Εμφανίζονται 1 - 20 Αποτελέσματα από 295 για την αναζήτηση '"полихимиотерапия"', χρόνος αναζήτησης: 0,71δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: TRAUMA; Том 20, № 5 (2019); 78-83
    ТРАВМА; Том 20, № 5 (2019); 78-83

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 23, № 3 (2024); 178-185 ; Сибирский онкологический журнал; Том 23, № 3 (2024); 178-185 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3130/1245; Мамонтов А.С., Франк Г.А., Кузнецов В.В. Мелкоклеточный рак пищевода. Российский онкологический журнал. 2005; (1): 52–4.; Gollard R., Ellis C., VanderHarten C. Small cell/neuroendocrine tumors of the esophagus: presentation of two cases and review of the literature. Tumori. 2010; 96(5): 780–3. doi:10.1177/030089161009600524.; Wu Z., Ma J.Y., Yang J.J., Zhao Y.F., Zhang S.F. Primary small cell carcinoma of esophagus: report of 9 cases and review of literature. World J Gastroenterol. 2004; 10(24): 3680–2. doi:10.3748/wjg.v10.i24.3680.; Alfayez M. Primary small cell oesophageal carcinoma: A retrospective study of different ‎treatment modalities. World J Clin Oncol. 2020; 11(10): 836–43. doi:10.5306/wjco.v11.i10.836.; Miao H., Li R., Chen D., Hu J., Chen Y., Wen Z. Survival outcomes and prognostic factors of primary small cell carcinoma of the esophagus. J Thorac Dis. 2021; 13(5): 2790–802. doi:10.21037/jtd-20-3334.; Wang H.H., Zaorsky N.G., Meng M.B., Wu Z.Q., Zeng X.L., Jiang B., Jiang C., Zhao L.J., Yuan Z.Y., Wang P. Multimodality therapy is recommended for limited-stage combined small cell esophageal carcinoma. Onco Targets Ther. 2015; 8: 437–44. doi:10.2147/OTT.S76048.; Meng M.B., Zaorsky N.G., Jiang C., Tian L.J., Wang H.H., Liu C.L., Wang J., Tao Z., Sun Y., Wang J., Pang Q.S., Zhao L.J., Yuan Z.Y., Ping W. Radiotherapy and chemotherapy are associated with improved outcomes over surgery and chemotherapy in the management of limited-stage small cell esophageal carcinoma. Radiother Oncol. 2013; 106(3): 317–22. doi:10.1016/j.radonc.2013.01.008.; Wu Y.H., Zhang K., Chen H.G., Wu W.B., Li X.J., Zhang J. Primary small cell esophageal carcinoma, chemotherapy sequential immunotherapy: A case report. World J Clin Cases. 2021; 9(22): 6478–84. doi:10.12998/wjcc.v9.i22.6478.; Ji A., Jin R., Zhang R., Li H. Primary small cell carcinoma of the esophagus: progression in the last decade. Ann Transl Med. 2020; 8(7): 502. doi:10.21037/atm.2020.03.214.; Akiyama Y., Iwaya T., Shioi Y., Endo F., Chiba T., Otsuka K., Nitta H., Koeda K., Mizuno M., Uesugi N., Kimura Y., Sasaki A. Effectiveness of neoadjuvant chemotherapy with cisplatin and irinotecan followed by surgery on small-cell carcinoma of the esophagus: A case report. Int J Surg Case Rep. 2015; 17: 121–5. doi:10.1016/j.ijscr.2015.11.005.; Kakeji Y., Oshikiri T., Takiguchi G., Kanaji S., Matsuda T., Nakamura T., Suzuki S. Multimodality approaches to control esophageal cancer: development of chemoradiotherapy, chemotherapy, and immunotherapy. Esophagus. 2021; 18(1): 25–32. doi:10.1007/s10388-020-00782-1.; Pacheco J.M. Immunotherapy for extensive stage small cell lung cancer. J Thorac Dis. 2020; 12(10): 6212–24. doi:10.21037/jtd.2020.01.37.; Гамаюнов С.В., Шегурова М.М., Овчинникова Е.Г., Шумская И.С., Клейментьева Т.П. Опыт применения атезолизумаба в комбинированной терапии мелкоклеточного рака легкого: анализ собственных данных. Онкология. Журнал им. П.А. Герцена. 2022; 11(3): 36–40. doi:10.17116/onkolog20221103136.; Al Mansoor S., Ziske C., Schmidt-Wolf I.G. Primary small cell carcinoma of the esophagus: patient data metaanalysis and review of the literature. Ger Med Sci. 2013; 11. doi:10.3205/000180.; Zou B., Li T., Zhou Q., Ma D., Chen Y., Huang M., Peng F., Xu Y., Zhu J., Ding Z., Zhou L., Wang J., Ren L., Yu M., Gong Y., Li Y., Chen L., Lu Y. Adjuvant Therapeutic Modalities in Primary Small Cell Carcinoma of Esophagus Patients: A Retrospective Cohort Study of Multicenter Clinical Outcomes. Medicine (Baltimore). 2016; 95(17). doi:10.1097/MD.0000000000003507.; https://www.siboncoj.ru/jour/article/view/3130

  4. 4
    Academic Journal

    Συνεισφορές: the research was partially funded by a grant from the non-profit organization Foundation for the Support of Scientific Research in Oncology (RakFond) to conduct a research project in the field of oncology, with funding program code 202002. Any opinions presented in this study, the data obtained and the conclusions belong to the authors and do not necessarily reflect the opinion of the RakFond., часть работы была профинансирована грантом некоммерческой организации «Фонд поддержки научных исследований в онкологии» (РакФонд) на проведение научно-исследовательского проекта в области онкологии, код программы финансирования 2020 02. Любые представленные в работе мнения, полученные данные и выводы принадлежат авторам и не обязательно отражают мнение РакФонда.

