Εμφανίζονται 1 - 10 Αποτελέσματα από 10 για την αναζήτηση '"полисахаридные вакцины"', χρόνος αναζήτησης: 0,56δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00001-22-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-22-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 22, № 2 (2022); 154-169 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 22, № 2 (2022); 154-169 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/393/531; https://www.biopreparations.ru/jour/article/downloadSuppFile/393/310; https://www.biopreparations.ru/jour/article/downloadSuppFile/393/434; https://www.biopreparations.ru/jour/article/downloadSuppFile/393/435; https://www.biopreparations.ru/jour/article/downloadSuppFile/393/436; https://www.biopreparations.ru/jour/article/downloadSuppFile/393/437; https://www.biopreparations.ru/jour/article/downloadSuppFile/393/460; Small H, Stevens TS, Bauman WC. Novel ion exchange chromatographic method using conductimetric detection. Anal Chem. 1975;47(11):1801–9. https://doi.org/10.1021/ac60361a017; Бёккер Ю. Хроматография. Инструментальная аналитика. Методы хроматографии и капиллярного электрофореза: монография. М.: Техносфера, 2009.; Skelly NE. Separation of inorganic and organic anions on reversed-phase liquid chromatography columns. Anal Chem. 1982;54(4):712–5. https://doi.org/10.1021/ac00241a026; Miao S, Xie P, Mao Z, Fan L, Liu X, Zhou Y, et al. Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Appl Microbiol Biotechnol. 2017;101(14):5627–38. https://doi.org/10.1007/s00253-017-8301-x; Wang G, Tomasella FP. Ion-pairing HPLC methods to determine EDTA and DTPA in small molecule and biological pharmaceutical formulations. J Pharm Analysis. 2016;6(3):150–6. https://doi.org/10.1016/j.jpha.2016.01.002; Shibue M, Mant CT, Hodges RS. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography. J Chromatogr A. 2005;1080(1):68–75. https://doi.org/10.1016/j.chroma.2005.03.035; Åsberg D, Langborg Weinmann A, Leek T, Lewis RJ, Klarqvist M, Leśko M, et al. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography. J Chromatogr A. 2017;1496;80–91. https://doi.org/10.1016/j.chroma.2017.03.041; Leblanc Y, Ramon C, Bihoreau N, Chevreux G. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: case study after a long-term storage at +5 °C. J Chromatogr B. 2017;1048:130–9. https://doi.org/10.1016/j.jchromb.2017.02.017; Hebbi V, Chattopadhyay S, Rathore AS. High performance liquid chromatography (HPLC) based direct and simultaneous estimation of excipients in biopharmaceutical products. J Chromatogr B. 2019;1117:118–26. https://doi.org/10.1016/j.jchromb.2019.04.022; Lodi G, Storti G, Pellegrini LA, Morbidelli M. Ion exclusion chromatography: model development and experimental evaluation. Ind Eng Chem Res. 2017;56(6):1621–32. https://doi.org/10.1021/acs.iecr.6b04475; Yan Y, Liu AP, Wang S, Daly TJ, Li N. Ultrasensitive characterization of charge heterogeneity of therapeutic monoclonal antibodies using strong cation exchange chromatography coupled to native mass spectrometry. Anal Chem. 2018;90(21):13013–20. https://doi.org/10.1021/acs.analchem.8b03773; Muneeruddin K, Bobst CE, Frenkel R, Houde D, Turyan I, Sosic Z, Kaltashov IA. Characterization of a PEGylated protein therapeutic by ion exchange chromatography with on-line detection by native ESI MS and MS/MS. Analyst. 2017;142(2):336–44. https://doi.org/10.1039/C6AN02041K; Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: salt gradient approach. J Pharm Biomed Anal. 2015;102:33–44. https://doi.org/10.1016/j.jpba.2014.08.035; Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. J Pharm Biomed Anal. 2015;102:282–9. https://doi.org/10.1016/j.jpba.2014.09.032; Spanov B, Olaleye O, Lingg N, Bentlage AEH, Govorukhina N, Hermans J, et al. Change of charge variant composition of trastuzumab upon stressing at physiological conditions. J Chromatogr A. 2021;1655:462506. https://doi.org/10.1016/j.chroma.2021.462506; Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, et al. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009;392(2):145–54. https://doi.org/10.1016/j.ab.2009.05.043; Faghihi H, Merrikhihaghi S, Najafabadi AR, Ramezani V, Sardari S, Vatanara A. A comparative study to evaluate the effect of different carbohydrates on the stability of Immunoglobulin G during lyophilization and following storage. Pharm Sci. 2016;22(4):251–9. https://doi.org/10.15171/PS.2016.39; Wlodarczyk SR, Custódio D, Pessoa A Jr, Monteiro G. Influence and effect of osmolytes in biopharmaceutical formulations. Eur J Pharm Biopharm. 2018;131:92–8. https://doi.org/10.1016/j.ejpb.2018.07.019; Kissinger PT, Refshauge C, Dreiling R, Adams RN. An electrochemical detector for liquid chromatography with picogram sensitivity. Anal Lett. 1973;6(5):465–77. https://doi.org/10.1080/00032717308058694; Merkle RK, Poppe I. Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol. 1994;230:1–15. https://doi.org/10.1016/0076-6879(94)30003-8; Schenk J, Nagy G, Pohl NLB, Leghissa A, Smuts J, Schug KA. Identification and deconvolution of carbohydrates with gas chromatography-vacuum ultraviolet spectroscopy. J Chromatogr A. 2017;1513:210–21. https://doi.org/10.1016/j.chroma.2017.07.052; Haas M, Lamour S, Trapp O. Development of an advanced derivatization protocol for the unambiguous identification of monosaccharides in complex mixtures by gas and liquid chromatography. J Chromatogr A. 2018;1568:160–7. https://doi.org/10.1016/j.chroma.2018.07.015; Rendleman JA, Jr. In: Isbell HS, ed. Carbohydrates in solution. Advances in Chemistry Ser ACS. Washington; 1973;117:51–68.; Hardy MR, Townsend RR, Lee YC. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem. 1988;170(1):54–62. https://doi.org/10.1016/0003-2697(88)90089-9; Rohrer JS, Basumallick L, Hurum DC. Profiling N-linked oligosaccharides from IgG by high-performance anion-exchange chromatography with pulsed amperometric detection. Glycobiology. 2016;26(6):582–91. https://doi.org/10.1093/glycob/cww006; Talaga P, Vialle S, Moreau M. Development of high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine. 2002;20(19-20):2474–84. https://doi.org/10.1016/S0264-410X(02)00183-4; Gudlavalleti SK, Crawford EN, Harder JD, Reddy JR. Quantification of each serogroup polysaccharide of Neisseria meningitidis in A/C/Y/W-135-DT conjugate vaccine by high-performance anion-exchange chromatography-pulsed amperometric detection analysis. Anal Chem. 2014;86(11):5383−90. https://doi.org/10.1021/ac5003933; van der Put RM, de Haan A, van den IJssel JG, Hamidi A, Beurret M. HPAEC-PAD quantification of Haemophilus influenzae type b polysaccharide in upstream and downstream samples. Vaccine, 2015;33(48):6908–13. https://doi.org/10.1016/j.vaccine.2014.07.028; https://www.biopreparations.ru/jour/article/view/393

  2. 2
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00001-22-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-22-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4)

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 22, № 3 (2022); 249-265 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 22, № 3 (2022); 249-265 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/413/572; https://www.biopreparations.ru/jour/article/downloadSuppFile/413/519; Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect Dis. 2018;18(11):1229–40. https://doi.org/10.1016/S1473-3099(18)30475-4; Troeger C, Blacker BF, Khalil I, Rao PC, Cao S, Zimsen SRM, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1211–28. https://doi.org/10.1016/S1473-3099(18)30362-1; Kotloff KL, Riddle MS, Platts-Mills JA, Pavlinac P, Zaidi AKM. Shigellosis. Lancet. 2018;391(10122):801–12. https://doi.org/10.1016/S0140-6736(17)33296-8; Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev. 2008;32(4):627–53. https://doi.org/10.1111/j.1574-6976.2008.00114.x; Wu Y, Lau HK, Lee T, Lau DK, Payne J. In silico serotyping based on whole-genome sequencing improves the accuracy of Shigella identification. Appl Environ Microbiol. 2019;85(7):e00165-19. https://doi.org/10.1128/AEM.00165-19; Mattock E, Blocker AJ. How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol. 2017;7:64. https://doi.org/10.3389/fcimb.2017.00064; Barry EM, Pasetti MF, Sztein MB, Fasano A, Kotloff KL, Levine MM. Progress and pitfalls in Shigella vaccine research. Nat Rev Gastroenterol Hepatol. 2013;10(4):245– 55. https://doi.org/10.1038/nrgastro.2013.12; Shad AA, Shad WA. Shigella sonnei: virulence and antibiotic resistance. Arch Microbiol. 2021;203:45–58. https://doi.org/10.1007/s00203-020-02034-3; Черепанова ЕА, Симонова ЕГ, Раичич РР, Линок АВ, Филатов НН. Оценка эпидемиологического риска в системе надзора за актуальными для Российской Федерации острыми кишечными инфекциями. Здоровье населения и среда обитания — ЗНиСО. 2018;(3):23–8.; Njamkepo E, Fawal N, Tran-Dien A, Hawkey J, Strockbine N, Jenkins C, et al. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol. 2016;1:16027. https://doi.org/10.1038/nmicrobiol.2016.27; Baker S, The HC. Recent insights into Shigella: a major contributor to the global diarrhoeal disease burden. Curr Opin Infect Dis. 2018;31(5):449–54. https://doi.org/10.1097/QCO.0000000000000475; Kozyreva VK, Jospin G, Greninger AL, Watt JP, Eisen JA, Chaturvedi V. Recent outbreaks of shigellosis in California caused by two distinct populations of Shigella sonnei with either increased virulence or fuoro quinolone resistance. mSphere. 