Genet. 2009;40:975-977. DOI 10.1111/j.1365-2052.2009.01936.x.; Luo M., Mengos A.E., Mandarino L.J., Sekulic A. Association of liprin β-1 with kank proteins in melanoma. Exp. Dermatol. 2016;25(4):321323. DOI 10.1111/exd.12933.; Mack M., Kowalski E., Grahn R., Bras D., Penedo M.C.T., Bellone R. Two variants in SLC24A5 are associated with “tiger-eye” iris pigmentation in Puerto Rican Paso Fino horses. G3 (Bethesda). 2017; 7(8):2799-2806. DOI 10.1534/g3.117.043786.; Mitsui H., Kiecker F., Shemer A., Cannizzaro M.V., Wang C.Q.F., Gulati N., Ohmatsu H., Shah K.R., Gilleaudeau P., SullivanWhalen M., Cueto I., McNutt N.S., Suárez-Fariñas M., Krueger J.G. Discrimination of dysplastic nevi from common melanocytic nevi by cellular and molecular criteria. J. Invest. Dermatol. 2016;136(10):2030-2040. DOI 10.1016/j.jid.2015.11.035.; Montoliu L., Oetting W.S., Bennett D.C. Color Genes. European Society for Pigment Cell Research. 2017. Available at http://www. espcr.org/micemut.; Morice-Picard F., Lasseaux E., François S., Simon D., Rooryck C., Bieth E., Colin E., Bonneau D., Journel H., Walraedt S., Leroy B.P., Meire F., Lacombe D., Arveiler B. SLC24A5 mutations are associated with non-syndromic oculocutaneous albinism. J. Invest. Dermatol. 2014;134(2):568-571. DOI 10.1038/jid.2013.360.; Oki R., Yamada K., Nakano S., Kimoto K., Yamamoto K., Kondo H., Kubota T. A Japanese family with autosomal dominant oculocutaneous albinism type 4. Invest. Ophthalmol. Vis. Sci. 2017;58(2):1008-1016. DOI 10.1167/iovs.16-20612.; Olson T.A. The genetic basis for piebald patterns in cattle. J. Hered. 1981;72:113-116.; Olson T.A. Genetics of color variation. The Genetics of Cattle. Ed. R. Fries, A. Ruvinsky. Wallingford, 1999;33-53.; Pausch H., Wang X., Jung S., Krogmeier D., Edel C., Emmerling R., Götz K.U., Fries R. Identification of QTL for UV-protective eye area pigmentation in cattle by progeny phenotyping and genome-wide association analysis. PLoS ONE. 2012;7:e36346. DOI 10.1371/ journal.pone.0036346.; Prasolova L.A., Trut L.N. Effect of the “Starˮ gene on the rate of melanoblast migration in silver fox (Vulpes vulpes) embryos. Doklady RAN = Proceedings of the Russian Academy of Sciences. 1993;329: 787-789. (in Russian); Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. DOI 10.1086/519795.; Raven L.A., Cocks B.G., Hayes B.J. Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics. 2014;15:62. DOI 10.1186/1471-2164-15-62.; Reissmann M., Ludwig A. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals. Semin. Cell Dev. Biol. 2013;24(6-7):576-586. DOI 10.1016/j.semcdb.2013.03.014.; Rizvi T.A., Huang Y., Sidani A., Atit R., Largaespada D.A., Boissy R.E., Ratner N. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J. Neurosci. 2002;22(22):9831-9840.; Rosengren Pielberg G., Golovko A., Sundström E., Curik I., Lennartsson J., Seltenhammer M.H., Druml T., Binns M., Fitzsimmons C., Lindgren G., Sandberg K., Baumung R., Vetterlein M., Strömberg S., Grabherr M., Wade C., Lindblad-Toh K., Pontén F., Heldin C.H., Sölkner J., Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat. Genet. 2008;40:1004-1009. DOI 10.1038/ng.185.; Rouillier K. Selected Biological Works. Moscow: USSR Academy of Sciences Publ., 1954. (in Russian) Rowan S., Chen C.M., Young T.L., Fisher D.E., Cepko C.L. Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development. 2004;131(20):5139-5152. DOI 10.1242/ dev.01300.; Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: a Laboratory Manual. N. Y.: Cold Spring Harbor Laboratory Press, 2006. Schmutz S.M. Genetics of Coat Color in Cattle. Bovine Genomics. Ed. J. Womack. Oxford, 2012;20-33.; Schmutz S.M., Berryere T.G. Genes affecting coat colour and pattern in domestic dogs: a review. Anim. Genet. 2007;38:539-549. Sharma S., Wagh S., Govindarajan R. Melanosomal proteins – role in melanin polymerization. Pigment Cell Res. 2002;15(2):127-133. DOI 10.1034/j.1600-0749.2002.1o076.x.; Seitz J.J., Schmutz S.M., Thue T.D., Buchanan F.C. A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthorn cattle. Mamm. Genome. 1999;10: 710-712.; Seo K., Mohanty T.R., Choi T., Hwang I. Biology of epidermal and hair pigmentation in cattle: a mini-review. Vet. Dermatol. 2007;18(6): 392-400. DOI 10.1111/j.1365-3164.2007.00634.x.; Storey J.D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. 2002;64:479-498. DOI 10.1111/1467-9868.00346.; Sugumaran M., Barek H. Critical analysis of the melanogenic pathway in insects and higher animals. Int. J. Mol. Sci. 2016;17(10):1753. DOI 10.3390/ijms17101753.; Taye M., Kim J., Yoon S.H., Lee W., Hanotte O., Dessie T., Kemp S., Mwai O.A., Caetano-Anolles K., Cho S., Oh S.J., Lee H.K., Kim H. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet. 2017;18(1):11. DOI 10.1186/s12863-016-0467-1.; Trapesov O.V. Domestication as the earliest intellectual achievement of mankind. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):872-883. (in Russian); Trut L.N. Domestication of animals as the historical process and as the experiment. Informatsionnyy vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2007;11(2):273-289. (in Russian); Tsetskhladze Z.R., Canfield V.A., Ang K.C., Wentzel S.M., Reid K.P., Berg A.S., Johnson S.L., Kawakami K., Cheng K.C. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PloS ONE. 2012;7(10):e47398. DOI 10.1371/ journal.pone.0047398.; Wabakken T., Rian E., Kveine M., Aasheim H.C. The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem. Biophys. Res. Commun. 2003;306(3):718-724.; Wang H., Xue L., Li Y., Zhao B., Chen T., Liu Y., Chang L., Wang J. Distribution and expression of SLC45A2 in the skin of sheep with different coat colors. Folia Histochem. Cytobiol. 2016;54(3):143150. DOI 10.5603/FHC.a2016.0015.; Wilkins A.S., Wrangham R.W., Fitch W.T. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197(3):795-808. DOI 10.1534/genetics.114.165423.; Yudichev Yu.F., Degtyarev V.V., Khonin G.A. Anatomiya zhivotnykh. Tom 1 [Animal Anatomy. Vol. 1]. Orenburg: OGAU Publ., 2013. (in Russian); Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity. 2018; 120(2):125-137. DOI 10.1038/s41437-017-0024-3.; Zhang H., Paijmans J.L., Chang F., Wu X., Chen G., Lei C., Yang X., Wei Z., Bradley D.G., Orlando L., O’Connor T., Hofreiter M. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat. Commun. 2013;4:2755. DOI 10.1038/ncomms3755.; Zhu W., Wang L., Dong Z., Chen X., Song F., Liu N., Yang H., Fu J. Comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia. Sci. Rep. 2016;6:31347. DOI 10.1038/srep31347.; https://vavilov.elpub.ru/jour/article/view/1444