    Πηγή: Research and Practical Medicine Journal; Том 11, № 4 (2024); 8-22 ; Research'n Practical Medicine Journal; Том 11, № 4 (2024); 8-22 ; 2410-1893 ; 10.17709/2410-1893-2024-11-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/1058/659; Sedeta ET, Jobre B, Avezbakiyev B. Breast cancer: Global patterns of incidence, mortality, and trends. Journal of Clinical Oncology. 2023;41(16 Suppl):10528–10528. doi:10.1200/jco.2023.41.16_suppl.10528; Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). Под ред. А.Д. Каприна. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2024, 276 с. Доступно по: https://oncology-association.ru/wp-content/uploads/2024/08/zis-2023-elektronnaya-versiya.pdf Дата обращения: 22. 11. 2024; Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Long‑term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta‑analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018 Jan;19(1):27–39. doi:10.1016/s1470‑2045(17)30777‑5; Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long‑term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014 Jul 12;384(9938):164–172. doi:10.1016/s0140‑6736(13)62422‑8 Erratum in: Lancet. 2019 Mar 9;393(10175):986. doi:10.1016/s0140‑6736(18)32772‑7; Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998 Aug;16(8):2672–2685. doi:10.1200/jco.1998.16.8.2672; Geng C, Chen X, Pan X, Li J. The Feasibility and Accuracy of Sentinel Lymph Node Biopsy in Initially Clinically Node‑Negative Breast Cancer after Neoadjuvant Chemotherapy : A Systematic Review and Meta‑Analysis. PLoS One. 2016 Sep 8;11(9):e0162605. doi:10.1371/journal.pone.0162605; Barrett T, Bowden DJ, Greenberg DC, Brown CH, Wishart GC, Britton PD. Radiological staging in breast cancer: which asymptomatic patients to image and how. Br J Cancer. 2009 Nov 3;101(9):1522–1528. doi:10.1038/sj.bjc.6605323; Bennett IC, Saboo A. The Evolving Role of Vacuum Assisted Biopsy of the Breast: A Progression from Fine‑Needle Aspiration Biopsy. World J Surg. 2019 Apr;43(4):1054–1061. doi:10.1007/s00268‑018‑04892‑x; van Loevezijn AA, van der Noordaa MEM, van Werkhoven ED, Loo CE, Winter‑Warnars GAO, Wiersma T, et al. Minimally Invasive Complete Response Assessment of the Breast After Neoadjuvant Systemic Therapy for Early Breast Cancer (MICRA trial): Interim Analysis of a Multicenter Observational Cohort Study. Ann Surg Oncol. 2021 Jun;28(6):3243–3253. doi:10.1245/s10434‑020‑09273‑0; Vacuum Assisted Biopsy and Surgery Correlation in HER2 and TN Breast Cancer Subtypes MRI Responders After Neoadjuvant Therapy: BISUCO TRIAL NCT06371989. Доступно по: https://clinicaltrials.gov/study/NCT06371989?a=1 Дата обращения: 27. 11. 2024; Heil J, Pfob A, Sinn HP, Rauch G, Bach P, Thomas B, et al.; RESPONDER Investigators. Diagnosing Pathologic Complete Response in the Breast After Neoadjuvant Systemic Treatment of Breast Cancer Patients by Minimal Invasive Biopsy: Oral Presentation at the San Antonio Breast Cancer Symposium on Friday, December 13, 2019, Program Number GS5‑03. Ann Surg. 2022 Mar 1;275(3):576–581. doi:10.1097/sla.0000000000004246; Максимов К. В., Багдасарова Д. В., Зикиряходжаев А. Д., Коломейцева А. А., Мазо М. Л., Суркова В. С., и др. Изучение эффективности вакуум‑аспирационной биопсии молочной железы у больных с полным клиническим ответом после неоадъювантной полихимиотерапии в комплексном лечении рака молочной железы. Research'n Practical Medicine Journal. 2023;10(4):92–103. doi:10.17709/2410‑1893‑2023‑10‑4‑8 EDN: EDOTQS; Зикиряходжаев А. Д., Волченко Н. Н., Рожкова Н. Н., Феденко А. А., Коломейцева А. А., Максимов К. В., и др. Изучение эффективности мультифокальной биопсии молочной железы у больных с полным клиническим ответом после неоадъювантной полихимиотерапии в комплексном лечении рака молочной железы. Онкология. Журнал им. П.А. Герцена. 2022;11(6):5–11. doi:10.17116/onkolog2022110615; Максимов К. В., Багдасарова Д. В., Каприн А. Д., Зикиряходжаев А. Д., Суркова В. С., Мазо М. Л., и др. Сравнение промежуточных результатов эффективности мультифокальной биопсии и вакуум‑аспирационной биопсии молочной железы в оценке патоморфологического ответа у больных раком молочной железы с полным клиническим ответом после неоадъювантной полихимиотерапи. Вопросы онкологии. 2023;69(6):1057–1064. doi:10.37469/0507‑3758‑2023‑69‑6‑1057‑1064; Криворотько П. В., Мортада В. В., Песоцкий Р. C., Артемьева А. С., Емельянов А. С., Ерещенко С. С., и др. Точность трепанобиопсии молочной железы под ультразвуковой навигацией после неоадъювантной системной терапии для прогнозирования полного патоморфологического регресса опухоли. Опухоли женской репродуктивной системы. 2022;18(3):29–39. doi:10.17650/1994‑4098‑2022‑18‑3‑29‑39; Krivorotko PS, Yerechshenko S, Emelyanov A, Busko E, Tabagua T, Novikov S, et al. 125P De‑escalation of breast cancer surgery after neoadjuvant systemic therapy in cCR/pCR patients confirmed by vacuum‑assisted biopsy (VAB) and SLNB: A first report of the prospective non‑randomized trial results. Annals of Oncology. 2022;33:S180–S180. doi:10.1016/j.annonc.2022.03.142; Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018 Aug;170(3):559–567. doi:10.1007/s10549‑018‑4801‑3; Fowler AM, Mankoff DA, Joe BN. Imaging Neoadjuvant Therapy Response in Breast Cancer. Radiology. 2017 Nov;285(2):358–375. doi:10.1148/radiol.2017170180; Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty‑year follow‑up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002 Oct 17;347(16):1233–1241. doi:10.1056/nejmoa022152; van Ramshorst MS, Loo CE, Groen EJ, Winter‑Warnars GH, Wesseling J, van Duijnhoven F, et al. MRI predicts pathologic complete response in HER2‑positive breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat. 2017 Jul;164(1):99–106. doi:10.1007/s10549‑017‑4254‑0; Sávolt Á, Péley G, Polgár C, Udvarhelyi N, Rubovszky G, Kovács E, et al. Eight‑year follow up result of the OTOASOR trial: The Optimal Treatment Of the Axilla ‑ Surgery Or Radiotherapy after positive sentinel lymph node biopsy in early‑stage breast cancer: A randomized, single centre, phase III, non‑inferiority trial. Eur J Surg Oncol. 2017 Apr;43(4):672–679. doi:10.1016/j.ejso.2016.12.011; Hennigs A, Riedel F, Marmé F, Sinn P, Lindel K, Gondos A, et al. Changes in chemotherapy usage and outcome of early breast cancer patients in the last decade. Breast Cancer Res Treat. 2016 Dec;160(3):491–499. doi:10.1007/s10549‑016‑4016‑4; Francis A, Herring K, Molyneux R, Jafri M, Trivedi S, Shaaban A, Rea DW. NOSTRA PRELIM: A non randomised pilot study designed to assess the ability of image guided core biopsies to detect residual disease in patients with early breast cancer who have received neoadjuvant chemotherapy to inform the design of a planned trial [abstract]. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium; 2016 Dec 6‑10; San Antonio, TX. Philadelphia (PA): AACR. Cancer Res 2017;77(4 Suppl). doi:10.1158/1538‑7445.sabcs16‑p5‑16‑14; https://www.rpmj.ru/rpmj/article/view/1058

  5. 5
    Academic Journal

    Συνεισφορές: 0

    Πηγή: Almanac of Clinical Medicine; Vol 52, No 1 (2024); 17-24 ; Альманах клинической медицины; Vol 52, No 1 (2024); 17-24 ; 2587-9294 ; 2072-0505