2016;1(6):e00344 –16. https://doi.org/10.1128/msphere.00344-16; Ranjbar R, Farahani A. Shigella: antibiotic-resistance mechanisms and new horizons for treatment. Infect Drug Resist. 2019;12:3137–67. https://doi.org/10.2147/IDR.S219755; Soltan Dallal MM, Omidi S, Douraghi M, Haghi Ashtiani MT, Sharifi Yazdi MK, Okazi A. Molecular analysis of integrons and antimicrobial resistance profile in Shigella spp. isolated from acute pediatric diar rhea patients. GMS Hyg Infect Control. 2018;13:Doc02. https://dx.doi.org/10.3205/dgkh000308; Thompson CN, Duy PT, Baker S. The rising dominance of Shigella sonnei: an intercontinental shift in the etiology of bacillary dysentery. PLoS Negl Trop Dis. 2015;9(6):e0003708. https://doi.org/10.1371/journal.pntd.0003708; Chung The H, Bodhidatta L, Pham DT, et al. Evolutionary histories and antimicrobial resistance in Shigella flexneri and Shigella sonnei in Southeast Asia. Commun Biol. 2021;4:353. https://doi.org/10.1038/s42003-021-01905-9; Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27. https://doi.org/10.1016/S1473-3099(17)30753-3; Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother. 2019;15(6):1317–25. https://doi.org/10.1080/21645515.2019.1594132; Cohen D, Muhsen K. Vaccines for enteric diseases. Hum Vaccin Immunother. 2019;15(6):1205–14. https://doi.org/10.1080/21645515.2019.1611200; Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol. 2007;5(7):540–53. https://doi.org/10.1038/nrmicro1662; Cohen D, Green MS, Block C, Slepon R, Ofek I. Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J Clin Microbiol. 1991;29(2):386–9. https://doi.org/10.1128/jcm.29.2.386-389.1991; Clarkson KA, Frenck RW, Jr, Dickey M, Suvarnapunya AE, Chandrasekaran L, Weerts HP, et al. Immune response characterization after controlled infection with lyophilized Shigella sonnei 53G. mSphere. 2020;5(5):e00988-19. https://doi.org/10.1128/mSphere.00988-19; Ferreccio C, Prado V, Ojeda A, Cayyazo M, Abrego P, Guers L, Levine MM. Epidemiologic patterns of acute diarrhea and endemic Shigella infections in a poor periurban setting in Santiago, Chile. Am J Epidemiol. 1991;134(6):614–27. https://doi.org/10.1093/oxfordjournals.aje.a116134; Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis. 2014;59(7):933–41. https://doi.org/10.1093/cid/ciu468; DuPont HL, Hornick RB, Snyder MJ, Libonati JP, Formal SB, Gangarosa EJ. Immunity in shigellosis. II. Protection induced by oral live vaccine or primary infection. J Infect Dis. 1972;125(1):12–6. https://doi.org/10.1093/infdis/125.1.12; Sarker P, Mily A, Ara A, Haque F, Maier N, Wierzba TF, et al. Functional antibodies and innate immune responses to WRSS1, a live oral Shigella sonnei vaccine candidate, in Bangladeshi adults and children. J Infect Dis. 2021;224(12 Suppl 2):S829–39. https://doi.org/10.1093/infdis/jiab395; Raqib R, Sarker P, Zaman K, Alam NH, Wierzba TF, Maier N, et al. A phase I trial of WRSS1, a Shigella sonnei live oral vaccine in Bangladeshi adults and children. Hum Vaccin Immunother. 2019;15(6):1326– 37. https://doi.org/10.1080/21645515.2019.1575165; Venkatesan MM, Ballou C, Barnoy S, McNeal M, El-Khorazaty J, Frenck R, Baqar S. Antibody in Lymphocyte Supernatant (ALS) responses after oral vaccination with live Shigella sonnei vaccine candidates WRSs2 and WRSs3 and correlation with serum antibodies, ASCs, fecal IgA and shedding. PLoS One. 2021;16(11):e0259361. https://doi.org/10.1371/journal.pone.0259361; Launay O, Sadorge C, Jolly N, Poirier B, Béchet S, van der Vliet D, et al. Safety and immunogenicity of SC599, an oral live attenuated Shigella dysenteriae type-1 vaccine in healthy volunteers: results of a Phase 2, randomized, double-blind placebo-controlled trial. Vaccine. 2009;27(8):1184–91. https://doi.org/10.1016/j.vaccine.2008.12.021; McKenzie R, Venkatesan MM, Wolf MK, Islam D, Grahek S, Jones AM, et al. Safety and immunogenicity of WRSd1, a live attenuated Shigella dysenteriae type 1 vaccine candidate. Vaccine. 2008;26(26):3291–6. https://doi.org/10.1016/j.vaccine.2008.03.079; Harutyunyan S, Neuhauser I, Mayer A, Aichinger M, Szijártó V, Nagy G, et al. Characterization of ShigETEC, a novel live attenuated combined vaccine against Shigellae and ETEC. Vaccines. 2020;8(4):689. https://doi.org/10.3390/vaccines8040689; Chakraborty S, Harro C, Denearing B, Bream J, Bauers N, Dally L, et al. Evaluation of the safety, tolerability, and immunogenicity of an oral, inactivated whole-cell Shigella flexneri 2a vaccine in healthy adult subjects. Clin Vaccine Immunol. 2016;23(4):315– 25. https://doi.org/10.1128/CVI.00608-15; Лёдов ВА, Апарин ПГ. Клинические исследования вакцинного препарата для профилактики дизентерии Флекснера на основе модифицированного липополисахарида Shigella flexneri (по результатам I фазы клинических исследований). Acta Biomedica Scientifica. 2014;4(98):91–5.; Mo Y, Fang W, Li H, Chen J, Hu X, Wang B, et al. Safety and immunogenicity of a Shigella bivalent conjugate vaccine (ZF0901) in 3-month- to 5-year-old children in China. Vaccines. 2022;10(1):33. https://doi.org/10.3390/vaccines10010033; Martin P, Alaimo C. The ongoing journey of a Shigella bioconjugate vaccine. Vaccines. 2022;10(2):212. https://doi.org/10.3390/vaccines10020212; Talaat KR, Alaimo C, Martin P, Bourgeois AL, Dreyer AM, Kaminski RW, et al. Human challenge study with a Shigella bioconjugate vaccine: analyses of clinical efficacy and correlate of protection. EBioMedicine. 2021;66:103310. https://doi.org/10.1016/j.ebiom.2021.103310; Hatz CF, Bally B, Rohrer S, Steffen R, Kramme S, Siegrist CA. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: a single blind, partially randomized Phase I study. Vaccine. 2015;33(36):4594–601. https://doi.org/10.1016/j.vaccine.2015.06.102; Frenck RW, Jr, Conti V, Ferruzzi P, Ndiaye AGW, Parker S, McNeal MM, et al. Efficacy, safety, and immunogenicity of the Shigella sonnei 1790GAHB GMMA candidate vaccine: results from a phase 2b randomized, placebo-controlled challenge study in adults. EClinicalMedicine. 2021;39:101076. https://doi.org/10.1016/j.eclinm.2021.101076; Qasim M, Wrage M, Nüse B, Mattner J. Shigella outer membrane vesicles as promising targets for vaccination. Int J Mol Sci. 2022;23(2):994. https://doi.org/10.3390/ijms23020994; Riddle MS, Kaminski RW, Williams C, Porter C, Baqar S, Kordis A, Gilliland T, et al. Safety and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine. Vaccine. 2011;29(40):7009–19. https://doi.org/10.1016/j.vaccine.2011.07.033; Turbyfill KR, Clarkson KA, Vortherms AR, Oaks EV, Kaminski RW. Assembly, biochemical characterization, immunogenicity, adjuvanticity, and efficacy of Shigella artificial Invaplex. mSphere. 2018;3(2):e00583-17. https://doi.org/10.1128/mSphere.00583-17; Ledov VA, Golovina ME, Markina AA, Knirel YA, L’vov VL, Kovalchuk AL, Aparin PG. Highly homogenous tri-acylated S-LPS acts as a novel clinically applicable vaccine against Shigella flexneri 2a infection. Vaccine. 2019;37(8):1062–72. https://doi.org/10.1016/j.vaccine.2018.12.067; Cohen D, Ashkenazi S, Green MS, Gdalevich M, Robin G, Slepon R, et al. Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet. 1997;349(9046):155–9. https://doi.org/10.1016/S0140-6736(96)06255-1; Passwell JH, Ashkenazi S, Banet-Levi Y, Ramon-Saraf R, Farzam N, Lerner-Geva L, et al. Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1–4-year-old Israeli children. Vaccine. 2010;28(10):2231–5. https://doi.org/10.1016/j.vaccine.2009.12.050; Cohen D, Atsmon J, Artaud C, Meron-Sudai S, Gougeon ML, Bialik A, et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. Lancet Infect Dis. 2021;21(4):546–58. https://doi.org/10.1016/S1473-3099(20)30488-6; Seo H, Duan Q, Zhang W. Vaccines against gastroenteritis, current progress and challenges. Gut Microbes. 2020;11(6):1486–517. https://doi.org/10.1080/19490976.2020.1770666; Leow CY, Kazi A, Hisyam Ismail CMK, Chuah C, Lim BH, Leow CH, et al. Reverse vaccinology approach for the identification and characterization of outer membrane proteins of Shigella flexneri as potential cellular- and antibody-dependent vaccine candidates. Clin Exp Vaccine Res. 2020;9(1):15–25. https://doi.org/10.7774/cevr.2020.9.1.15; Walker R, Kaminski RW, Porter C, Choy RKM, White JA, Fleckenstein JM, et al. Vaccines for protecting infants from bacterial causes of diarrheal disease. Microorganisms. 2021;9(7):1382. https://doi.org/10.3390/microorganisms9071382; Anderson JD, Bagamian KH, Muhib F, Baral R, Laytner LA, Amaya M, et al. Potential impact and cost-effectiveness of future ETEC and Shigella vaccines in 79 low- and lower middle-income countries. Vaccine X. 2019;2:100024. https://doi.org/10.1016/j.jvacx.2019.100024; https://www.biopreparations.ru/jour/article/view/413

  3. 3
    Academic Journal

    Πηγή: Epidemiology and Vaccinal Prevention; Том 20, № 4 (2021); 103-113 ; Эпидемиология и Вакцинопрофилактика; Том 20, № 4 (2021); 103-113 ; 2619-0494 ; 2073-3046