-
11Academic Journal
Συγγραφείς: G. F. Gimalova, A. S. Karunas, Y. Y. Fedorova, E. R. Gumennaya, S. V. Levashova, E. I. Etkina, E. K. Khusnutdinova, Г. Ф. Гималова, А. С. Карунас, Ю. Ю. Федорова, Э. Р. Гуменная, С. В. Левашева, Э. И. Эткина, Э. К. Хуснутдинова
Πηγή: Medical Genetics; Том 15, № 4 (2016); 25-28 ; Медицинская генетика; Том 15, № 4 (2016); 25-28 ; 2073-7998
Θεματικοί όροι: polymorphic variants, полногеномный анализ ассоциации, гены, полиморфные варианты, atopic dermatitis, genome-wide association study, genes
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/112/100; Odhiambo JA, Williams HC, Clayton TO et al. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124:1251-1258.; Schultz-Larsen F, Holm NV, Henningsen K. Atopic dermatitis: a genetic-epidemiologic study in a population-based twin study. J Am Acad Dermatol. 1993;28:719-23.; Williams HC. Clinical practice: atopic dermatitis. NEJM. 2005;352:2314-2324.; Esparza-Gordillo J, Weidinger S, Folster-Holst R et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41:596-601.; Hughes-Davies L, Huntsman D, Ruas M et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell. 2003;115:523-535.; Ollendorff V, Szepetowski P, Mattei M-G et al. New gene in the homologous human 11q13-q14 and mouse 7F chromosomal regions. Mamm Genome. 1992;2:195-200.; Paternoster L, Standl M, Chen CM et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic. Nat Genet. 2011;44(2):187-192.; Hirota T, Takahashi A, Kubo M et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet. 2012;44(11):1222-1226.; O’Regan GM, Campbell LE Irvine AD et al. Chromosome 11q13.5 variant associated with childhood eczema: an effect supplementary to filaggrin mutations. J Allergy Clin Immunol. 2010;125(1):170-4.; Ramasamy A, Curjuric I, Coin LJ, et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol. 2011;128(5):996-1005.; Li X, Ampleford EJ, Howard TD et al. The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. J Allergy Clin Immunol. 2012;129(2):575-578.; Ezell SA., Tsichlis PN. Akt1, EMSY, BRCA2 and type I IFN signaling: a novel arm of the IFN response. Transcription. 2012;3(6):305-309.
-
12Academic Journal
Συγγραφείς: A. G. Zainullina, Z. L. Khalilova, E. K. Khusnutdinova, А. Г. Зайнуллина, З. Л. Халилова, Э. К. Хуснутдинова
Συνεισφορές: Работа выполнена при финансовой поддержке гранта РГНФ (№11-06-00554а).
Πηγή: Medical Genetics; Том 12, № 3 (2013); 11-19 ; Медицинская генетика; Том 12, № 3 (2013); 11-19 ; 2073-7998
Θεματικοί όροι: эпигенетика, stress, molecular genetics, genome wide assotiation study, стресс, молекулярная генетика, полногеномный анализ ассоциаций
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/28/57; Амахин Д.В., Веселкин Н.П. Взаимодействие эффектов нейромедиаторов глицина и ГАМК в центральной нервной системе // Цитология. — 2012. — №54 (6). — C. 469-477.; Валиахметов Р.М. Опыт социологического исследования проблемы суицида // Вестник общественного мнения: Данные. Анализ. Дискуссии / Аналитический центр Юрия Левады (Левада-Центр). Междисциплинарный академический центр социальных наук (Интерцентр). — 2010. — №1(103). — С. 65-89.; Гайсина Д.А., Халилова З.Л., Хуснутдинова Э.К. Генетические факторы риска суицидального поведения //Журнал неврологии и психиатрии им. С.