    Περιγραφή αρχείου: application/pdf

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Research and Practical Medicine Journal; Том 10, № 4 (2023); 92-103 ; Research'n Practical Medicine Journal; Том 10, № 4 (2023); 92-103 ; 2410-1893 ; 10.17709/2410-1893-2023-10-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/958/595; https://www.rpmj.ru/rpmj/article/view/958/605; Каприн А. Д., Старинский В. В., Шахзадова А. О. Состояние онкологической ̆ помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022, 239 c. Доступно по: https://oncology-association.ru/wp-content/uploads/2022/05/sostoyanie-onkologicheskoj-pomoshhi-naseleniyu-rossii-v-2021-godu.pdf. Дата обращения: 22.11.2023.; Bennett IC, Saboo A. The Evolving Role of Vacuum Assisted Biopsy of the Breast: A Progression from Fine-Needle Aspiration Biopsy. World J Surg. 2019 Apr;43(4):1054–1061. https://doi.org/10.1007/s00268-018-04892-x; Bennett I, de Viana D, Law M, Saboo A. Surgeon-Performed Vacuum-Assisted Biopsy of the Breast: Results from a Multicentre Australian Study. World J Surg. 2020 Mar;44(3):819–824. https://doi.org/10.1007/s00268-019-05266-7; Pistolese CA, Castrignanò A, Ricci F, Meucci R, Croce G, Mondillo M, et al. Ultrasound-Guided Vacuum-Assisted Biopsy in Small Breast: A Cost-Saving Solution. Clin Breast Cancer. 2019 Apr;19(2):e352–357. https://doi.org/10.1016/j.clbc.2018.12.002; Hennigs A, Riedel F, Marmé F, Sinn P, Lindel K, Gondos A, et al. Changes in chemotherapy usage and outcome of early breast cancer patients in the last decade. Breast Cancer Res Treat. 2016 Dec;160(3):491–499. https://doi.org/10.1007/s10549-016-4016-4; Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. 2012 Dec;48(18):3342–54. https://doi.org/10.1016/j.ejca.2012.05.023; Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018 Aug;170(3):559–567. https://doi.org/10.1007/s10549-018-4801-3; von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012 May 20;30(15):1796–804. https://doi.org/10.1200/jco.2011.38.8595; Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014 Jul 12;384(9938):164–72. https://doi.org/10.1016/s0140-6736(13)62422-8 . Erratum in: Lancet. 2019 Mar 9;393(10175):986.; Croshaw R, Shapiro-Wright H, Svensson E, Erb K, Julian T. Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients. Ann Surg Oncol. 2011 Oct;18(11):3160–3. htt ://doi.org/10.1245/s10434-011-1919-5; Kuerer HM, Rauch GM, Krishnamurthy S, Adrada BE, Caudle AS, DeSnyder SM, et al. A Clinical Feasibility Trial for Identification of Exceptional Responders in Whom Breast Cancer Surgery Can Be Eliminated Following Neoadjuvant Systemic Therapy. Ann Surg. 2018 May;267(5):946–951. https://doi.org/10.1097/sla.0000000000002313; van Loevezijn AA, van der Noordaa MEM, van Werkhoven ED, Loo CE, Winter-Warnars GAO, Wiersma T, et al. Minimally Invasive Complete Response Assessment of the Breast After Neoadjuvant Systemic Therapy for Early Breast Cancer (MICRA trial): Interim Analysis of a Multicenter Observational Cohort Study. Ann Surg Oncol. 2021 Jun;28(6):3243–3253. https://doi.org/10.1245/s10434-020-09273-0; Refusal of Breast Surgery in Patients With Breast Cancer With a Clinical Complete Response (cCR) After Neoadjuvant Systemic Therapy and a Confirmed Pathological Complete Response (pCR) Using Vacuum-assisted Biopsy (VAB) and Sentinel Lymph Node Biopsy (SLNB) (VAB). Доступно по: https://clinicaltrials.gov/ct2/show/NCT04293796?cond=refusal+of+breast+surgery&draw=2&rank=1; Rauch GM, Kuerer HM, Adrada B, Santiago L, Moseley T, Candelaria RP, et al. Biopsy Feasibility Trial for Breast Cancer Pathologic Complete Response Detection after Neoadjuvant Chemotherapy: Imaging Assessment and Correlation Endpoints. Ann Surg Oncol. 2018 Jul;25(7):1953–1960. https://doi.org/10.1245/s10434-018-6481-y; Goldstein NS, Decker D, Severson D, Schell S, Vicini F, Margolis J, Dekhne NS. Molecular classification system identifies invasive breast carcinoma patients who are most likely and those who are least likely to achieve a complete pathologic response after neoadjuvant chemotherapy. Cancer. 2007 Oct 15;110(8):1687–96. https://doi.org/10.1002/cncr.22981; Heil J, Pfob A, Sinn HP, Rauch G, Bach P, Thomas B, et al.; RESPONDER Investigators. Diagnosing Pathologic Complete Response in the Breast After Neoadjuvant Systemic Treatment of Breast Cancer Patients by Minimal Invasive Biopsy: Oral Presentation at the San Antonio Breast Cancer Symposium on Friday, December 13, 2019, Program Number GS5-03. Ann Surg. 2022 Mar 1;275(3):576581. https://doi.org/10.1097/sla.0000000000004246; Tasoulis MK, Heil J, Kuerer HM. De-escalating Surgery Among Patients with HER2 + and Triple Negative Breast Cancer. Curr Breast Cancer Rep. 2022;14(4):135–141. https://doi.org/10.1007/s12609-022-00453-3; Heil J, Richter H, Golatta M, Sinn HP. Vacuum-Assisted Biopsy to Diagnose a Pathological Complete Response in Breast Cancer Patients After Neoadjuvant Systemic Therapy. Ann Surg. 2018 Dec;268(6):e60-e61. https://doi.org/10.1097/sla.0000000000002572; https://www.rpmj.ru/rpmj/article/view/958

  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal

    Πηγή: Medicine in Kuzbass; Том 21, № 1 (2022): март; 20-24 ; Медицина в Кузбассе; Том 21, № 1 (2022): март; 20-24 ; 2588-0411 ; 1819-0901

    Περιγραφή αρχείου: application/pdf; text/html

  13. 13
    Academic Journal

    Συνεισφορές: The study was performed with the financial support of the Russian Foundation for Basic Research within the framework of scientific project №18-51576002, scientific grant “The neuregulin-1 pathway in development and progression cardiovascular disease: identification of small molecule ErbB4 agonists and identification of patient populations that could benefit the most"., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №18-515-76002, научного гранта «Роль Нейре-гулина-1 в развитии и прогрессировании сердечно-сосудистой патологии: выявление агониста ErbB4 рецептора и приоритетных групп терапии».

    Πηγή: Rational Pharmacotherapy in Cardiology; Vol 18, No 4 (2022); 385-392 ; Рациональная Фармакотерапия в Кардиологии; Vol 18, No 4 (2022); 385-392 ; 2225-3653 ; 1819-6446

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2787/2335; Васюк Ю.А., Гендлин Г.Е., Емелина Е.И., и др. Согласованное мнение Российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский Кардиологический Журнал. 2021;26(9):4703. DOI:10.15829/1560-4071-2021-4703.; Erichsen R, Christiansen CF, Mehnert F, et al. Colorectal cancer and risk of atrial fibrillation and flutter: a population-based case-control study. Intern Emerg Med. 2012;7(5):431-8. DOI:10.1007/s11739-011-0701-9.; Saliba W, Rennert HS, Gronich N, et al. Association of atrial fibrillation and cancer: Analysis from two large population-based case-control studies. PLoS ONE. 2018;13(1):e0190324. DOI:10.1371/journal. pone.0190324.; Goette A, Kahan JM, Aguinaga L, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical irnplication. Ep Europace. 2016;18(10):1455-90. DOI:10.1093/europace/euw161.; Wang L, Wang F, Chen L, et al. Long-term cardiovascular disease mortality among 160 834 5-year survivors of adolescent and young adult cancer: an American population-based cohort study. Eur Heart J. 2021;42(1):101-9. DOI:10.1093/eurheartj/ehaa779.; Ewer MS, Lipprnnan SM. Type II chemotherapy-related cardiac dysfunction: trne to recognize a new entity. J Clin Oncol. 2005;23(13):2900-2. DOI:10.1200/JCO.2005.05.827.; Packer M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J Am Coll Cardiol. 2018;71(20):2360-72. DOI:10.1016/j.jacc.2018.03.509.; Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13(Suppl 1):S31-S34. DOI:10.4103/sja.SJA_543_18.; Lang RM, Badano PL, Luigi P, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233-71. DOI:10.1093/ehjci/jev014.; Павлюкова Е.Н., Кужель Д.А., Матюшин Г.В. Функция левого предсердия: современные методы оценки и клиническое значение. Рациональная Фармакотерапия в Кардиологии. 2017;13(5):675-83. DOI:10.20996/1819-6446-2017-13-5-675-683.; Pathan F, D'Elia N, Nolan MT, et al. Nornal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systernatic Review and Meta-Analysis. J Am Soc Echocardiogr 2017;30(1):59-70. DOI:10.1016/j.echo.2016.09.007.12.; Guha A, Fradley MG, Dent SF, et al. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: a SEER-Medicare analysis. Eur Heart J. 2022;43(4):300-12. DOI:10.1093/eurheartj/ehab745.; Lopez-Fernandez T, Martin-Garcia A, Roldan Rabadan I, et al. Atrial Fibrillation in Active Cancer Patients: Expert Position Paper and Recommendations. Rev Esp Cardiol (Engl Ed). 2019;72(9):749-59. DOI:10.1016/j.rec.2019.03.019.; Chu G, Versteeg HH, Verschoor AJ, et al. Atrial fibrillation and cancer - An unexplored field in cardiovascular oncology. Blood Rev. 2019;35:59-67.DOI:10.1016/j.blre.2019.03.005.; Inciardi RM, Rossi A. Left atriurn: a forgotten biornarker and a potential target in cardiovascular rnedicine. J Cardiovasc Med (Hagerstown). 2019;20(12):797-808. DOI:10.2459/JCM.0000000000000886.; Tadic M, Genger M, Cuspidi C, et al. Phasic Left Atrial Function in Cancer Patients Before Initiation of Anti-Cancer Therapy. J Clin Med. 2019;8(4):421. DOI:10.3390/jcrn8040421.; Laufer-Perl M, Arias O, Dortaan SS, et al. Left Atrial Strain changes in patients with breast cancer during anthracycline therapy. Int J Cardiol. 2021;330:238-44. DOI:10.1016/j.ijcard.2021.02.013.; Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108(24):3006-10. DOI:10.1161/01.CIR.0000103131.70301.4F.; Zhang H, Li J, Chen X, et al. Association of Systernic Inflammation Score With Atrial Fibrillation: A Case-Control Study With Propensity Score Matching. Heart Lung Circ. 2018;27(4):489-96. DOI:10.1016/j.hlc.2017.04.007.; Lee J, Singh N, Howe C, et al. Colchicine for Prevention of Post-Operative Atrial Fibrillation: A MetaAnalysis. JACC Clinical Electrophysiology. 2016;2(1):78-85. DOI:10.1016/j.jacep.2015.09.016.; https://www.rpcardio.com/jour/article/view/2787