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/1324/770; Gotschlich E.C., Liu T., Artenstein M.S. Human immunity to meningococcus. III. Preparation and immunological properties of the group A, group B and group C meningococcal polysaccharides. J.Exp.Med. 1969. 128:1369–1365.; Костюкова Н. Н., Бехало В. А. Современные менингококковые вакцины: сильные и слабые стороны, ближайшие перспективы. Эпидемиология и Вакинопрофилактика. 2016;4:64–73.; Устинникова О. Б., Алексеева И. А., Абрамцева М. В., Немировская Т. И., Мовсесянц А. А. Полисахаридные вакцины. Актуальные подходы к вопросам экспертной оценки качества. Эпидемиология и Вакцинопрофилактика. 2020;5:104–111.; Колесников А. В., Козырь А. Н., Шемякин И. Г., Дятлов И. А. Современные представления о механизме активации иммунного ответа конъюгированными полисахаридными вакцинами. Журн. микробиол., 2015; №3:97–10.; Абрамцева М. В., Тарасов А. П., Немировская Т. И. Менингококковая инфекция: конъюгированные полисахаридные менингококковые вакцины и вакцины нового поколения. Сообщение 3. Биопрепараты, профилактика, диагностика, лечение. 2016, 6 (1):3 –13.; Харсеева Г. Г., Тюкавкина С. Ю. Основы вакцинологии. Оценка поствакцинального иммунитета (материал для подготовки лекций). Инфекционные болезни, 2020, 9(3):106–118.; Meningococcal vaccines: WHO position paper. Weekley epid. record. 2011; .86. (47):521–540.; Ladhani S.N. Two decades of experience with Haemophilus influenzae serotype b vaccine in United Kingdom. Clin. Ther., 2012, 34:385–399.; Костинов М. П. Новая конъюгированная вакцина Превенар – эффективная защита детей от пневмококковых заболеваний. Эпидемиология и Вакцинопрофилактика. 2011;6:99–107.; Извекова И. Я., Намазова-Баранова Л. С., Гоголев А. В., Дубова Л. В., Романенко В. В., Зиннатова Е. В. и др. Наблюдательное исследование безопасности менингококковой конъюгированной вакцины против серогрупп А, С, W и Y (МЕНАКТРА), используемой в условиях рутинной клинической практики у лиц в возрасте от 2 до 55 лет в Российской Федерации. Эпидемиология и Вакцинопрофилактика. 2018;6:19–34.; Dreiter A.W., Rouphael N.G., Stephens D.S. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum.Vaccines & Immunuther. 2018, 14(5):1146–1160.; Королева И. С., Королева М. А., Грицай М. И. Менингококковая инфекция и актуальность мер профилактики. Поликлиника. 2020;1(20):47–50.; Balmer P., Burman C., Sierra L. York L.J. Impact of meningococcal vaccination on carriage and disease transmission: review of the literature. Hum. Vaccines & Immunuther. 2018;14(5):1119–1130.; Invasive meningococcal disease in England: annual laboratory confirmed reports for epidemiological year 2017 to 2018. Health Protection. Rep. 2018;12(38):1–6.; Acevedo R., Bai X., Borrow R., et al. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: epidemiology; surveillance hypervirulent strains, antibiotic resistance and high-risk population. Expert Rev. Vac., 2019;18:15–30.; Whittaker R., Dias J.G., Ramliden M., et al. The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004–2014. Vaccine. 2017;35:2034 –2041.; Wang X., Shutt K.A., Vuong J.T., et al. Changes in population structure of invasive Neisseria meningitidis in the United States after quadrivalent meningococcal conjugated vaccine license. J.Infect. Dis., 2015;211:1887–1894.; Booy R., Gentile A., Nissen V., et al. Recent changes in epidemiology of Neisseria meningitides serogroupW across the world, current vaccination policy choices and possible future strategies. Hum.Vaccines & Immunuther., 2019;15(20):470–480.; Memish Z.,Hakeem R.Al., Neel O.Al., et al. Laboratory-confirmed invasive meningococcal disease: effect of the Hajj vaccination policy, Saudi Arabia, 1995 to 2011. Eur.Surveil. 2013;18(37):pii-20581.; Покровский В. И., Фаворова Л. А., Костюкова Н. Н. Менингококковая инфекция. М., «Медицина», 1976, 275 с.; Parkin S., Campbell H., Bettinger J.A., et al. The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention trough vaccination. J. Infect. 2020;81(4):483–498.; Mustapha M.N., Harrison L.H. Vaccine prevention of meningococcal disease in Africa: major advances, remaining challengers. Hum.Vaccines & Immunuther., 2018; j14 (5);1107–1115.; Bwaka A., Bita A., Landhani C., et al. Status of rollout of the meningococcal serogroup A conjugate vaccine in African Meningococcal Belt countries in 2018. J. Infect. Dis., 2019, Suppl.4,(Dec.):S140–147.; Trotter C., Lingani C.,Fernandes K., et al. Impact of MenAfriVac in nine countries of the African meningitis belt, 2010-2015; an analysis of surveillance data. Lancet Infect. Dis., 2017;17:867–872.; Yaro S., Lafourcade B.M. Quangaqua S., et al. Antibody persistence at the population level 5 years after vaccination with serogroup A conjugate vaccine (PsA-NN) in Burkina- Faso: need for a booster campaign? Clin. Infect, Dis.,2019, 68, iss.3:435–443.; Soeters H.M., Qumar D.A., Bicade B., et al. Bacterial meningitis epidemiology in five countries of the Meningococcal Belt of Sub-Sacharian Africa, 2015-17. J. Infect. Dis. 2019;220, Suppl.4 S 165–174.; Sidikou F., Pots C.C., Zaneidou M., et al. Epidemiology of bacterial meningitis in the nine years since meningococcal serogroup A conjugate vaccine introduction, 2010-2018., J. Infect. Dis. 2019; 220, Suppl.4, S206–215.; Chen W., Neucil K.M., Boyce C.R., et al. Safety and immunogenicity of pentavalent meningococcal conjugate vaccine containing serogroups A, C, Y, W, and X in healthy adults; a phase 1, single-centre, double-blind, randomized, controlled study. Lancet Infect, Dis., 2018;18:1088–1096.; Mounkoro D., Nikiema Ch.S., Maman I., et al. Neisseria meningitidis serogroup W epidemic in Togo, 2016. J. Infect. Dis., 2019, 220, Suppl.4:S 216–22.; Maiden V.C.J., Ibarz-Pavon A.B., Urwin R., et al. Impact of meningococcal serogroup C conjugate vaccine in carriage and herd immunity. J. Infec. Diseases, 2008, v.197:737–743.; MacLennon J.M., Rodrigues Ch.M., Batcher H. B. et al. Meningococcal carriage in period of high and low invasive meningococcal disease incidence in the UK: comparison UK MenCar 1–4 cross sectional survey results. Lancet Infect. Dis., 2021, 19 Janv, https://doi.org.//10.1016 /S1473-3099(20)30842-2.; Cooper L.V., Kristiansen P.A., Christensen H., et al. Meningococcal carriage by age in the African Meningitis Belt: a systematic review and meta-analysis. Epid. Infect., 2019;147:e228, 1–9.; Van Revenhorst M. B., den Hartog G., van der Klis F.R.M., et al. Induction of salivary antibody levels in Dutch adolescents after immunization with monovalent meningococcal serogroup C or quadrivalent meningococcal serogroup A, C, W and Y conjugate vaccine. PLOS one, 2018, April 19:1–15.; Van Revenhorst M.B., van der Kis H.M., van Rogen D.M., et al. Use saliva to monitor meningococcal vaccine responses: proposing a threshold in saliva as surrogate protection. BMC Med. Res. Methods, 2019;19:1–6.; Zang Q., Finn A. Mucosal immunology of vaccines against pathogenic nasopharyngeal bacteria. J.Clin. Pathol., 2004;57(10):1015–1025.; Vianson V., Illek B., Voe C.R. Effect of vaccine elicited antibodies on colonization of Neisseria meningitidis serogroups B and C strains in a human bronchial epithelium cells culture model. Clin. Vaccine Immunol., 2017, 24(10): e00188-17; Dellicour S., Greenwood B. Systematic review: impact of meningococcal vaccination on nasopharyngeal carriage of meningococci. Trop. Med. Int. Health, 2007;12:1409–1421.; Campbell H., Andrews N., Borrow R., et al. Updated postlicenzure surveillance of the meningococcal conjugate vaccine in England and Wales: validation of serological correlates of protection, modeling predictions of the duration of herd immunity. Clin.Vaccine. Immunol., 2010;17:840–847.; Ramsay M.E., Andrews N,J., Trotter C.L., et al. Herd immunity from meningococcal serogroup C conjugate vaccination in England: data base analysis. Br.Med.J., 2003;326:365–361.; Bijlsma. M.W., Browner M.S,, Spanjaard L., et al., A decade of herd protection after introduction of meningococcal serogroup C conjugate vaccine. Clin. Infect. Dis. 2014;59:1216–1221.; Clark S.A., Borrow R, Herd protection against meningococcal disease after vaccination. Microorganisms, 2020;8:1675–1691.; Campbell H., Edelstein M., Andrews N., et al. Emergence meningococcal ACWY vaccination program for teenagers to control group W meningococcal disease, England, 2015-2016. Emerg. Infect. Dis., 2017;23(7):1184–1195.; Villena R., Valenzuela M.T., Bastias M., Santolaya M.E. Meningococcal invasive disease by serogroup W and use of ACWY conjugate vaccines as control strategy in Chile. Vaccine 2019;37:6915–6921; Perez O., del Campo J. Cuddlo V., et al. Mucosal approaches in Neisseria vaccinology. Vaccimonitor, 2009;V.18. P.55–57.; Petoussis-Harris E., Painter J., Morgan J., et al. Effectiveness of group B outer membrane vesicle meningococcal vaccine against gonorrhea in New Zealand: a retrospective case-control study. The Lancet, 2017;390(30):1603–1610.; Pizza M., Bekkat-Berkani R., Rappuoli R. Vaccines against meningococcal disease. Microorganisms, 2020;8:1521.; Nadel S. Prospects for eradication of meningococcal disease. Arch. Dis.Child. 2012;97:993–998.; Pizza M., Scarlato V., Masignani V., et al. Identification of vaccine candidate against serogroup B meningococcus by whole-genome sequesing. Science, 2009;287(5459):1816–18.; Rappuoli R. Reverse vaccinology. Curent Opinion in Microbiology. 2000;3: 445–450.; Платонов А. Е., Харит С. М., Платонова О. В. Вакцинопрофилактика менингококковой инфекции в мире и в России. Эпидемиология и Вакцинопрофилактика. 2009; 5:32–46.; Borrow R. Advances with vaccination against Neisseria meningitidis. Trop. Med. International. 