С. Корсакова. — 2008. — №1. — C. 87-91.; Литвиненко И.В., Одинак М.М. Патогенетические основы формирования когнитивных и психотических нарушений при болезни Паркинсона // Журнал Неврологии и Психиатрии. — 2004. — №4. — С. 72-76.; Розанов В.А. О механизмах формирования суицидального поведения и возможностях его предикции на ранних этапах развития // Украинский медицинский журнал. — 2010. — Т. 1(75). — С. 92-97.; Тиходеев О.Н. Генетический контроль предрасположенности к самоубийству // Экологическая генетика. — 2007. — Т. 5(4). — С. 22-43.; Bardi M., Huff man M.A. Effects of maternal styl e on inf ant behavior in Japanese macaques (Macaca fuscata) // Dev. Psychobiol. — 2002. — Vol. 41(4). — P. 364-372.; Binder E. The rol e of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders // Psychoneuroendocrinology. — 2009. — Vol. 34S. — P. S186-S195.; Boscarino J., Erlich P., Hoffman S., Zhang X. Higher FKBP5, COMT, CHRNA5, and CRHR1 allele burdens are associated with PTSD and interact with trauma exposure: implications for neuropsychiatric research and treatment // Neuropsychiatric Disease and Treatment. — 2012. — Vol. 8. — P. 131-139.; Brent D., Melhem N., Ferrell R. et al. Association of FKBP5 Polymorphisms With Suicidal Events in the Treatment of Resistant Depression in Adolescents (TORDIA) Study // Am. J. Psychiatry. — 2010. — Vol. 167(2). — P. 190-197.; Brezo J., Bureau A., Mеrette C. et al. Differences and similarities in the serotonergic diathesis for suicide attempts and mood disorders: a 22-year longitudinal gene-environment study // Mol. Psychiatry. — 2010. — Vol. 15(8). — P. 831-843.; Cannon D., Klaver J., Gandhi S. et al. Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder // Mol Psychiatry. — 2011. — Vol. 16(4). — P. 407-418.; Chen T., Blum K., Mathews D. et al. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of «super normal controls» in psychiatricge-netic research of complex behavioral disorders // Med Hypotheses. — 2005. — Vol. 65. — P. 703-707.; Cohen-Woods S., Gaysina D., Craddock N. et al. Depression Case Control (DeCC) Study fa-ls to support involvement of the muscarinic acetylcholine receptor M2 (CHRM2) gene in recurrent maj or depressive disorder // Hum. Mol. Genet. — 2009. — Vol. 18(8). — P. 1504-1509.; De Luca V., Strauss J., Kennedy J. Power based association analysis (PBAT) of serotonergic and noradrenergic polymorphisms in bipolar patients with suicidal behavior // Prog. Neuropsychophar-macol. Biol. Psychiatry. — 2008. — Vol. 32(1). — P. 197-203.; De Luca V., Tharma-ingam S., Zai C. et al. Association of HPA axis genes with suicideal behavior in schizophrenia // J. Psyc-hopharmacol. (Oxford). — 2010. — Vol. 24. — P. 677-682.; Fiori L.M., Zouk H., Himmelman C., Turecki G. X chromosome and suicide // Molecular Psychiatry. — 2011. — Vol. 16. — P. 216-226.; Gal3avy H., Zalsman G., Yu Y. et al. A pi-ot genome wide association and gene expression array study of suicide with and without major depression // The World Journal of Biological Psychiatry. — 2011. Ear-y Online. doi:10.3109/15622975.2011.597875. — P.1-9.; Gaysina D., Zainullina A., Khusnutdinova E. Inherited Neuropsychiatric Disorders in Russia // Genomics and Health in the Developing World (Ed. by Kumar D.). — 2012. — Vol. 62. — P. 1356-1367.; Ikeda M., Hikita T., Taya S. et al. Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia // Human Molecular Genetics. — 2008. — Vol. 17(20). — P. 3212-3222.; Jia P., Wang L., Fanous A.H. et al. Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia // PLoS Comput Biol. — 2012. — Vol. 8(7). e1002587. doi:10.1371/journal.pcbi.1002587.; Keck M., Kern N., Erhardt A. et al. combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/con3rol study for panic disorder // American Journal of Medical Genetics Part И (Neuropsychiatry Genetics). — 2008. — Vol. 147B. — P. 1196-1204.; Linkowska K., Daca P., Sykutera M. et al. Search for association between suicide and 5-HTT, MAOA and DAT polymorphism in Polish males // Arch. Med. Sadowej Kryminol. — 2010. — Vol. 60(2-3). — P. 112-117.; Mann J., Brent D., Arango V. The neurobiology and genetics of suicide and attempted suicide: a focus on the serotonergic system // Neuropsychopharmacology. — 2001. — Vol. 24. — P. 467-477.; Mann J. Neurobiology of suicidal behavior // Nat. Rev. Ne-urosci. — 2003. — Vol. 4(10). — P. 819-828.; Menke A., Domschke K., Czamara D. et al. Genome-Wide Association Study of Antidepressant Treatment-Emergent Suicidal Ideation // Neuropsychopharmacology. — 2012. — Vol. 37. — P. 797-807.; Neves F., Malloy-Diniz L., Romano-Silva M. et al. The role of BDNF genetic polymorphisms in bipolar disorder with psychiatric comorbidi-ies // J. Af-ect. Di-ord. — 2011. — Vol. 131(1-3). — P. 307-311.; Papiol S., Arias B., Gasto C. et al. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment // Journal of Afec-ive Disorders. — 2007. — Vol. 104. — P. 83-90.; Perlis R. H., Huang J., Purcell S. et al. Genome-Wide Association Study of Suicide Attempts in Mood Disorder Patients // Am. J. Psychiatry. — 2010. — Vol. 167. — P.1499-1507.; Perroud N., Uher R., Ng M.Y. et al. Genome-wide association study of increasing suicidal ideation during antidepressant treatment in the GENDEP proj ect // The Pharmacogenomics Journal. — 2012. — Vol. 12. — P. 68-77.; Pivac N., Pregelj P., Niko-ac M. et al. The association between catechol-O-methyl-transferase Val108/158Met polymorphism and suicide // Genes Brain Behav. — 2011. — Vol. 10(5). — P. 565-569.; Pregelj P., Nedic G., Paska A. et al. The association between brain-derived neurotrophic factor polymorphism (BDNF Val66Met) and suicide // J. Affect. Disord. — 2011. — Vol. 128(3). — P. 287-290.; Roy A., Hodgkinson C., De Luca V. Two HPA axis genes, CRHBP and FKBP5, interact with childhood trauma to increase the risk for suicidal behavior // Journal of Psychiatric Research. — 2012. — Vol. 46. — P. 72-79.; Schosser A., Butler A.W., Ising M. et al. Genomewide Association Scan of Suicidal Thoughts and Behaviour in Major Depression // PLoS ONE. — 2011. — Vol. 6 (7). — e20690.; Sekiguchi H., Iritani S., Habuchi C. et al. Impairment of the tyrosine hydroxylase neuronal network in the orbitofrontal cortex of a genetically modified mouse model of schizophrenia // Brain Research. — 2011. — Vol. 1392. — P. 47-53.; Sequeira A., Mamdani F., Ernst C. et al. Global bram gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression // PLoS One. — 2009. — Vol. 4(8). — e6585.; Serretti A., Calati R., Giegling I. et al. Serotonin receptor HTR1A and HTR2C