  14. 14
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 12, № 1 (2022); 53-64 ; Опухоли головы и шеи; Том 12, № 1 (2022); 53-64 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/736/514; Damato B. Ocular tumors: diagnosis and treatment. Oxford: Butterworth Heinemann, 2000. 288 p.; Офтальмоонкология: руководство для врачей. Под ред. А.Ф. Бровкиной. М.: Медицина, 2002. С. 296–298.; Гришина Е.Е. Метастатическое поражение органа зрения. Клиническая офтальмология 2001;2(1):15–8.; Namad T., Wang J., Tilton A. et al. Case report bilateral choroidal metastasis from nonsmall cell lung cancer. Case Rep Oncol Med 2014;2014. DOI:10.1155/2014/858265.; Ergenc H., Onmez A., Oymak E. et al. Bilateral choroidal metastases from lung adenocarcinoma: a case report. Case Rep Oncol 2016;9(3):530–6. DOI:10.1159/000449154.; Arepalli S., Kaliki S., Shields C.L.C. Choroidal metastases: origin, features, and therapy. Indian J Ophthalmol 2015;63(2):122–7. DOI:10.4103/03014738.154380.; Walls G., Napier S., Stewart D. Visual impairment due to bilateral multifocal choroidal metastasis of parotid adenocarcinoma: a case report. Front Oncol 2014;4:136. DOI:10.3389/fonc.2014.00136.; Levison A.L., Erenler F., Zhao Y. et al. Lateonset choroidal metastasis from breast cancer. Retin Cases Br Rep 2018;12(4):342–5. DOI:10.1097/ICB.0000000000000516.; Mathis T., Jardel P., Loria O. et al. New concepts in the diagnosis and management of choroidal metastases. Prog Retin Eye Res 2019;68:144–76. DOI:10.1016/j.preteyeres.2018.09.003.; Veckeneer M., Derycke L., Lindstedt E. et al. Persistent subretinal fluid after surgery for rhegmatogenous retinal detachment: hypothesis and review. Graefes Arch Clin Exp Ophthalmol 2012;250(6):795–802. DOI:10.1007/S004170111870Y.; Стоюхина А.С. Динамика метастатического поражения хориоидеи на фоне полихимиотерапии (клинический случай). Точка зрения Восток–Запад 2021;(2):94–8. DOI:10.25276/24101257202129498.; Грабовой А.Н., Тарасова Т.О., Кошубарова М.В. Гистологическая оценка ответа опухоли на химио/лучевую терапию. Клиническая онкология 2012;2(6):138–43.; Франк Г.А., Илатовская М.Е., Андреева Ю.Ю., Завалишина Л.Э. Роль и критерии оценки морфологического регресса рака молочной железы после неоадъювантной терапии. Современная онкология 2015;17(2):30–4.; Мозеров С.А., Комин Ю.А., Мозерова Е.С., Красовитова О.В. Морфологические и клинические изменения рака желудка после неоадъювантной химиолучевой терапии (обзор литературы). Международный журнал прикладных и фундаментальных исследований 2016;(6):59–64. DOI:10.17513/MJPFI.9550; https://ogsh.abvpress.ru/jour/article/view/736