2012;17(12):1478–1491.; Tan L.K.K., Carlone G.M., Borrow R. Advances in the development of vaccines against Neisseria meningitidis. New Engl. J. Med. 2010;362(16):1511–1520.; Riveiro-Calle I., Raguindin P.F., Rial J.G., et al. Meningococcal group B vaccine for the prevention of invasive meningococcal disease caused by Neisseria meningitidis serogroup B. Infect. Drug Res., 2019;12:3169–3188.; Richmond P.C., Marshall H.S., Nissen M.A., et al. Оn behalf of 2001 study Investigators. Safety, immunogenicity and tolerability of meningococcus serogroup B bivalent recombinant lipoprotein 2086 vaccine in healthy adolescents: a randomised single-blind, placebo-controlled phase 2 trial. Lancet Infect. Dis. 2012; 12( 8):97–6074.; Nolan T., Santolaya M.E., de Looze F., et al. Antibody persistence and booster response in adolescents and young adults 4 and 7,5 years after immunization with 4CMemB vaccine. Vaccine, 2019;37(9):1209–1218.; Deceuninck G., Lefebre B., Tzang R., et al. Impact of the mass vaccination campaign against serogroup B meningococcal disease in Sanguenes-Lac-Saint- Jean region of Quebec for years after its launch. Vaccine. 2019;37:4243–4245.; Ladhani S.N., Andrews N., Parkin S.R., et al. Vaccination of infants with meningococcal group B vaccine (4CMenB) in England. N. Engl. J. Med., 2020; 382:309–317.; Soeters H.M., McNamara L.A., Blain A.E., et al. University-based outbreaks of meningococcal disease caused by serogroup B, United States, 2013 -2018. Emerg. Infect.Dis., 2019;25(3):434–440.; Ladhani S.M., Giuliani M.M., Biolchi A., et al. Effectiveness of meningococcal B vaccine against endemic hypervirulent Neisseria meningitidis W strain, England. Emerg. Infect. Dis, .2016;22(2):309–311.; Biolchi A., De Angelis G., Moschioni M., et al. Multicomponent meningococcal serogroup B vaccine elicits cross-reactive immunity in infants against genetically diverse serogroup C, W and Y invasive disease isolate. Vaccine, 2020;38:7542–7550.; Harris S.L., Ton C., Andrew L., et al. The bivalent factor H binding protein meningococcal serogroup B vaccine elicits bactericidal antibodies against non-serogroup meningococci. Vaccine, 2018;36:6867–6879.; Beeslaar J., Absalon J., Anderson A.S., et al. MenB-FHbp vaccine protects against diverse meningococcal strains in adolescents and young adults: post-hoc analysis of two phase 3 studies. Infect. Dis. Ther., 2020;9(1):641–656.; Whelan J., Klovstad H.,Haugen L., et al. Ecologic study of meningococcal vaccine and Neisseria gonorrhoeae infection, Norway. Emerg. Infect. Dis., 2018; 22(86):1137–1139.; Langtin J., Dion R., Simard M., et al. Possible impact of large scale vaccination against serogroup B Neisseria meningitidis on gonorrhea incidence rates in one a region of Quebec, Canada. Open Forum Infect. Dis., 2017;7:734–735.; Semchenko E.A., Mubaiva T.D., Day Ch.J., Seib K.L. Role of the gonococcal heparin binding antigen in microcolony formation, and serum resistance and adherence to epithelial cells. J.Infect. Dis., 2020; 221:1612–1622.; Semchenko E.A., Day Ch.J., Seib K.L. The Neisseria gonorrhoeae vaccine candidate NHBA elicits antibodies that are bactericidal, opsonophagocytic and that reduce gonococcal adherence to epithelial cells. Vaccines. 2020;8:219–233.; Marjuki H., Topaz N., Josef S.J., et al. Genetic similarity of gonococcal homologs to meningococcal outer membrane proteins of serogroup B vaccine. mBio, 2019; 10, iss. 5, e 01668-19; Read R.C., Baxter D., Hadwick D.R., Faust S.N., FinnA., Gordon St.-B., et al. Effect of quadrivalent meningococcal A, C, W, Y glycoconjugate or serogroup B meningococcal vaccine on meningococcal carriage: a observer blind phase randomized clinical trail. Lancet, 2014;384:2123–2131.; Marshall A.S., McMillan M., Koehler A.P., et al. Meningococcal B vaccine and meningococcal carriage in alolescents in Ausrtalia. N. Engl.J.Med., 2020; 382(4):318–327.; Bai X, Borrow R, Bukovski S., et al. Prevention and control of meningococcal disease: updates from the Global Meningococcal Initiative in Eastern Europe. J. Infect., 2019;79:528–641.; https://www.epidemvac.ru/jour/article/view/1324

  4. 4
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 21, № 4 (2021); 234-243 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 21, № 4 (2021); 234-243 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2021-21-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/350/461; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/257; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/259; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/281; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/311; Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet. 2010;375(9730):1969–87. https://doi.org/10.1016/S0140-6736(10)60549-1; Wunderink RG, Waterer GW. Community-acquired pneumonia. N Engl J Med. 2014;370:543–51. https://doi.org/10.1056/NEJMcp1214869; Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol. 2008;6(4):288–301. https://doi.org/10.1038/nrmicro1871; Masomian M, Ahmad Z, Gew LT, Poh CL. Development of next generation Streptococcus pneumoniae vaccines conferring broad protection. Vaccines. 2020;8(1):132. https://doi.org/10.3390/vaccines8010132; Kwambana-Adams BA, Mulholland EK, Satzke C, ISPPD group. State-of-the-art in the pneumococcal field: Proceedings of the 11th International symposium on pneumococci and pneumococcal diseases (ISPPD-11). Pneumonia. 2020;12:2. https://doi.org/10.1186/s41479-019-0064-y; Hirst RA, Kadioglu A, O’callaghan C, Andrew PW. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol. 2004;138(2):195–201. https://doi.org/10.1111/j.1365-2249.2004.02611.x; Shaper M, Hollingshead SK, Benjamin WH Jr, Briles DE. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect Immun. 2004;72(9):5031–40. https://doi.org/10.1128/IAI.72.9.5031-5040.2004; van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 2009;374(9700): 1543–56. https://doi.org/10.1016/S0140-6736(09)61114-4; Andre GO, Converso TR, Politano WR, Ferraz LF, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae proteins in evasion of complement-mediated immunity. Front Microbiol. 2017;8:224. https://doi.org/10.3389/fmicb.2017.00224; Mukerji R, Briles DE. New strategy is needed to prevent pneumococcal meningitis. Pediatr Infect Dis J. 2020;39(4):298–304. https://doi.org/10.1097/INF.0000000000002581; Pichichero ME. Pneumococcal whole-cell and protein-based vaccines: changing the paradigm. Expert Rev Vaccines. 2017;16(12):1181–90. https://doi.org/10.1080/14760584.2017.1393335; Klugman KP, Rodgers GL. Time for a third-generation pneumococcal conjugate vaccine. Lancet Infect Dis. 2021;21(1):14–6. https://doi.org/10.1016/S1473-3099(20)30513-2; Huang L, Wang L, Li H, Hu Y, Ru W, Han W, et al. A phase III clinical trial to evaluate the safety and immunogenicity of 23-valent pneumococcal polysaccharide vaccine (PPV23) in healthy children, adults, and elderly. Hum Vaccin Immunother. 2019;15(1):249–55. https://doi.org/10.1080/21645515.2018.1509648; Stacey HL, Rosen J, Peterson JT, Williams-Diaz A, Gakhar V, Sterling TM, et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccin Immunother. 2019;15(3):530–9. https://doi.org/10.1080/21645515.2018.1532249; Thompson A, Lamberth E, Severs J, Scully I, Tarabar S, Ginis J, et al. Phase 1 trial of a 20-valent pneumococcal conjugate vaccine in healthy adults. Vaccine. 2019;37(42):6201–07. https://doi.org/10.1016/j.vaccine.2019.08.048; Klein NP, Peyrani P, Yacisin K, Caldwell N, Xu X, Scully IL, et al. A phase 3, randomized, double-blind study to evaluate the immunogenicity and safety of 3 lots of 20-valent pneumococcal conjugate vaccine in pneumococcal vaccine-naive adults 18 through 49 years of age. Vaccine. 2021;39(38):5428–35. https://doi.org/10.1016/j.vaccine.2021.07.004; Nagai K, Domon H, Maekawa T, Hiyoshi T, Tamura H, Yonezawa D, et al. Immunization with pneumococcal elongation factor Tu enhances serotype-independent protection against Streptococcus pneumoniae infection. Vaccine. 2019;37(1):160–8. https://doi.org/10.1016/j.vaccine.2018.11.015; Jang A-Y, Ahn KB, Zhi Y, Ji H-J, Zhang J, Han SH, et al. Serotype-independent protection against invasive pneumococcal infections conferred by live vaccine with lgt deletion. Front Immunol. 2019;10:1212. https://doi.org/10.3389/fimmu.2019.01212; Li Y, Wang S, Scarpellini G, Gunn B, Xin W, Wanda S-Y, et al. Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc Natl Acad Sci USA. 2009;106(2):593–8. https://www.jstor.org/stable/40254825; Briles DE, Hollingshead SK, Nabors GS, Paton JC, Brooks-Walter A. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumonia. Vaccine. 2000;19(Suppl 1):S87–95. https://doi.org/10.1016/S0264-410X(00)00285-1; Briles DE, Hollingshead SK, King J, Swift A, Braun PA, Park MK, et al. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis. 2000;182(6):1694–701. https://doi.org/10.1086/317602; Georgieva M, Kagedan L, Lu Y-J, Thompson CM, Lipsitch M. Antigenic variation in Streptococcus pneumonia PspC promotes immune escape in the presence of variant-specific immunity. mBio. 2018;9(2):e00264-18. https://doi.org/10.1128/mBio.00264-18; Brooks-Walter A, Briles DE, Hollingshead SK. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun. 1999;67(12):6533–42. https://doi.org/10.1128/IAI.67.12.6533-6542.1999; Khan MN, Pichichero ME. CD4 T cell memory and antibody responses directed against the pneumococcal histidine triad proteins PhtD and PhtE following nasopharyngeal colonization and immunization and their role in protection against pneumococcal colonization in mice. Infect Immun. 2013;81(10):3781–92. https://doi.org/10.1128/IAI.00313-13; Godfroid F, Hermand P, Verlant V, Denoël P, Poolman JT. Preclinical evaluation of the Pht proteins as potential crossprotective pneumococcal vaccine antigens. Infect Immun. 2011;79(1):238–45. https://doi.org/10.1128/IAI.00378-10; Verhoeven D, Perry S, Pichichero ME. Contributions to protection from Streptococcus pneumoniae infection using the monovalent recombinant protein vaccine candidates PcpA, PhtD, and PlyD1 in an infant murine model during challenge. Clin Vaccine Immunol. 2014;21(8):1037–45. https://doi.org/10.1128/CVI.00052-14; Denoël P, Philipp MT, Doyle L, Martin D, Carletti G, et al. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine. 2011;29(33):5495–501. https://doi.org/10.1016/j.vaccine.2011.05.051; Seiberling M, Bologa M, Brookes R, Ochs M, Go K, Ne ve u D, et al. Safety and immunogenicity of a pneumococcal histidine triad protein D vaccine candidate in adults. Vaccine. 2012;30(52): 7455–60. https://doi.org/10.1016/j.vaccine.2012.10.080; Brookes RH, Ming M, Williams K, Hopfer R, Gurunathan S, Gallichan S, et al. Passive protection of mice against Streptococcus pneumoniae challenge by naturally occurring and vaccine-induced human anti-PhtD antibodies. Hum Vaccin Immunother. 2015;11(7):1836–9. https://doi.org/10.1080/21645515.2015.1039210; Hermand P, Vandercammen A, Mertens E, Di Paolo E, Verlant V, Denoël P, Godfroid F. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen. Hum Vaccin Immunother. 2017;13(1):220–8. https://doi.org/10.1080/21645515.2016.1234553; Leroux-Roels G, Maes C, De Boever F, Traskine M, Rüggeberg JU, Borys D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study. Vaccine. 2014;32(50):6838–46. https://doi.org/10.1016/j.vaccine.2014.02.052; Odutola A, Ota MOC, Antonio M, Ogundare EO, Saidu Y, Foster-Nyarko E, et al. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: a phase 2, randomized, controlled, observer-blind study. Vaccine. 2017;35(19):2531–42. https://doi.org/10.1016/j.vaccine.2017.03.071; Verhoeven D, Xu Q, Pichichero ME. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine. 2014;32(26):3205–10. https://doi.org/10.1016/j.vaccine.2014.04.004; Brooks WA, Chang L-J, Sheng X, Hopfer R. Safety and immunogenicity of a trivalent recombinant PcpA, PhtD, and PlyD1 pneumococcal protein vaccine in adults, toddlers, and infants: a phase I randomized controlled study. Vaccine. 2015;33(36):4610–7. https://doi.org/10.1016/j.vaccine.2015.06.078; Visan L, Rouleau N, Proust E, Peyrot L, Donadieu A, Ochs M. Antibodies to PcpA and PhtD protect mice against Streptococcus pneumoniae by a macrophage- and complement-dependent mechanism. Hum Vaccin Immunother. 2018;14(2):489–94. https://doi.org/10.1080/21645515.2017.1403698; Hill S, Entwisle C, Pang Y, Joachim M, McIlgorm A, Dalton K, et al. Immunogenicity and mechanisms of action of PnuBioVax, a multi-antigen serotype-independent prophylactic vaccine against infection with Streptococcus pneumoniae. Vaccine. 2018;36(29):4255–64. https://doi.org/10.1016/j.vaccine.2018.05.122; Entwisle C, Hill S, Pang Y, Joachim M, McIlgorm A, Colaco C, et al. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. Vaccine. 2017;35(51):7181–6. https://doi.org/10.1016/j.vaccine.2017.10.076; Liberman C, Takagi M, Cabrera-Crespo J, Sbrogio-Almeida ME, Dias WO, Leite LCC, Gonçalves VM. Pneumococcal whole-cell vaccine: optimization of cell growth of unencapsulated Streptococcus pneumoniae in bioreactor using animal-free medium. J Ind Microbiol Biotechnol. 2008;35(11):1441–5. https://doi.org/10.1007/s10295-008-0445-3; Lu YJ, Leite L, Gonçalves VM, Dias WO, Liberman C, Fratelli F, et al. GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine. 2010;28(47):7468–75. https://doi.org/10.1016/j.vaccine.2010.09.031; Gonçalves VM, Dias WO, Campos IB, Liberman C, Sbrogio-Almeida ME, Silva EP, et al. Development of a whole cell pneumococcal vaccine: BPL inactivation, cGMP production, and stability. Vaccine. 2014;32(9):1113–20. https://doi.org/10.1016/j.vaccine.2013.10.091; Malley R, Lipsitch M, Stack A, Saladino R, Fleisher G, Pelton S, et al. Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect Immun. 2001;69(8):4870–3. https://doi.org/10.1128/IAI.69.8.4870-4873.2001; Lu YJ, Yadav P, Clements JD, Forte S, Srivastava A, Thompson CM, et al. Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. Clin Vaccine Immunol. 2010;17(6):1005–12. https://doi.org/10.1128/CVI.00036-10; Hogenesch H, Dunham A, Hansen B, Anderson K, Maisonneuve JF, Hem SL. Formulation of a killed whole cell pneumococcus vaccine — effect of aluminum adjuvants on the antibody and IL-17 response. J Immune Based Ther Vaccines. 2011;29(9):5. https://doi.org/10.1186/1476-8518-9-5; Keech CA, Morrison R, Anderson P, Tate A, Flores J, Goldblatt D, et al. A phase 1 randomized, placebo-controlled, observer-blinded trial to evaluate the safety and immunogenicity of inactivated Streptococcus pneumoniae whole-cell vaccine in adults. Pediatr Infect Dis J. 2020;39(4):345–51. https://doi.org/10.1097/inf.0000000000002567; Kim EH, Choi SY, Kwon MK, Tran TD, Park SS, Lee KJ, et al. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine. 2012;30:2008–19. https://doi.org/10.1016/j.vaccine.2011.11.073; Seon SH, Choi JA, Yang E, Pyo S, Song MK, Rhee DK. Intranasal immunization with an attenuated pep27 mutant provides protection from influenza virus and secondary pneumococcal infections. J Infect Dis. 2018;217:637–40. https://doi.org/10.1093/infdis/jix594; Kim SJ, Seon SH, Luong TT, Ghosh P, Pyo S, Rhee DK. Immunization with attenuated non-transformable pneumococcal pep27 and comD mutant provides serotype-independent protection against pneumococcal infection. Vaccine. 2019;37:90–8. https://doi.org/10.1016/j.vaccine.2018.11.027; Anish C, Upadhyay AK, Sehgal D, Panda AK. Influences of process and formulation parameters on powder flow properties and immunogenicity of spray dried polymer particles entrapping recombinant pneumococcal surface protein A. Int J Pharm. 2014;466:198–210. https://doi.org/10.1016/j.ijpharm.2014.03.025; Kunda NK, Alfagih IM, Miyaji EN, Figueiredo DB, Gonçalves VM, Ferreira DM, et al. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm. 2015;495:903–12. https://doi.org/10.1016/j.ijpharm.2015.09.034; van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods. 2006;38:144–9. https://doi.org/10.1016/j.ymeth.2005.09.015; Lu J, Guo J, Wang D, Yu J, Gu T, Jiang C, et al. Broad protective immune responses elicited by bacterium-like particle-based intranasal pneumococcal particle vaccine displaying PspA2 and PspA4 fragments. Hum Vaccin Immunother. 2019;15:371–80. https://doi.org/10.1080/21645515.2018.1526556; Gupalova T, Leontieva G, Kramskaya T, Grabovskaya K, Kuleshevich E, Suvorov A. Development of experimental pneumococcal vaccine for mucosal immunization. PLoS One. 2019;14(6):e0218679. https://doi.org/10.1371/journal.pone.0218679; Xu JH, Dai WJ, Chen B, Fan XY. Mucosal immunization with PsaA protein, using chitosan as a delivery system, increases protection against acute otitis media and invasive infection by Streptococcus pneumoniae. Scand J Immunol. 2015;81:177–85. https://doi.org/10.1111/sji.12267; Haryono A, Salsabila K, Restu WK, Harmami SB, Safari D. Effect of chitosan and liposome nanoparticles as adjuvant codelivery on the immunoglobulin G subclass distribution in a mouse model. J Immunol Res. 2017;2017:9125048. https://doi.org/10.1155/2017/9125048; Tada R, Suzuki H, Takahashi S, Negishi Y, Kiyono H, Kunisawa J, Aramaki Y. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int Immunopharmacol. 2018;61:385–93. https://doi.org/10.1016/j.intimp.2018.06.027; Voß F, Kohler TP, Meyer T, Abdullah MR, van Opzeeland FJ, Saleh M, et al. Intranasal vaccination with lipoproteins confers protection against pneumococcal colonisation. Front Microbiol. 2018;9:2405. https://doi.org/10.3389/fimmu.2018.02405; https://www.biopreparations.ru/jour/article/view/350

  5. 5