variants and personality traits in suicide attem-p-ers and con-rols // J. Psychiatr. Res. — 2009. — Vol. 43(5). — P. 519-525.; Sher L. Dopamine and the pathophysiology of suicidal behavior in alcoholism // Med. Hypotheses. — 2006. — Vol. 66(5). — P. 1043-1044.; Sokolowski M., Ben-Efraim Y., Wasserman J, Wasser-man D. Glutamatergic GRIN2B and polyaminergic ODC1 genes in suicide attempts: associations and gene-environment interactions with childhood/adolescent physical assault // Mol. Psychiatry. — 2012. doi:10.1038/mp.2012.112.; Suda A., Kawanishi C., Kishida I. et al. Dopamine D2 recep-or gene polymorphisms are associated with suicide attempt in the Japanese population//Neuropsychobiology. — 2009. — Vol. 59(2). — P. 130-134.; Tatro E.T., Nguyen T.B., Bousman C.A. Correlation of major depressive disorder symptoms with FKBP5 but not FKBP4 expression in human immunodeficiency virus-infected individuals // J. Neurovirol. — 2010. — Vol. 16(5). — P. 399-404.; Videtic A., Peternelj T., Zupanc T. et al. Promoter and functional polymorphisms of HTR2C and suicide victims // Genes Brain Behav. — 2009. — Vol. 8(5). — P. 541-555.; Videtic A., Zupanc T., Pregelj P. et al. Suicide, stress and serotonin receptor 1A promoter polymorphism -1019C>G in Slovenian suicide victims // Eur. Arch. Psychiatry Clin. Neurosci. — 2009. — Vol. 259(4). — P. 234-238.; Wasserman D. (Ed.) Suicide. An unnecessary death // Martin Dunitz, London. — 2001. — P. 287.; Wasserman D., Wasserman J., Rozanov V., Sokolowski M. depression in suicidal males: genetic risk variants in the CRHR1 gene // Genes, Brai n and Behavior. — 2009. — Vol. 8. — P. 72-77.; Willour V., Chen H., Toolan J. et al. Family-based association of FKBP5 in bipolar disorder // Molecular psychiatry. — 2009. — Vol. 14. — P. 261-268.; Yanagi M., Shirakawa O., Kitamura N. et al. Association of 14-3-3 gene haplotype with completed suicide in Japanese // J. Hum. Genet. — 2005. — Vol. 50. — P. 210-216.; Za-sman G., Patya M., Frisch A. et al. Association of polymorphisms of the serotonergic pathways with clinical traits of impul-sive-aggression and suicidality in adolescents: a multi-center study // World J. Biol. Psychiatry. — 2011. — Vol. 12(1). — P. 33-41.; Zubenko G., Maher B., Hughes H. et al. Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, ear-y-onset, maj or depression // Am. J. Med. Genet. B Neuropsychiatr. Genet. — 2004. — Vol. 129(1). — P. 47-54.; Zupanc T., Pregelj P., Tomori M. et al. No association between polymorphisms in four serotonin receptor genes, serotonin transporter gene and alcohol-related suicide // Psychiatr. Danub. — 2010. — Vol. 22(4). — P. 522-527.
-
13Academic Journal
Συγγραφείς: ХУБЕРТ Е. БЛЮМ
Θεματικοί όροι:
ОРГАНИЗАЦИЯ ПО ИЗУЧЕНИЮ ГЕНОМА ЧЕЛОВЕКА,ПОЛНОГЕНОМНЫЙ АНАЛИЗ АССОЦИАЦИЙ,ПРОЕКТ "МИКРОБИОМ ЧЕЛОВЕКА",ОДИНОЧНЫЙ НУКЛЕОТИДНЫЙ ПОЛИМОРФИЗМ,СИГНАТУРЫ ГЕНОВ,АНАЛИЗ МАССИВОВ ДАННЫХ,HUMAN GENOME ORGANIZATION,GENOME-WIDE ASSOCIATION STUDIES,HUMAN MICROBIOME PROJECT,SINGLE NUCLEOTIDE POLYMORPHISM,GENE SIGNATURES,ARRAY ANALYSES Περιγραφή αρχείου: text/html
-
14Academic Journal
Περιγραφή αρχείου: text/html
-
15Academic Journal
Συγγραφείς: A. Rudko A., M. Freidin B., Ye. Bragina Yu., A. An R., V. Puzyryov P., А. Рудко А., М. Фрейдин Б., Е. Брагина Ю., А. Ан Р., В. Пузырёв П.