  15. 15
  16. 16
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 8, № 3 (2021); 86-96 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 8, № 3 (2021); 86-96 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/747/680; Phillips S.M., Padgett L.S., Leisenring W.M., Stratton K.K., Bishop K., Krull K.R., Alfano C.M., Gibson T.M., de Moor J.S., Hartigan D.B., Armstrong G., Robison L.L., Rowland J.H., Oeffinger K.C., Mariotto A.B. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomarkers Prev 2015;24(4):653–63. doi:10.1158/1055-9965.EPI-14-1418.; Pui C.-H., Robison L.L., Look A.T. Acute lymphoblastic leukaemia. Lancet 2008;371(9617):1030–43. doi:10.1016/S0140-6736(08)60457-2.; Злодеева Е.А., Резник Н.В., Вялкова А.А., Сидоренко Л.В. Состояние здоровья пациентов, получивших противоопухолевое лечение в детском возрасте, и проблемы реабилитации на региональном уровне. Педиатрический вестник Южного Урала 2018;(1):22–9. [Zlodeeva E.A., Reznik N.V., Vyalkova A.A., Sidorenko L.V. The health status of patients who received antitumor treatment in childhood, and the problems of rehabilitation at the regional level. Pediatricheskiy vestnik Yuzhnogo Urala = Pediatric Bulletin of the South Urals 2018;(1):22–9. (In Russ.)].; Applebaum M.A., Cohn S.L. Surveillance of Childhood Cancer Survivors: A Lifelong Affair. J Clin Oncol 2015;33(31):3531–2. doi:10.1200/JCO.2015.62.7703.; Обухов Ю.А., Карелин А.Ф. Контроль здоровья ротовой полости детей и подростков, перенесших лечение злокачественных новообразований. Педиатрический вестник Южного Урала 2018;(2):63–72. [Obukhov Yu.A., Karelin A.F. Monitoring the oral health of children and adolescents who have undergone treatment for malignant neoplasms. Pediatricheskiy vestnik Yuzhnogo Urala = Pediatric Bulletin of the South Urals 2018;(2):63–72. (In Russ.)].; Mladosievičová B., Jurkovič R., Izakovičová H.L. Dental abnormalities after treatment for childhood cancer. Klin Onkol 2015;28(1):20–3. doi:10.14735/amko201520.; Yeazel M.W., Gurney J.G., Oeffinger K.C., Mitby P.A., Mertens A.C., Hudson M.M., Robison L.L. An examination of the dental utilization practices of adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Public Health Dent Winter 2004;64(1):50–4. doi:10.1111/j.1752-7325.2004.tb02726.x.; Landier W., Armenian S., Bhatia S. Late effects of childhood cancer and its treatment. Pediatr Clin North Am 2015;62(1):275–300. doi:10.1016/j.pcl.2014.09.017.; Sonoyama W., Liu Y., Fang D., Yamaza T., Seo B.M., Zhang C., Liu H., Gronthos S., Wang C.Y., Wang S., Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006;1(1):e79. doi:10.1371/journal.pone.0000079.; Witkowska-Zimny M. Dental Tissue as a Source of Stem Cells: Perspectives for Teeth Regeneration. J Bioengineer Biomedical Sci 2011;S2. doi:10.4172/2155-9538.S2-006.; Abe S., Yamaguchi S., Watanabe A., Hamada K., Amagasa T. Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys Res Commun 2008;371(1):90–3. doi:10.1016/j.bbrc.2008.04.016.; Carter K., Worthington S. Morphologic and Demographic Predictors of Third Molar Agenesis: A Systematic Review and Meta-analysis. J Dent Res 2015;94(7):886–94. doi:10.1177/0022034515581644.; Nieminen P. Genetic basis of tooth agenesis. J Exp Zool B Mol Dev Evol 2009;312B(4):320–42. doi:10.1002/jez.b.21277.; Neto O.L.C., Reis M.F., de Sabóia T.M., Tannure P.N., Antunes L.S., Antonio A.G. Clinical and Genetic Analysis of a Nonsyndromic Oligodontia in a Child. Case Rep Dent 2014;2014:137621. doi:10.1155/2014/137621.; Pekka L.G., Antonini H., Luder H.U. Discoloration of teeth from tetracyclines – even today? Schweiz Monatsschr Zahnmed 2011;121(5):414–31. PMID: 21656385.; Mitsiadis T.A., Luder H.U. Genetic basis for tooth malformations: from mice to men and back again. Clin Genet 2011;80(4):319–29. doi:10.1111/j.1399-0004.2011.01762.x.; Lei K.E., Wang L., Ma B., Shi P., Li L., Che T., He X. Effect of an EDA-A1 gene mutant on the proliferation and cell cycle distribution of cultured human umbilical vein endothelial cells. Exp Ther Med 2016;11(2):535–9. doi:10.3892/etm.2015.2952.; Jumlongras D., Bei M., Stimson J.M., Wang W.F., DePalma S.R., Seidman C.E., Felbor U., Maas R., Seidman J.G., Olsen B.R. A nonsense mutation in MSX1 causes Witkop syndrome. Am J Hum Genet 2001;69(1):67–74. doi:10.1086/321271.; Bei M., Stowell S., Maas R. Msx2 Control Ameloblast Terminal Differentiaton Dev Dyn 2004;231(4):758–65. doi:10.1002/dvdy.20182.; Onnida W., Piranit N. Preaxial polydactyly associated with a MSX1 mutation and report of two novel mutations. Am J Med Genet A 2016;170A(1):254–9. doi:10.1002/ajmg.a.37417.; Jumlongras D., Lin J.Y., Chapra A., Seidman C.E., Seidman J.G., Maas R.L., Olsen B.R. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet 2004;114(3):242–9.doi:10.1007/s00439-003-1066-6.; Wang B., Li H., Liu Y., Lin X., Lin Y., Wang Y., Hu X., Zhang Y. Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. J Mol Histol 2014;45(5):487–96. doi:10.1007/s10735-014-9572-5.; van den Boogaard M.J., Créton M., Bronkhorst Y., van der Hout A., Hennekam E., Lindhout D., Cune M., Ploos van Amstel H.K. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet 2012;49(5):327–31. doi:10.1136/jmedgenet-2012-100750.; He H., Han D., Feng H., Qu H., Song S., Bai B., Zhang Z. Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the Chinese population. PLoS One 2013;8(11):e80393. doi:10.1371/journal.pone.0080393.; Jumlongras D., Lachke S.A., O’Connell D.J., Aboukhalil A., Li X., Choe S.E., Ho J.W.K., Turbe-Doan A., Robertson E.A., Olsen B.R., Bulyk M.L., Amendt B.A., Maas R.L. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud. PLoSOne 2012;7(6):e38568. doi:10.1371/journal.pone.0038568.; Maciel J.C., de Castro C.G. Jr, Brunetto A.L., Di Leone L.P., da Silveira H.E. Oral health and dental anomalies in patients treated for leukemia in childhood and adolescence. Pediatr Blood Cancer 2009;53(3):361–5. doi:10.1002/pbc.22108.; Burden D., Mullally B., Sandler J. Orthodontic treatment of patients with medical disorders. Eur J Orthod 2001;23(4):363–72. doi:10.1093/ejo/23.4.363.; Kaste S.C., Goodman P., Leisenring W., Stovall M., Hayashi R.J., Yeazel M., Beiraghi S., Hudson M.M., Sklar C.A., Robison L.L., Baker K.S. Impact of radiation and chemotherapy on risk of dental abnormalities: a report from the Childhood Cancer Survivor Study. Cancer 2009;115(24):5817–27. doi:10.1002/cncr.24670.; Garming Legert K., Remberger M., Ringdèn O., Heimdahl A., Dahllöf G. Salivary secretion in children after fractionated or singledose TBI. Bone Marrow Transplant 2012;47(3):404–10. doi:10.1038/bmt.2011.96.; Holtta P., Alaluusua S., Saarinen-Pihkala U.M., Peltola J., Hovi L. Agenesis and Microdontia of Permanent Teeth as Late Adverse Effects after Stem Cell Transplantation in Young Children Cancer 2005;103(1):181–90. doi:10.1002/cncr.20762.; Näsman M., Hammarstrom L. Influence of the antineoplastic agent cyclophosphamide on dental development in rat molars. Acta Odontol Scand 1996;54(5):287–94. doi:10.3109/00016359609003540.; Lyaruu D.M., van Duin M.A., Bervoets T.J., Woltgens J.H., Bronckers A.L. Effects of actinomycin D on developing hamster molar tooth germs in vitro. Eur J Oral Sci 1997;105(1):52–8. doi:10.1111/j.1600-0722.1997.tb00180.x.; Koppang H.S. Histomorphologic investigations on the effect of cyclophosphamide on dentinogenesis of the rat incisor. Scand J Dent Res 1973;81(5):383–96. doi:10.1111/j.1600-0722.1973.tb00341.x.; Kawakami T., Nakamura Y., Karibe H. Cyclophosphamide inhibits root development of molar teeth in growing mice. Odontology 2015;103(2):143–51. doi:10.1007/s10266-014-0158-1.; Anton E. Ultrastructural study of the effect of cyclophosphamide on the growth area of incisor teeth of DBA/2 and C57BL/6 mice. Int J Exp Pathol 1996;77(2):83–8. doi:10.1046/j.1365-2613.1996.00967.x.; Hsieh S.G., Hibbert S., Shaw P., Ahern V., Arora M. Association of cyclophosphamide use with dental developmental defects and salivary gland dysfunction in recipients of childhood antineoplastic therapy. Cancer 2011;117(10):2219–27. doi:10.1002/cncr.25704.; Stene T. Effect of vincristine on odontoblasts in rat incisor. Scand J Dent Res 1978;86(5):346–56. doi:10.1111/j.1600-0722.1978.tb00637.x.; Lyaruu D.M., van Duin M.A., Bervoets T.J., Woltgens J.H., Bronckers A.L. Effects of vincristine on the developing hamster tooth germ in vitro. Connect Tissue Res 1995;32(1–4):281–9. doi:10.3109/03008209509013735.; Karim A.C., Woltgens J.H., Bervoets T.J., Lyaruu D.M., Bronckers A.L. Effect of Adriamycin on hamster molar tooth development in vitro: 1. Morphological changes. Anat Rec 1989;225(4):318–28. doi:10.1002/ar.1092250408.; McGinnis J.P. Jr, Hopkins K.P., Thompson E.I., Hustu H.O. Mandibular third molar development after mantle radiation in longterm survivors of childhood Hodgkin’s disease. Oral Surg Oral Med Oral Pathol1987;63(5):630–3. doi:10.1016/0030-4220(87)90242-8.; Abe S., Hamada K., Yamaguchi S., Amagasa T., Miura M. Characterization of the radioresponse of human apical papilla-derived cells. Stem Cell Res Ther 2011;2(1):2. doi:10.1186/scrt 43.; Dahllof G., Jonsson A., Ulmner M., Huggare J. Orthodontic treatment in long-term survivors after pediatric bone marrow transplantation Am J Orthod Dentofacial Orthop 2001;120(5):459–65. doi:10.1067/mod.2001.118102.; Runge M.E., Edwards D.L. Orthodontic treatment for an adolescent with a history of acute lymphoblastic leukemia. Pediatr Denc 2000;22(6):494–8. PMID: 11132510.; Holtta P., Alaluusua S., Saarinen-Pihkala U.M., Wolf J., Nyström M., Hovi L. Long-term adverse effects on dentition in children with poorrisk neuroblastoma treated with high-dose chemotherapy and autologous stem cell transplantation with or without total body irradiation. Bone Marrow Transplant 2002;29(2):121–7. doi:10.1038/sj.bmt.1703330.; Vesterbacka M., Ringdén O., Remberger M., Huggare J., Dahllöf G. Disturbances in dental development and craniofacial growth in children treated with hematopoietic stem cell transplantation. Orthod Craniofac Res 2012;15(1):21–9. doi:10.1111/j.1601-6343.2011.01533.x.; Dahllöf G., Forsberg C.M., Borgstroöm B. Changes in craniofacial development induced by growth hormone therapy in children treated with bone marrow transplantation. Acta Paediatr 1994;83(11):1165–9. doi:10.1111/j.1651-2227.1994.tb18274.x.; de Souza Tolentino E., Centurion B.S., Ferreira L.H.C., de Souza A.P., Damante J.H., Rubira-Bullen I.R.F. Oral adverse effects of head and neck radiotherapy: literature review and suggestion of a clinical oral care guideline for irradiated patients J Appl Oral Sci 2011;19(5):448–54. doi:10.1590/S1678-77572011000500003.; Majhail N.S., Rizzo J.D., Lee S.J., Aljurf M., Atsuta Y., Bonfim C., Burns L.J., Chaudhri N., Davies S., Okamoto S., Seber A., Socie G., Szer J., Van Lint M.T., Wingard J.R., Tichelli A. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Bone Marrow Transplant 2012;47(3):337–41. doi:10.1038/bmt.2012.5.; Giebel S., Marks D.I., Boissel N., Baron F., Chiaretti S., Ciceri F., Cornelissen J.J., Doubek M., Esteve J., Fielding A., Foa R., Gorin N.-C., Gökbuget N., Hallböök H., Hoelzer D., Parоvichnikova E., Ribera J.-M., Savani B., Rijneveld A.W., Schmid C., WartiovaaraKautto U., Mohty M., Nagler A., Hervé D. Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2019;54(6):798–809. doi:10.1038/s41409-018-0373-4.; Duggal M.S. Root surface areas in long-term survivors of childhood cancer. Oral Oncol 2003;39(2):178–83. doi:10.1016/s1368-8375(02)00089-1.; Najafi S.H., Tohidastakrad Z., Momenbeitollahi J. The Long-Term Effects of Chemo Radiotherapy on Oral Health and Dental Development in Childhood Cancer. J Dent (Tehran) 2011;8(1):39–43. PMID: 21998806.; Nishimura S., Inada H., Sawa Y. Risk factors to cause tooth formation anomalies in chemotherapy of paediatric cancers. Eur J Cancer Care (Engl) 2013;22(3):353–60. doi:10.1111/ecc.12038.; Hutton A., Bradwell M., English M., Chapple I. The oral health needs of children after treatment for a solid tumour or lymphoma. Int J Paediatr Dent 2010;20(1):15–23. doi:10.1111/j.1365-263X.2009.00999.x.; Bagattoni S., D’Alessandro G., Prete A., Piana G., Pession A. Oral health and dental late adverse effects in children in remission from malignant disease. A pilot case-control study in Italian children Eur J Paediatr Dent 2014;15(1):45–50. Eur J Paediatr Dent 2014;15(1):45–50. PMID: 24745592.; Павлюковская Е.Г. Применение прибора спектрофотометр в стоматологической практике. Студенты и молодые ученые Белорусского государственного медицинского университета – медицинской науке и здравоохранению Республики Беларусь: сб. науч. тр. студентов и молодых ученых. Под ред. А.В. Сикорского, О.К. Дорониной. Минск: БГМУ, 2016. С. 317–320. [Pavlyukovskaya E.G. Application of the device spectrophotometer in dental practice. Students and young scientists of the Belarusian State Medical University – medical science and health care of the Republic of Belarus: collection of scientific papers students and young scientists. Edited by A.V. Sikorsky, O.K. Doronina. Minsk: BGMU, 2016.Pp. 317–320. (In Russ.)].; https://journal.nodgo.org/jour/article/view/747