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 21, № 2 (2021); 85-96 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 21, № 2 (2021); 85-96 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2021-21-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/315/425; https://www.biopreparations.ru/jour/article/downloadSuppFile/315/232; https://www.biopreparations.ru/jour/article/downloadSuppFile/315/239; Liu Z, Lao J, Zhang Y, Liu Y, Zhang J, Wang H, Jiang B. Association between floods and typhoid fever in Yongzhou, China: effects and vulnerable groups. Environ Res. 2018;167:718–24. https://doi.org/10.1016/j.envres.2018.08.030; Porter CK, Olson S, Hall A, Riddle MS. Travelers’ diarrhea: an update on the incidence, etiology, and risk in military deployments and similar travel populations. Military Med. 2017;182(Suppl2):4–10. https://doi.org/10.7205/MILMED-D-17-00064; Barnett R. Typhoid fever. Lancet. 2016;388(10059):2467. https://doi.org/10.1016/S0140-6736(16)32178-X; Stanaway J, Reiner R, Blacker BF, Goldberg EM, Khalil I, Troeger CE, et al. (GBD 2017 Typhoid and Paratyphoid Collaborators). The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19(4):369–81. https://doi.org/10.1016/S1473-3099(18)30685-6; Wain J, Hendriksen RS, Mikoleit ML, Keddy KH, Ochiai RL. Typhoid fever. Lancet. 2015;385(9973):1136–45. https://doi.org/10.1016/S0140-6736(13)62708-7; Antillón M, Warren JL, Crawford FW, Weinberg DM, Kürüm E., Pak GD, et al. The burden of typhoid fever in low- and middle-income contries: a meta-regression approach. PLoS Negl Trop Dis. 2017;11(2):e0005376. https://doi.org/10.1371/journal.pntd.0005376; Marchello CS, Hong CY, Crump JA. Global typhoid fever incidence: a systematic review and meta-analysis. Clin Infect Dis. 2019;68(Suppl_2):S105–16. https://doi.org/10.1093/cid/ciy1094; Ратников НН, Акимкин ВГ, Азаров ИИ, Коваленко АН. Актуальность проблемы иммунопрофилактики брюшного тифа на опыте применения вакцины Вианвак в эндемичном по брюшному тифу регионе. Медицинский алфавит. 2016;2(32):24–8.; Коваленко АН, Ратников НН, Борейко ЛО. Опыт применения брюшнотифозной вакцины Вианвак® в организованном коллективе постоянного пребывания на эндемичной по брюшному тифу территории. Вестник Российской военно-медицинской академии. 2018;(S1):152–8.; Коваленко АН, Иванов АМ, Одинаев НС, Рахманов МИ, Мурачев АА. Брюшной тиф: опыт последнего десятилетия. Журнал инфектологии. 2009;1(2/3):69–72. https://doi.org/10.22625/2072-6732-2009-1-2,3-69-72; Plotkin SL, Plotkin SA. General aspects of vaccination. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. Saunders; 2013. https://doi.org/10.1016/C2009-0-49973-2; Hejfec LB, Salmin LV, Lejtman MZ, Kuz’minova ML, Vasil’eva AV, Levina LA, et al. A controlled field trial and laboratory study of five typhoid vaccines in the USSR. Bull World Health Organ. 1966;34(3):321–39.; Лебедев СМ. К 100-летию введения в обязательном порядке профилактических прививок против брюшного тифа в войсках. Военная медицина. 2015;(4):152–4.; Степанов НН, Комиссаров НВ, Лошаков ОД, Савельев АП, Мисников ОП, Шевченко АИ. Актуальные вопросы вакцинопрофилактики опасных инфекционных болезней в Вооруженных Силах Российской Федерации. Вестник Российской Военно-медицинской академии. 2018;(S1):191–5.; Stuhl L, Benda R, Frey N. A controled field trial of the effectiveness of acetone-dried and inactivated and heat-phenol-inactivated typhoid vaccines in Yugoslavia. Bull World Health Organ. 1964;30(5):623–30.; Wong KH, Feeley JC, Northrup RS, Forlines ME. Vi antigen from Salmonella typhosa and immunity against typhoid fever I. Isolation and immunologic properties in animals. Infect Im- mun. 1974;9(2):348–53. https://doi.org/10.1128/IAI.9.2.348-353.1974; Levine MM, Ferreccio C, Black RE, Tacket CO, Germanier R. Progress in vaccines against typhoid fever. Rev Infect Dis. 1989;11(Suppl3):S552–67. https://doi.org/10.1093/clinids/11.supplement_3.S552; Germanier R, Fiirer E. Isolation and characterization of Gal E mutant Ty21a of Salmonella typhi: a candidate for a live, oral typhoid vaccine. J Infect Dis. 1975;131(5):553–58. https://doi.org/10.1093/infdis/131.5.553; Levine MM, Black RE, Ferreccio C, Germanier R. Largescale field trial of Ty21a live oral typhoid vaccine in entericcoated capsule formulation. Lancet. 1987;329(8541):1049–52. https://doi.org/10.1016/s0140-6736(87)90480-6; Levine MM, Ferreccio C, Abrego P, Martin OS, Ortiz E, Cryz S. Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine. Vaccine. 1999;17(Suppl_2):S22–7. https://doi.org/10.1016/s0264-410x(99)00231-5; Landy M, Gaines S, Seal JR, Whiteside JE. Antibody responses of man to three types of antityphoid immunizing agents: heat-phenol fluid vaccine, acetone-dehydrated vaccine, and isolated Vi and О antigens. Am J Public Health. 1954;44(12):1572–79. https://doi.org/10.2105/ajph.44.12.1572; Mitra M, Shah N, Ghosh A, Chatterjee S, Kaur I, Bhattacharya N, Basu S. Efficacy and safety of vi-tetanus toxoid conjugated typhoid vaccine (PedaTyph ™ ) in Indian children: school based cluster randomized study. Hum Vaccin Immunother. 2016;12(4):939–45. http://dx.doi.org/10.1080/21645515.2015.1117715; Mohan VK, Varanasi V, Singh A, Pasetti MF, Levine MM, Venkatesan R, Ella KM. Safety and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar-TCV) in healthy infants, children, and adults in typhoid endemic areas: a multicenter, 2-cohort, open-label, doubleblind, randomized controlled phase 3 study. Clin Infect Dis. 2015;61(3):393–402. https://doi.org/10.1093/cid/civ295; Poolman J, Borrow R. Hyporesponsiveness and its clinical implications after vaccination with polysaccharide or glycoconjugate vaccines. Expert Rev Vaccines. 2011;10(3):307–22. https://doi.org/10.1586/erv.11.8; Haque A. Significance of Vi negative isolates of Salmonella Enterica serovar Typhi. Adv Exp Med Biol. 2018;1052:9–18. https://doi.org/10.1007/978-981-10-7572-8_2; Micoli F, Adamo R, Costantino P. Protein carriers for glycoconjugate vaccines: history, selection criteria, characterization and new trends. Molecules. 2018;23(6):1451. https://doi.org/10.3390/molecules23061451; Syed AK, Saluja T, Cho H, Hsiao A, Shaikh H, Wartel TA, et al. Review on the recent advances on typhoid vaccine development and challenges ahead. Clin Infect Dis. 2020;71(Suppl2):S141–50. https://doi.org/10.1093/cid/ciaa504; Jin C, Gibani MM, Moore M, Juel HB, Jones E, Meiring J, et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet. 2017;390(10111):2472–80. https://doi.org/10.1016/S0140-6736(17)32149-9; Voysey M, Pollard AJ. Seroefficacy of Vi-polysaccharide tetanus toxoid typhoid conjugate vaccine (Typbar TCV). Clin Infect Dis. 2018;67(1):18–24. https://doi.org/10.1093/cid/cix1145; Milligan R, Paul M, Richardson M, Neuberger A. Vaccines for preventing typhoid fever. Cochrane Database Syst Rev. 2018;(5):CD001261. https://doi.org/10.1002/14651858.CD001261.pub4; Lo NC, Gupta R, Stanaway JD, Garrett DO, Bogoch II, Luby SP, Andrews JR. Comparison of strategies and incidence thresholds for Vi conjugate vaccines against typhoid fever: a cost-effectiveness modeling study. J Infect Dis. 2018;218(Suppl4):S232–42. https://doi.org/10.1093/infdis/jix598; Bilcke J, Antillón M, Pieters Z, Kuylen E, Abboud L, Neuzil KM, et al. Cost-effectiveness of routine and campaign use of typhoid Vi-conjugate vaccine in Gavi-eligible countries: a modelling study. Lancet Infect Dis. 2019;19(7):728–39. https://doi.org/10.1016/S1473-3099(18)30804-1; Ankudinov IV, Golovina ME, L’vov VL, Vaneeva NP, Verner IC, Yolkina SI, Aparin PG. Chromatographically purified Vi-capsular polysaccharide antigen for vaccination against Typhoid fever. Med J Indones. 1998;7(Supp1):240–6. https://doi.org/10.13181/mji.v7iSupp1.1125; Chinnasami B, Sadasivam К, Vivekanandhan А, Arunachalam P, Pasupathy S. A study on longevity of immune response after vaccination with Salmonella Typhi Vi conjugate vaccine (Pedatyph ™ ) in children. J Clin Diagn Res. 2015;9(5):SC01–3. https://doi.org/10.7860/JCDR/2015/13302.5903; Vashishtha VM, Kalra A. The need & the issues related to new-generation typhoid conjugate vaccines in India. Indian J Med Res. 2020;151(1):22–34. https://doi.org/10.4103/ijmr.IJMR_1890_17; Kundu R, Kandulna AK, Nayak U, Jangid SK, Babu TR, Vukkala R, et al. Immunogenicity and safety of typhoid conjugate vaccine in healthy indian subjects: a randomized, active-controlled, comparative clinical trial. Indian Pediatr. 2020;57(7):625–30. https://doi.org/10.1007/s13312-020-1890-y; Thiem VD, Lin F-YC, Canh DG, Son NH, Anh DD, Mao ND, et al. The Vi conjugate typhoid vaccine is safe, elicits protective levels of IgG anti-Vi, and is compatible with routine infant vaccines. Clin Vaccine Immunol. 2011;18(5):730–5. https://doi.org/10.1128/CVI.00532-10; Szu SC. Development of Vi conjugate — a new generation of typhoid vaccine. Expert Rev Vaccines. 2013;12(11):1273–86. https://doi.org/10.1586/14760584.2013.845529; Sahastrabuddhe S, Saluja T. Overview of the typhoid conjugate vaccine pipeline: current status and future plans. Clin Infect Dis. 2019;68(Suppl_1):S22–6. https://doi.org/10.1093/cid/ciy884; Capeding MR, Alberto E, Sil A, Saluja T, Teshome S, Kim DR, et al. Immunogenicity, safety and reactogenicity of a Phase II trial of Vi-DT typhoid conjugate vaccine in healthy Filipino infants and toddlers: a preliminary report. Vaccine. 2020;38(28):4476–83. https://doi.org/10.1016/j.vaccine.2019.09.074; Griffin TJ, Thanawastien A, Cartee RT, Mekalanos JJ, Killeen KP. In vitro characterization and preclinical immunogenicity of Typhax, a typhoid fever protein capsular matrix vaccine candidate. Hum Vaccin Immunother. 2019;15(6):1310–16. https://doi.org/10.1080/21645515.2019.1599674; Cartee RT, Thanawastien A, Griffin IV TJ, Mekalanos JJ, Bart S, Killeen KP. A phase 1 randomized safety, reactogenicity, and immunogenicity study of Typhax: a novel protein capsular matrix vaccine candidate for the prevention of typhoid fever. PLoS Negl Trop Dis. 2020;14(1):e0007912. https://doi.org/10.1371/journal.pntd.0007912; Saha MR, Ramamurthy T, Dutta P, Mitra U. Emergence of Salmonella typhi Vi antigen-negative strains in an epidemic of multidrug-resistant typhoid fever cases in Calcutta, India. Natl Med J India. 2000;13(3):164.; Mehta G, Arya SC. Capsular Vi polysaccharide antigen in Salmonella enterica serovar Typhi isolates. J Clin Microbiol. 