Πηγή: Bulletin of Siberian Medicine; Том 12, № 3 (2013); 61-68 ; Бюллетень сибирской медицины; Том 12, № 3 (2013); 61-68 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2013-12-3
Θεματικοί όροι: tuberculosis, Crohn’s disease, polymorphism, genome-wide association study, candidate genes, predisposition, association, туберкулез, болезнь Крона, полиморфизм, полногеномный анализ ассоциаций, гены-кандидаты, подверженность, ассоциация
Περιγραφή αρχείου: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/340/346; Пузырёв В.П. Генетика мультифакториальных заболеваний: между прошлым и будущим // Мед. генетика. 2003. Т. 2, № 12. С. 498–508.; Пузырёв В.П. Феномно-геномные отношения и патогенетика многофакторных заболеваний // Вестн. РАМН. 2011. № 9. С. 17–27.; Рудко А.А., Фрейдин М.Б., Пузырёв В.П. Наследственная подверженность туберкулезу // Молекулярная медицина. 2011. № 3. С. 3–10.; Фрейдин М.Б., Рудко А.А., Колоколова О.В. и др. Сравнительный анализ структуры наследственной компоненты подверженности к туберкулезу у тувинцев и русских // Молекулярная биология. 2006. Т. 40, № 2. С. 252–262.; Azad A.K., Sadee W., Schlesinger L.S. Innate immune gene polymorphisms in tuberculosis // Infect. Immun. 2012. V. 80, № 20. P. 3343–3359.; Bamias G., Martin C., Marin M. et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease // J. Immun. 2003. V. 171. P. 4868–4874.; Bellamy R. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen // Clin. Sci. 2000. V. 98. P. 245–250.; Cantero-Recasens G., Fandos C., Rubio-Moscardo F. et al. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress // Hum. Molec. Genet. 2010. V. 19. p. 111–121.; Cooke G.S., Campbell S.J., Bennett S. et al. Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis // Am. J. Crit. Care Ved. 2008. V. 178. P. 203–207.; El Baghdadi J., Orlova M., Alter A. et al. An autosomal dominant major gene conferts predisposition to pulmonary tuberculosis in adults // J. Exp. Med. 2006. V. 203, № 7. P. 1679–1684.; Galanter J.M., Torgerson D., Gignoux C.R. et al. Cosmopolitan and ethnic-specific replication of genetic risk factors for asthma in 2 Latino populations // J. Allergy Clin. Immunol. 2011. V. 128. P. 37–43.; Hampe J., Franke A., Rosenstiel P., et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 // Nature Genet. 2007. V. 39. P. 207–211.; Hill A.V.S. Evolution, revolution and heresy in the genetics of infectious disease susceptibility // Phil. Trans. R. Soc. 2012. V. 367. P. 840–849.; Mahasirimongkol S., Yanai H., Nishida N. et al. Genomewide SNP-based linkage analysis of tuberculosis in Thais // Genes Immun. 2009. № 10. P. 77–83.; Mahasirimongkol S., Yanai H., Mushiroda T. et al. Genomewide association studies of tuberculosis in Asians identify atrisk locus for young tuberculosis // Journal of Human Genetics. 2012. V. 57. P. 363–367.; Miller E.N., Jamieson S.E., Joberty C. et al. Genome-widescans for leprosy and tuberculosis susceptibility genes in Brazilians // Genes Immun. 