  17. 17
  18. 18
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 3 (2020); 13-21 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 3 (2020); 13-21 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/620/566; Mossé Y.P., Deyell R.J., Berthold F., Nagakawara A., Ambros P.F., Monclair T., Cohn S.L., Pearson A.D., London W.B., Matthay K.K. Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer 2014;61(4):627–35. doi:10.1002/pbc.24777.; Spix C., Pastore G., Sankila R., Stiler C.A., Steliarova-Foucher E. Neuroblastoma incidence and survival in European children (1978‒1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer 2006;42(13):2081-91. doi:10.1016/j.ejca.2006.05.008.; Cohn S.L., Pearson A.D., London W.B., Monclair T., Ambros P.F., Brodeur G.M., Faldum A., Hero B., Iehara T., Machin D., Mosseri V., Simon T., Garaventa A., Castel V., Matthay K.K. The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. J Clin Oncol 2009;27(2):289‒97. doi:10.1200/JCO.2008.16.6785.; Morgenstern D.A., Pötschger U., Moreno L., Papadakis V., Owens C., Ash S., Pasqualini C., Luksch R., Garaventa A., Canete A., Elliot M., Wieczorek A., Laureys G., Kogner P., Malis J., Ruud E., Beck-Popovic M., Schleiermacher G., Valteau-Couanet D., Ladenstein R. Risk stratification of high-risk metastatic neuroblastoma: A report from the HR-NBL-1/SIOPEN study. Pediatr Blood Cancer 2018;65(11):e27363. doi:10.1002/pbc.27363.; Shinagawa T., Kitamura T., Katanoda K., Matsuda T., Ito Y., Sobue T. The incidence and mortality rates of neuroblastoma cases before and after the cessation of the mass screening program in Japan: A descriptive study. Int J Cancer 2017;140(3):618‒25. doi:10.1002/ijc.30482.; Conte M., Parodi S., De Bernardi B., Milanaccio C., Mazzocco K., Angelini P., Viscardi E., Di Cataldo A., Luksch R., Haupt R. Neuroblastoma in adolescents: the Italian experience. Cancer 2006;106(6):1409‒17. doi:10.1002/cncr.21751.; Duan X.F., Zhao Q. TERT-mediated and ATRX-mediated Telomere Maintenance and Neuroblastoma. J Pediatr Hematol Oncol 2018;40(1):1‒6. doi:10.1097/MPH.0000000000000840.; Suzuki M., Kushner B.H., Kramer K., Basu E.M., Roberts S.S., Hammond W.J., LaQuaglia M.P., Wolden S.L., Cheung N.K.V., Modak S. Treatment and Outcome of Adult-Onset Neuroblastoma. Int J Cancer 2018;143(5):1249‒58. doi:10.1002/ijc.31399.; Kazantsev I.V., Iukhta T.V., Gevorgian A.G., Tolkunova P.S., Shamin A.V., Baykov V.V., Vorobyov A.V., Kozlov A.V., Karsakova M.A., Kuga P.S., Shvetsov A.N., Morozova E.V., Safonova S.A., Punanov Yu.A., Zubarovskaya L.S., Afanasyev B.V. A long-term response to allogeneic hemopoietic stem cell transplantation from haploidentical donor and post-transplant therapy in an adolescent with primary resistant neuroblastoma. Cellular Therapy and Transplantation 2020;9(2):71‒6. doi:10.18620/ctt-1866-8836-2020-9-2-71-77.; Suzuki M., Kushner B.H., Kramer K., Roberts S.S., LaQuaglia M.P., Cheung N.K.V., Modak S. Anti-GD2 immunotherapy in adults with high-risk neuroblastoma (HR-NB): The Memorial Sloan Kettering Cancer Center (MSKCC) experience. J Clin Oncol 2017;35(15_s):10550. doi:10.1200/JCO.2017.35.15_suppl.10550.; Hertwig F., Peifer M., Fischer M. Telomere maintenance is pivotal for high-risk neuroblastoma. Cell Cycle 2016;15(3):311‒2. doi:10.1080/15384101.2015.1125243.; Zeineldin M., Federico S., Chen X., Fan Y., Xu B., Steward E., Zhou X., Jeon J., Griffiths L., Nguyen R., Norrie J., Easton J., Mulder H., Yergeau D., Liu Y., Wu J., Van Ryn C., Naranjo A., Hogarty M.D., Kamiński M.M., Valentine M., Pruett-Miller S.M., Pappo A., Zhang J., Clay M.R., Bahrami A., Vogel P., Lee S., Shelat A., Sarthy J.F., Meers M.P., George R.E., Mardis E.R., Wilson R.K., Henikoff S., Downing J.R., Dyer M.A. MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat Commun 2020;11(1):913. doi:10.1038/s41467-020-14682-6.; Duan K., Dickson B.C., Marrano P., Thorner P.S., Chung C.T. Adult-onset neuroblastoma: Report of seven cases with molecular genetic characterization. Genes Chromosomes Cancer 2020;59(4):240‒8. doi:10.1002/gcc.22826.; Ikegaki N., Shimada H; International Neuroblastoma Pathology Committee. Subgrouping of Unfavorable Histology Neuroblastomas With Immunohistochemistry Toward Precision Prognosis and Therapy Stratification. JCO Precis Oncol 2019;3:10.1200/PO.18.00312. doi:10.1200/PO.18.00312.; Казанцев И.В., Геворгян А.Г., Юхта Т.В., Толкунова П.С., Звягинцева Д.А., Козлов А.В., Голенкова М.С., Бабенко Е.В., Куга П.С., Швецов А.Н., Николаев И.Ю., Морозова Е.В., Сафонова С.А., Пунанов Ю.А., Зубаровская Л.С., Афанасьев Б.В. Интенсивная комплексная терапия пациентов с первично-резистентным течением и рецидивами нейробластомы: опыт НИИ ДОГиТ им. Р.М. Горбачевой. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2020;19(2):129‒40. doi:10.24287/1726-1708-2020-19-2-129-140.; Umpathy G., Mendoza-Garcia P., Hallberg B., Palmer R.H. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS 2019;127(5):288‒302. doi:10.1111/apm.12940.; Vasseur A., Cabel L., Geiss R., Schleiermacher G., Pierron G., Kamal M., Jehanno N., Bataillon G., Guinebretiere J.M., Bozec L. Efficacy of Lorlatinib in Primary Crizotinib-Resistant Adult Neuroblastoma Harboring ALKY1278S Mutation. JCO Precis Oncol 2019;3:1‒5. doi:10.1200/PO.18.00396.; https://journal.nodgo.org/jour/article/view/620