2002;40(3):1127–8. https://doi.org/10.1128/jcm.40.2.1127-1128.2002; Baker S, Sarwar Y, Aziz H, Haque A, Ali A, Dougan G, et al. Detection of Vi-negative Salmonella enterica serovar Typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan. J Clin Microbiol. 2005;43(9):4418–25. https://doi.org/10.1128/JCM.43.9.4418-4425.2005; Howlader DR, Koley H, Sinha R, Maiti S, Bhaumik U, Mukherjee P, Dutta S. Development of a novel S. Typhi and Paratyphi A outer membrane vesicles based bivalent vaccine against enteric fever. PLoS One. 2018;13(9):e0203631. https://doi.org/10.1371/journal.pone.0203631; Das S, Chowdhury R, Pal A, Okamoto K, Das S. Salmonella Typhi outer membrane protein STIV is a potential candidate for vaccine development against typhoid and paratyphoid fever. Immunobiology. 2019;224(3):371–82. https://doi.org/10.1016/j.imbio.2019.02.011; Xiong K, Zhu C, Chen Z, Zheng C, Tan Y, Rao X, Cong Y. Vi Capsular polysaccharide produced by recombinant Salmonella enterica serovar Paratyphi A confers immunoprotection against infection by Salmonella enterica serovar Typhi. Front Cell Infect Microbiol. 2017;7:135. https://doi.org/10.3389/fcimb.2017.00135; Jaiswal AK, Tiwari S, Jamal SB, Barh D, Azevedo V, Soares SC. An in silico identification of common putative vaccine candidates against Treponema pallidum: a reverse vaccinology and subtractive genomics based approach. Int J Mol Sci. 2017;18(2):402. https://doi.org/10.3390/ijms18020402; Talukdar S, Bayan U, Saikia KrK. In silico identification of vaccine candidates against Klebsiella oxytoca. Comput Biol Chem. 2017;69:48–54. https://doi.org/10.1016/j.compbiolchem.2017.05.003; Muruato LA, Tapia D, Hatcher CL, Kalita M, Brett PJ, Gregory AE, et al. Use of reverse vaccinology in the design and construction of nanoglycoconjugate vaccines against Burkholderia pseudomallei. Clin Vaccine Immunol. 2017;24(11):e00206-17. https://doi.org/10.1128/CVI.00206-17; Esmailnia E, Amani J, Gargari SLM. Identification of novel vaccine candidate against Salmonella enterica serovar Typhi by reverse vaccinology method and evaluation of its immunization. Genomics. 2020;112(5):3374–81. https://doi.org/10.1016/j.ygeno.2020.06.022; https://www.biopreparations.ru/jour/article/view/315

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; № 3 (2015); 25-33 ; БИОпрепараты. Профилактика, диагностика, лечение; № 3 (2015); 25-33 ; 2619-1156 ; 2221-996X ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/19/20; The Dumenil Lab [Internet]. 2013 [cited 2015 Jul 09]. Available from: http://guillaumedumenillab.weebly.com/research-pictures.html.; Абрамцева М.В., Тарасов А.П., Немировская Т.И. Менингококковая инфекция. Современные представления о возбудителе, эпидемиологии, патогенезе и диагностике. Биопрепараты 2014; (3): 4-10.; Cohn A.C., MacNeil J.R., Clarc T.A. Prevention and control of meningococcal desase: rercomendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2013; 62(RP-2): 1-28.; De Sousa A.L., van de Beek, Scheld W.M. Meningococcal Desease. In: Guerrant R.L., Walker D.H., Weller P.F., eds. Tropical Infectious Deseases: Pricilples, Pathogens and Practice. 3rd ed. Edinburgh: Saunders; 2011. P. 174-83.; Дранкин Д.И., Иванов Н.Р., Годлевская М.В. Менингококковая инфекция. Саратов: Изд-во Саратовского университета; 1977.; Pace D., Pollard A.J. Meningococcal disease: clinical presentation and sequel. Vaccine 2012; Suppl. 2: B3-B9.; World Health Organization. Meningococcal vaccines: WHO position paper. Weekly epidemiological record. 2011, 86(47): 521-40.; Hedari C.P., Khinkarly R.W., Ddaibo G.S. Meningococcal serogroups A, C, W-135, and Y tetanus toxoid conjugate vaccine: a new conjugate vaccine against invasive meningococcal disease. Infect Drug Resist. 2014; (7): 85-9.; Granoff D.M., Harrison L.H., Borrow R. Meningococcal vaccines. In: Plotkin S.A., Orenstein W.A. Vaccines. 6th ed. Philadelphia: Saunders-Elsevier; 2013. P. 389-418.; Платонов А.Е., Харит С.М., Платонова О.В. Вакцинопрофилактика менингококковой инфекции в мире и в России. Эпидемиология и вакцинопрофилактика 2009; (5): 32-46.; Kuhns D.W., Kisner P., Williams M.P., Moorman P.L. The control of the meningococcic meningitis epidemics by active immunization with meningococcus soluble toxin. J Amer Med Assoc. 1938; 110: 484-7.; Millar J.W., Siess E.E., Feldman H.A., Silverman C., Frank P. In vivo and in vitro resistance to sulphadiazine in strains of Neisseria meningitidis. J Amer Med Assoc. 1963; 186: 139-41.; Scherp H.W., Rake G. Studies on meningococcal infection. XIII. Correlation between antipolysaccharide and the antibody which protect mice against infection with type I meningococci. J Exp Med. 1945; 81: 85-92.; Kabat E.A., Bezer A.E. The effect of variation in molecular weight on the antigenicity of dextran in man. Arch Biochem Byophys. 1958; 78: 306-13.; Gotschlich E.C., Goldschneider I., Artenstein M.S. Human immunity to the meningococcus. IV. Immunogenicity of group A and group С meningococcal polysaccharides in human volunteers. J Exp Med. 1969; 129: 1367-84.; Artenstein M.S., Gold R., Zimmerly J.G. Prevention of meningococcal disease by group C polysaccharide vaccine. New Engl J Med. 1970; 282: 417-20.; Дельвиг А.А., Семенов Б.Ф., Розенквист Э., Робинсон Д.Г. Neisseria meningitidis: от антигенной структуры к новому поколению вакцин. М.: Медицина; 2000.; Gotschlich E.C., Liu T.Y., Artenstein M.S. Human immunity to the meningococcus III. Preparation and immunochemical properties of the Review ) group A, group B, and group С meningococcal polysaccharides. J Exp Med. 1969; 129: 1349-65.; Goldschneider I., Gotschlich E.C., Artenstein M.S. Human immunity to the meningococcus II. Development of natural immunity. J Exp Med. 1969; 129: 1327-48.; De Voe I.W. The meningococcus and mechanisms of pathogenicity. Microbiol Rev. 1982; 46: 162-90.; Artenstein M.S., Gold R., Zimmerly J.G., Wyle F.A. Cutaneous reactions and antibody response to meningococcal group С polysaccharide vaccines in man. J Infect Dis. 1970; 121: 372-7.; Artenstein M.S., Gold R., Zimmerly J.G., Wyle F.A. Prevention of meningococcal disease by group С polysaccharide vaccine. New Engl J Med. 1970; 282: 417-20.; Gotschlich E.C., Goldschneider I., Artenstein M.S. Human immunity to the meningococcus V. The effect of immunization with meningococcal group С polysaccharide on the carrier state. J Exp Med. 1969; 129: 1385-95.; Balmer P., Borrow R. Serologic correlates of protection for evaluating the response to meningococcal vaccines. Expert Rev Vaccines 2004; 3(1): 77-87.; The immunological basis for immunization series: module 15 -meningococcal disease. Geneva: World Health Organization; 2010. Available from: http://whqlibdoc.who.int/publication/2010/9789241599849eng.pdf.; Ferreirós C.M., Criado M.T. Prevention of meningococcal disease: present and future. Rev Med Microbiol. 1998; 9(1): 29-38.; Leach A., Twumasi P.A., Kumah S., Banya W.S. Induction of immunologic memory in Gambian children by vaccination in infancy with a group A plus group С meningococcal polysaccharide-protein conjugate vaccine. J Infect Dis. 1997; l75: 200-4.; Gold R. Immunogenicity of meningococcal polysaccharides in man. In: Rudbach J., Baker P., eds. Immunology of bacterial polysaccharides. New York: Elsevier; 1979. P. 121-51.; Zollinger W.D., Moran E. Meningococcal vaccines - present and future. Trans Roy Soc Trop Med Hyg. 1991; 85(Suppl. 1): 37-43.; Gold R., Lepow M.l., Goldschneider I., Draper T.F. Kinetics of antibody production to group A and group С meningococcal polysaccharide vaccines administered during the first six years of life: prospects for routine immunization of infants and children. J Infect Dis. 1979; 140: 690-7.; Ceesay S.J., Allen S.J., Menon A., Todd J.E. Decline in meningococcal antibody levels in African children five years after vaccination and the lack of an effect of booster immunization. J Infect Dis. 1993; 167: 1212-6.; Patel M., Lee C.K. Polysaccharide vaccines for preventing serogroup A meningococcal meningitis. Cochrane Database Syst Rev 2005; (1): CD001093.; World Health Organization. Detecting meningococcal meningitis epidemics in highly-endemic African countries. Weekly Epidemiol Record 37, 2000; 75: 306-9.; Brunette G.W. CDC Health Information for International Travel 2016. New York: Oxford University Press; 2015.; De Wals P., De Serres G., Niyonsenga T. Effectiveness of a mass immunization campaign against serogroup С meningococcal disease in Quebec. J Amer Med Ass. 2001; 285: 177-81.; Funk A., Uadiale K., Kamau C., Caugant D.A., Ango U., Greig A. Sequential outbreaks due to a new strain of Neisseria meningitidis serogroup C in Northern Nigeria, 2013-2014. Available from: PLoS Curr. 2014. Published online 2014 December 29; 6.; Collard J.M., Issaka B., Zaneidou M., Hugonnet S., Nicolas P., Taha M.K., Greenwood B., Jusot J.F. Epidemiological changes in meningococcal meningitis in Niger from 2008 to 2011 and the impact of vaccination. Infect Dis. 2013; 13: 576-86.; Broderick M.P., Faix D.J., Hansen C.J., Blair P.J. Trends in meningococcal disease in the United States Military, 1971-2010. Emerg Infect Dis. 2012; 18(9): 1430-7.; Федосеенко М.В., Галицкая М.Г., Намазова Л.С. Эпоха конъюгированных вакцин: международный опыт успешного применения. Педиатрическая фармакология 2008; 5(6): 8-14.; McDonald N.E., Halperin S.A., Law B.J. Induction of immunologic memory by conjugated vs. plain meningococcal Cpolysaccharide vaccine in toddlers. J Amer Med Ass. 1988; 280: 1685-9.; Fiebig T., Berti F., Freiberger F., Pinto V., Claus H., Romano M.R., Proietti D., Brogioni B., Stummeyer K., Berger M., Vogel U., Costsntino P., Gerardy-Schan R. Functional expression of the capsule polymerase of Neisseria meningitidis serogroup X: A new perspective for vaccine development. Glycobiology 2014; (2): 150-8.; Micoli F., Romano M.R., Tontini M., Capeletti E., Gavini M., Proietti D., et al. Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. PNAS 2013; 110(47): 19077-82.; https://www.biopreparations.ru/jour/article/view/19; undefined