2004. V. 5 (1). P. 63–67.; Moffatt M.F., Gut I.G., Demenais F. et al. A large-scale, consortium-based genomewide association study of asthma // N. Engl. J. Med. 2010. V. 363 (13). P. 1211–1221.; Möller M., de Wit E., Hoal E.G. Past, present and future directions in human genetic susceptibility to tuberculosis // FEMS Immunol. Med. Microbiol. 2009. V. 2. P. 1–24.; Pearce N. What does the odds ratio estimate in a case-control study? // Int. J. Epidemiol. 1993. V. 26. P. 1189–1192.; Png E., Alisjahbana B., Sahiratmadja E. et al. A genomewide association study of pulmonary tuberculosis susceptibility in Indonesians // BMC Medical Genetics. V. 13, № 5. P. 1–9.; Songane M., Kleinnijenhuis J., Alisjahbana B. et al. Polymorphisms in autophagy genes and susceptibility to tuberculosis // PLoS One. 2012. V. 7 (8). P. e41618.; Stein C.M., Zalwango S., Malone L.L. Genome scan of M. tuberculosis infection and disease in Ugandans // PLoSONE. 2008. V. 3, № 12. P. 1–10.; The Wellcome Trust Case Control Consortium. Genome-wide association study of 14000 cases of seven common diseases and 3000 share controls // Nature. 2007. V. 447. P. 661–683.; Thye T., Vannberg F., Wong S. et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2 // Nature Genome. 2010. V. 42, № 9. P. 739–741.; Vergne I., Singh S., Roberts E. et al. Autophagy in immune defense against Mycobacterium tuberculosis // Autophagy. 2006. V. 2, Iss. 3. P. 175–178.; Wong S.H., Hill A.V., Vannberg F.O. et al. Genome-wide association study of leprosy // N. Engl. J. Med. 2010. V. 362 (15). P. 1446–1447.; Zhernakova A., Van Diemen C.C., Wijmenga C. Detecting shared pathogenesis from the shared genetics of i mmunerelated diseases // Nat. Rev. Genet. 2009. V. 10 (1). P. 43–55.; https://bulletin.tomsk.ru/jour/article/view/340
-
16Academic Journal
Συγγραφείς: Рудко, Алексей, Фрейдин, Максим, Брагина, Елена, Ан, Адиля, Пузырёв, Валерий
Θεματικοί όροι: ТУБЕРКУЛЕЗ, БОЛЕЗНЬ КРОНА, CROHN'S DISEASE, ПОЛИМОРФИЗМ, ПОЛНОГЕНОМНЫЙ АНАЛИЗ АССОЦИАЦИЙ, ГЕНЫ-КАНДИДАТЫ, ПОДВЕРЖЕННОСТЬ, АССОЦИАЦИЯ
Περιγραφή αρχείου: text/html
-
17Academic Journal
Πηγή: Вестник Адыгейского государственного университета. Серия 4: Естественно-математические и технические науки.
Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, ОРГАНИЗАЦИЯ ПО ИЗУЧЕНИЮ ГЕНОМА ЧЕЛОВЕКА,ПОЛНОГЕНОМНЫЙ АНАЛИЗ АССОЦИАЦИЙ,ПРОЕКТ 'МИКРОБИОМ ЧЕЛОВЕКА',ОДИНОЧНЫЙ НУКЛЕОТИДНЫЙ ПОЛИМОРФИЗМ,СИГНАТУРЫ ГЕНОВ,АНАЛИЗ МАССИВОВ ДАННЫХ,HUMAN GENOME ORGANIZATION,GENOME-WIDE ASSOCIATION STUDIES,HUMAN MICROBIOME PROJECT,SINGLE NUCLEOTIDE POLYMORPHISM,GENE SIGNATURES,ARRAY ANALYSES, 3. Good health
Περιγραφή αρχείου: text/html
-
18Academic Journal
Πηγή: Вестник Санкт-Петербургского университета. Серия 11. Медицина.
Θεματικοί όροι: ЦЕЛИАКИЯ,CELIAC DISEASE,ИММУННО-ОПОСРЕДОВАННЫЕ БОЛЕЗНИ,ПОЛНОГЕНОМНЫЙ АНАЛИЗ АССОЦИАЦИЙ,GENOME-WIDE ASSOCIATION STUDIES,HLA-ГЕНЫ,IMMUNE-RELATED DISEASE,GWAS,HLA-GENE, 3. Good health
Περιγραφή αρχείου: text/html
-
19Academic Journal
Πηγή: Бюллетень сибирской медицины.
Θεματικοί όροι: 0301 basic medicine, 03 medical and health sciences, ТУБЕРКУЛЕЗ, БОЛЕЗНЬ КРОНА, CROHN'S DISEASE, ПОЛИМОРФИЗМ, ПОЛНОГЕНОМНЫЙ АНАЛИЗ АССОЦИАЦИЙ, ГЕНЫ-КАНДИДАТЫ, ПОДВЕРЖЕННОСТЬ, АССОЦИАЦИЯ, 3. Good health
Περιγραφή αρχείου: text/html