  19. 19
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 1 (2020); 31-40 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 1 (2020); 31-40 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/572/533; Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev 2010;36(4):277–85. doi:10.1016/j.ctrv.2010.02.003.; Arya L., Dinand V. Current Strategies in the Treatment of Childhood Hodgkin’s Disease. Ind Ped 2005;42:1115–28. PMID: 16340052.; Hochberg J., Waxman I.M., Kelly K.M., Morris E., Cairo M.S. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol 2009;144(1):24–40. doi:10.1111/j.1365-2141.2008.07393.x.; Ekstrand B., Horning S. Hodgkin’s Disease. Blood rev 2002;16(2):111–7. doi:10.1054/blre.2002.0190.; Georgakis M.K., Karalexi M.A., Agius D., Antunes L., Bastos J., Coza D., Demetriou A., Dimitrova N., Eser S., Florea M., Ryzhov A., Sekerija M., Žagar T., Zborovskaya A., Zivkovic S., Bouka E., Kanavidis P., Dana H., Hatzipantelis E., Kourti M., Moschovi M., Polychronopoulou S., Stiakaki E., Kantzanou Μ., Pourtsidis A., Petridou E.T. Incidence and time trends of childhood lymphomas: findings from 14 Southern and Eastern European cancer registries and Surveillance, Epidemiology and End Results, USA. Cancer Causes Control 2016;27(11):1381–94. doi:10.1007/s10552-016-0817-3.; Englund A., Glimelius I., Rostgaard K., Smedby K.E., Eloranta S., Molin D., Kuusk T., Brown P.N., Kamper P., Hjalgrim H., Ljungman G., Hjalgrim L.L. Hodgkin lymphoma in children, adolescents and young adults comparative study of clinical presentation and treatment outcome. Acta Oncol 2018;57(2):276–82. doi:10.1080/0284186X.2017.1355563.; Dörffel W., Lüders H., Rühl U., Albrecht M., Marciniak H., Parwaresch R., Pötter R., Schellong G., Schwarze E.W., Wickmann L. Preliminary results of the multicenter trial GPOH-HD 95 for the treatment of Hodgkin's disease in children and adolescents: analysis and outlook. Klin Padiatr 2003;215(3):139–45. PMID: 12838937.; Shankar A.G., Kirkwood A.A., Hall G.W., Hayward J., O’Hare P., Ramsay A.D. Childhood and adolescent nodular lymphocyte predominant Hodgkin lymphoma – A review of clinical outcome based on the histological variants. Br J Haematol 2015;171(2):254–62. doi:10.1111/bjh.13540.; Dieckmann K., Poetter R., Wagner W., Prott F.J., Hoernig-Franz I., Rath B., Schellong G. Up-front centralized data review and individualized treatment proposals in a multicenter pediatric Hodgkin’s disease trial with 71 participating hospitals: the experience of the German-Austrian pediatric multicenter trial DAL-HD-90. Radiother Oncol 2002;62(2):191–200. PMID: 11937246.; Mauz-Körholz C., Hasenclever D., Dörffel W., Ruschke K., Pelz T., Voigt A., Stiefel M., Winkler M., Vilser C., Dieckmann K., Karlén J., Bergsträsser E., Fossa A., Mann G., Hummel M., Klapper W., Stein H., Vordermark D., Kluge R., Körholz D. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol 2010;28(23):3680–6. doi:10.1200/JCO.2009.26.9381.; Rühl U., Albrecht M., Dieckmann K., Lüders H., Marciniak H., Schellenberg D., Wickmann L., Dörffel W. Response-adapted radiotherapy in the treatment of pediatric Hodgkin’s disease: an interim reportat 5 years of the German GPOH-HD 95 trial. Int J Radiat Oncol Biol Phys 2001;51(5):1209–18. doi:10.1016/s0360-3016(01)01798-9.; Zubizarreta P.A., Alfaro E., Guitter M., Sanchez La Rosa C., Galluzzo M.L., Millán N., Fiandrino F., Felice M.S. Children and Adolescent Hodgkin Lymphoma in Argentina: Long-term Results After Combined ABVD and Restricted Radiotherapy. J Pediatr Hematol Oncol 2017;39(8):602–8. doi:10.1097/MPH.0000000000000943.; Marr K.C., Connors J.M., Savage K.J., Goddard K.J., Deyell R.J. ABVD chemotherapy with reduced radiation therapy rates in children, adolescents and young adults with all stages of Hodgkin lymphoma. Ann Oncol 2017;28(4):849–54. doi:10.1093/annonc/mdx005.; Kelly K.M., Sposto R., Hutchinson R., Massey V., McCarten K., Perkins S., Lones M., Villaluna D., Weiner M. BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: a report from the Children’s Oncology Group. Blood 2011;127(9):2596–603. doi:10.1182/blood-2010- 05-285379.; Charpentier A.M., Friedman D.L., Wolden S., Schwartz C., Gill B., Sykes J., Albert-Green A., Kelly K.M., Constine L.S., Hodgson D.C. Predictive Factor Analysis of Response-Adapted Radiation Therapy for Chemotherapy-Sensitive Pediatric Hodgkin Lymphoma: Analysis of the Children’s Oncology Group AHOD 0031 Trial. Int J Radiat Oncol Biol Phys 2016;96(5):943–50. doi:10.1016/j.ijrobp.2016.07.015.; Campo E., Swerdlow S., Harris N., Pileri S., Stein H., Jaffe E.S. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011;117(19):5019–32. doi:10.1182/blood-2011-01-293050.; Korholz D., Kluge R., Wickmann L., Hirsch W., Luders H., Lotz I. Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDGPET) for staging und therapy control of Hodgkin’s lymphoma in childhood and adolescence – consequences for the GPOH-HD 2003 protocol. Onkologie 2003;26(5):489–93. doi:10.1159/000072984.; Kluge R., Korholz D. Role of FDG-PET in staging and therapy of children with Hodgkin lymphoma. Klin Padiatr 2011;223(6):315–9. doi:10.1055/s-0031-1287834.; Sickinger M.T., von Tresckow B., Kobe C., Borchmann P., Engert A., Skoetz N. PET-adapted omission of radiotherapy in early stage Hodgkin lymphoma – a systematic review and meta-analysis. Crit Rev Oncol Hematol 2016;101:86–92. doi:10.1016/j.critrevonc.2016.03.005.; Isik E.G., Kuyumcu S., Kebudi R., Sanli Y., Karakas Z., Cakir F.B., Unal S.N. Prediction of outcome in pediatric Hodgkin lymphoma based on interpretation of 18 FDG-PET/CT according to ΔSUV max , Deauville 5-point scale and IHP criteria. Ann Nucl Med 2017;31(9):660–8. doi:10.1007/s12149-017-1196-x.; Gobbi P.G., Ferreri A.J., Ponzoni M., Levis A. Hodgkin lymphoma. Crit Rev Oncol Hematol 2013;85(2):216–37. doi:10.1016/j.critrevonc.2012.07.002.; Mathas S., Hartmann S., Küppers R. Hodgkin lymphoma: Pathology and Biology. Semin Hematol 2016;53(3):139–47. doi:10.1053/j.seminhematol.2016.05.007.; Sherief L.M., Elsafy U.R., Abdelkhalek E.R., Kamal N.M., Elbehedy R., Hassan T.H., Sherbiny H.S., Beshir M.R., Saleh S.H. Hodgkin lymphoma in childhood: clinicopathological features and therapy outcome at 2 centers from a developing country. Medicine (Baltimore) 2015;94(15):e670. doi:10.1097/MD.0000000000000670.; Kelly K.M. Hodgkin lymphoma in children and adolescents: improving the therapeutic index. Blood 2015;126:2452–8. doi:10.1016/j.critrevonc.2012.07.002.; Trotti A., Byhardt R., Stetz J., Gwede C., Corn B., Fu K., Gunderson L., McCormick B., Morrisintegral M., Rich T., Shipley W., Curran W. Common toxicity criteria: Version 2.0 – An improved reference for grading the acute effects of cancer treatment: Impact on radiotherapy. Int J Radiat Oncol Biol Phys 2000;47(1):13–47. doi:10.1016/s0360-3016(99)00559-3.; https://journal.nodgo.org/jour/article/view/572

  20. 20
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 2 (2020); 126-133 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 2 (2020); 126-133 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/612/559; Abbasi A.W., Westerlaan H.E., Holtman G.A., Aden K.M., van Laar P.J., van der Hoorn A. Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol 2018;28(3):401–11. doi:10.1007/s00062-017-0584-x.; Tsang D.S., Murphy E.S., Lucas J.T., Lagiou P., Acharya S., Merchant T.E. Pseudoprogression in pediatric low-grade glioma after irradiation. J Neurooncol 2017;135(2):371–9. doi:10.1007/s11060-017-2583-9.; Naftel R.P., Pollack I.F., Zuccoli G., Deutsch M., Jakacki R.I. Pseudoprogression in low-grade gliomas after radiotherapy. Pediatr Blood Cancer 2015;62(1):35–9. doi:10.1002/pbc.25179.; Negretti L., Blanchard P., Couanet D., Kieff er V., Goma G., Habrand J.L., Dhermain F., Valteau-Couanet D., Grill J., Dufour C. Pseudoprogression after high-dose busulfan-thiotepa with autologous stem cell transplantation and radiation therapy in children with brain tumors: impact on survival. Neuro Oncol 2012;14(11):1413–21. doi:10.1093/neuonc/nos212.; Fouladi M., Chintagumpala M., Laningham F.H., Ashley D., Kellie S.J., Langston J.W., McCluggage C.W., Woo S., Kocak M., Krull K., Kun L.E., Mulhern R.K., Gajjar A. White matter lesions detected by magnetic resonanse imaging after radiotherapy and highdose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 2004;22(22):4551–60. doi:10.1200/JCO.2004.03.058.; Brandsma D., Stalpers L., Taal W., Sminia P., van den Bent M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008;9(5):453–61. doi:10.1016/S1470-2045(08)70125-6.; Foster K.A., Ares W.J., Pollack I.F., Jakacki R.F. Bevacizumab for symptomatic radiation-induced tumor enlargement in pediatric low grade gliomas. Pediatr Blood Cancer 2015;62(2):240–5. doi:10.1002/pbc.25277.; Miyata K., Hori T., Shimomura Y., Joko M., Takayasu M., Okumura A. Pseudoprogression successfully treated with bevacizumab in a child with spinal pilocytic astrocytoma. Childs Nerv Syst 2018;34(11):2305–8. doi:10.1007/s00381-018-3841-7.; Wetmore C., Herington D., Lin T., Onar-Thomas A., Gajjar A., Merchant T.E. Reirradiation of recurrent medulloblastoma: does clinical benefi t outweight risk of toxicity. Cancer 2014;120(23):3731–7. doi:10.1002/cncr.28907.; Gupta T., Maitre M., Sastri G.J., Krishnatry R., Shirsat N., Epari S., Sahav A., Chinnaswamy G., Patil V., Shetty P., Moiyadi A. Outcomes of salvage reirradiation in recurrent medulloblastoma correlate with age at initial diagnosis, primary risk stratifi cation, and molecular subgrouping. J Neurooncol 2019;144(2):283–91. doi:10.1007/s11060-019-03225-9.; Tsao M.N., Li Y.Q., Lu G., Xu Y., Wong C.S. Upregulation of vascular endothelial growth factor is associated with radiation-induced bloodspinal cord barrier breakdown. J Neuropathol Exp Neurol 1999;58(10):1051–60. doi:10.1097/00005072-199910000-00003.; Wick W., Chinot O.L., Bendszus M., Mason W., Henriksson R., Saran F., Nishikawa R., Revil C., Kerloeguen Y., Cloughesy T. Evaluation of pseudoprogression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro Oncol 2016;18(10):1434–41. doi:10.1093/neuonc/now091.; Ellingson B.M., Wen P.Y., Cloughesy T.F. Modifi ed criteria for radiagraphic response assessment in glioblastoma clinical trials. Neurotherapeutics 2017;14(2):307–20. doi:10.1007/s13311-016-0507-6.; Wen P.Y., Chang S.M., Van den Bent M.J., Vogelbaum M.A., Macdonald D.R., Lee E.Q. Response Assessment in Neuro-Oncology clinical trials. J Clin Oncol 2017;35(21):2439–49. doi:10.1200/JCO.2017.72.7511.; Nguen T.K., Perry J., Sundaram A.N.E., Detsky J., Maralani P.J., Calabrese E., Das S., Sahgal A. Rescue bevacizumab following symptomatic pseuoprogression of a tectal glioma post-radiotherapy: a case report and review of the literature. J Neurooncol 2019;143(3):475–81. doi:10.1007/s11060-019-03179-y.; Rutkowski S., Cohen B., Finlay J., Luksch R., Ridola V., Valteau-Couanet D., Hara J., Garre M.L., Grill J. Medulloblastoma in young children. Pediatr Blood Cancer 2010;54(4):635–7. doi:10.1002/pbc.22372.; Ridola V., Grill J., Doz F., Gentet J.C., Frappaz D., Raquin M.A., Habrand J.L., Sainte-Rose C., Valtreau-Couanet D., Kalifa C. High-dose chemotherapy with autologous stem cell rescue followed by posterior fossa irradiation for local medulloblastoma recurrence or progression after conventional chemotherapy. Cancer 2007;110(1):156–63. doi:10.1002/cncr.22761.; Chukwueke U.N., Wen P.Y. Use of the Response Assessment in Neurooncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol 2019;8(1):CNS28. doi:10.2217/cns-2018-0007.; Maritaz C., Lemare F., Laplanche A., Demirdjian S., Valteau-Couanet D., Dufour C. High-dose thiotepa-related neurotoxocity and the role of tramadol in children. BMC Cancer 2018;18(1):177. doi: 1186/s12885-018-4090-6.; de Wit M.C., de Bruin H.G., Eijkenbom W., Sillevis Smitt P.A., van den Bent M.J. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004;63(3):535–7. doi:10.1212/01.wnl.0000133398.11870.9a.; Levin V.A., Bidaut L., Hou P., Kumar A.J., Wefel J.S., Bekele B.N., Grewal J., Prabhu S., Loghin M., Gilbert M.R., Jackson E.F. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 2011;79(5):1487–95. doi:10.1016/j.ijrobp.2009.12.061.; Xu W., Gao L., Shao A., Zheng J., Zhang J. The performance of 11C-Methionine PET in the diff erential diagnosis of glioma recurrence. Oncotarget 2017;8(53):91030–9. doi:10.18632/oncotarget.19024.; Ellingson B.M., Chung C., Pope W.B., Boxerman J.L., Kaufmann T.J. Pseudoprogression, radionecrosis, infl ammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol 2017;134(3):495–504. doi:10.1007/s11060-017-2375-2.; Thust S.C., van den Bent M.J., Smiths M. Pseudoprogression of brain tumors. J Magn Reson Imaging 2018;48(3):571–89. doi:10.1002/jmri.26171.; Spreafi co F., Gandola L., Marchianò A., Simonetti F., Poggi G., Adduci A., Clerici A., Luksch R., Biassoni V., Meazza C., Catania S., Terenziani M., Musumeci R., Fossati-Bellani F., Massimino M. Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain tumors. Int J Radiat Oncol Biol Phys 2008;70(5):1011–9. doi:10.1016/j.ijrobp.2007.07.2377.; Нуднов Н.В., Желудкова О.Г., Мнацаканова И.В., Сидорова Е.В., Подоксенова Т.В., Шевцов А.И. Псевдопрогрессия у больного с анапластической эпендимомой после лучевой терапии. Медицинская визуализация 2018;22(2):18–24. doi.org/10.24835/1607-0763-2018-2-18-24.; Wu C.C., Guo W.Y., Chung W.Y., Wu H.M. Tumor pseudoprogression and true progression following gamma knife radiosurgery for recurrent ependymoma. J Chinese Med Assoc 2016;79(5):292–8. doi:10.1016/j.jcma.2015.10.005.; https://journal.nodgo.org/jour/article/view/612