  10. 10
    Academic Journal

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 17, № 2 (2017); 78-86 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 17, № 2 (2017); 78-86 ; 2619-1156 ; 2221-996X ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/85/54; Haemophilus influenzae bacteria. NIBSC/SCIENCE PHOTO LIBRARY. Available from: http://www.sciencephoto.com/media/ 11458/view.; Богданович ТМ, Стецюк ОУ, Кречикова OИ, Боронина ЛГ, Катосова ЛК, Фаустова МЕ. Страчунский ЛС, ред. Выделение, идентификация и определение чувствительности к антибиотикам Haemophilus influenzae. Клиническая микробиология и антимикробная химиотерапия 2000; 2(2): 93-109.; Pfieffer R. Die Aetiologie der Influenza. Z Hyg Infect. 1893; 13: 357-86.; Epidemiology and prevention of vaccine-preventable diseases: The Pink Book: Course Textbook. 12th ed. Second Printing (May 2012). Available from: https://goo.gl/e6EOQy.; Tognotti E. Scientific triumphalism and learning from facts: bacteriology and the «Spanish flu» challenge of 1918. Soc Hist Med. 2003; 16(1): 97-110.; Haemophilus influenzae type b (Hib) Vaccination Position Paper. WHO. Weekly epidemiological record 2013; 88(39): 413-28.; Watt JP, Wolfson LJ, O’Brien KL, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet 2009; 374(9693): 903-11.; Moxon ER, Kroll JS. The role of bacterial polysaccharide capsules as virulence factors. Curr Top Microbiol Immunol. 1990; 150: 65-85.; Crisel RM, Baker RS, Dorman DE. Capsular polymer of Haemophilus influenzae, type b. I: Structural characterization of the capsular polymer of strain Eagan. J Biol Chem. 1975; 250(13): 4926-30.; Chandran A, Watt JP, Santosham M. Haemophilus influenzae vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines, 6th ed. Philadelphia, PA, Saunders-Elsevier; 2013. P. 560-621.; Mu XQ, Egelman EH, Bullitt E. Structure and function of Hib pili from Haemophilus influenzae type b. J Bacteriol. 2002; 184(17): 4868-74.; Briere EC, Rubin L, Moro PL, Cohn A, Clark T, Messonnier N. Prevention and control of haemophilus influenzae type b disease: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep. 2014; 63 (RR-01): 1-14.; Fothergill LD, Wright J. Influenzal meningitis: the relation of age incidence to the bactericidal power of blood against the causal organism. J Immunol. 1933; 24: 273-84.; Käyhty H, Peltola H, Karanko V, Mäkelä PH. The protective level of serum antibodies to the capsular polysaccharide of Haemophilus influenzae type b. J Infect Dis. 1983; 147(6): 1100.; Notifiable diseases and mortality tables. Morbidity and Mortality Weekly Report (MMWR) 2015; 64(01): ND-1-ND-19. Available from: https://goo.gl/YTRlV9.; МР 3.3.1.0001-10 Эпидемиология и вакцинопрофилактика инфекции, вызываемой Haemophilus influenzae типа b. Методические рекомендации. 2010.; Chandrasekar PH, Cavaliere R, Rust RS, S Swaminathan. Haemophilus meningitis. Available from: https://goo.gl/NGBAEI.; Озерецковский НА, Немировская ТИ. Вакцинация против гемофильной инфекции типа b в Российской Федерации и за рубежом. Эпидемиология и вакцинопрофилактика 2016; 15(1): 61-6.; Учайкин ВФ, Шамшева ОВ, Михайлова ЕВ, Шведова НМ. Национальный календарь профилактических прививок России: проблемы и пути их решения, результаты реализации в Саратовской области (обзор). Саратовский научно-медицинский журнал 2013; 9(2): 192-6.; O’Neill JM, St Geme JW 3rd, Cutter D, Adderson EE, Anyanwu J, Jacobs RF, Schutze GE. Invasive disease due to nontypeable Haemophilus influenzae among children in Arkansas. J Clin Microbiol. 2003; 41(7): 3064-9.; Faden H, Duffy L, Williams A, Krystofik DA, Wolf J. Epidemiology of nasopharyngeal colonization with nontypeable Haemophilus influenzae in the first 2 years of life. J Infect Dis. 1995; 172(1): 132-5.; Cochi SL, Fleming DW, Hightower AW, Limpakarnjanarat K, Facklam RR, Smith JD, et al. Primary invasive Haemophilus influenzae type b disease: a population-based assessment of risk factors. J Pediatr. 1986; 108(6): 887-96.; Saha SK, Baqui AH, Darmstadt GL, Ruhulamin M, Hanif M, El Arifeen S, et al. Invasive Haemophilus influenzae type b diseases in Bangladesh, with increased resistance to antibiotics. J Pediatr. 2005; 146(2): 227-33.; Adegbola RA, Mulholland EK, Secka O, Jaffar S, Greenwood BM. Vaccination with a Haemophilus influenzae type b conjugate vaccine reduces oropharyngeal carriage of H. influenzae type b among Gambian children. J Infect Dis. 1998; 177(6): 1758-61.; Peltola H. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin Microbiol Rev. 2000; 13(2): 302-17.; Kelly DF, Moxon ER, Pollard AJ. Haemophilus influenzae type b conjugate vaccines. Immunology 2004; 113(2): 163-74.; Käyhty H, Karanko V, Peltola H, Mäkelä PH. Serum antibodies after vaccination with Haemophilus influenzae type b capsular polysaccharide and responses to reimmunization: no evidence of immunologic tolerance or memory. Pediatrics 1984; 74(5): 857-65.; Peltola H, Käyhty H, Sivonen A, Mäkelä H. Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 1977; 60(5): 730-7.; Centers for Disease Control (CDC). Polysaccharide vaccine for prevention of Haemophilus influenzae type b disease. MMWR Morb Mortal Wkly Rep. 1985; 34(15): 201-5.; Dajani AS, Asmar BI, Thirumoorthi MC. Systemic Haemophilus influenzae disease: an overview. J. Pediatr. 1979; 94(3): 355-64.; Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins : V. The immunological specifity of an antigen prepared by combining the capsular polysaccharide of type III Pneumococcus with foreign protein. J Exp Med. 1931; 54(3): 437-47.; Абрамцева МВ, Тарасов АП, Немировская ТИ. Менингококковая инфекция. Конъюгированные полисахаридные менингококковые вакцины и вакцины нового поколения. Сообщение 3. Биопрепараты. Профилактика, диагностика, лечение 2016; 16(1): 3-13.; Granoff DM, Rathore MH, Holmes SJ, Granoff PD, Lucas AH. Effect of immunity to the carrier protein on antibody responses to Haemophilus influenzae type b conjugate vaccines. Vaccine 1993; 11(Suppl 1): S46-S51.; Barington T, Gyhrs A, Kristensen K. Opposite effects of actively and passively acquired immunity to the carrier on responses of human infants to a Haemophilus influenzae type b conjugate vaccine. Infect Immun. 1994; 62(1): 9-14.; Mäkelä PH, Käyhty H, Leino T, Auranen K, Peltola H, Ekström N, Eskola J. Long-term persistence of immunity after immunisation with Haemophilus influenzae type b conjugate vaccine. Vaccine 2003; 22(2): 287-92.; Haemophilus influenzae type b (Hib): the green book. Chapter 16. Immunization against infections desease. 2013. Available from: https://goo.gl/vYT2f3.; Canadian immunization guide: Part 4 - Active vaccines. Haemophilus influenzae type b vaccine. 2014. Available from: https://goo.gl/ qgro1Z.; Haemophilus influenzae infections. Red Book. 29 ed.; Am Acad Pediatr. 2012. P. 345-52. Available from: https://goo.gl/sAmyoC.; Adams DA, Jajosky RA, Ajani U, Kriseman J, Sharp P, Onwen DH, et al. Summary of notifiable diseases - United States, 2012. MMWR Morb Mortal Wkly Rep. 2014; 61(53): 1-121.; Harris JB, Gacic-Dobo M, Eggers R, Brown DW, Sodha SV. Global routine vaccination coverage, 2013. MMWR Morb Mortal Wkly Rep. 2014; 63(46): 1055-8.; Groups with special vaccination requirements. The Australian immunization Handbook 10th, 2015. Available from: http://www.im- munise.health.gov.au/7A5C97D9-EFF7-46D7-A8B8-AB0E73A4852E/ FinalDownload/DownloadId-E531F400104334DF0A8EAE21ECC5 39EA/7A5C97D9-EFF7-46D7-A8B8-AB0E73A4852E/internet/im- munise/publishing.nsf/content/7B28E87511E08905CA257D4D00 1DB1F8/$File/Aus-Imm-Handbook.pdf.; Washburn LK, O’Shea TM, Gillis DC, Block SM, Abramson JS. Response to Haemophilus influenzae type b conjugate vaccine in chronically ill premature infants. J Pediatr. 1993; 123(5): 791-4.; Heath PT, Booy R, McVernon J, Bowen-Morris J, Griffiths H, Slack MP, et al. Hib vaccination in infants born prematurely. Arch Dis Child. 2003; 88(3): 206-10.; Kristensen K, Gyhrs A, Lausen B, Barington T, Heilmann C. Antibody response to Haemophilus influenzae type b capsular polysaccharide conjugated to tetanus toxoid in preterm infants. Pediatr Infect Dis J. 1996; 15(6): 525-9.; Национальный календарь профилактических прививок. Available from: https://goo.gl/CtAqe5.; WHO information sheet observed rate of vaccine Haemophilus influenzae type b (Hib) vaccine. April 2012. Available from: https://goo.gl/ezGiwx.; Bohlke K, Davis RL, Marcy SM, Braun MM, DeStefano F, Black SB, et al. Risk of anaphylaxis after vaccination of children and adolescents. Pediatrics 2003; 112(4): 815-20.; Moro PL, Jankosky C, Menschik D, Lewis P, Duffy J, Stewart B, Shimabukuro TT. Adverse events follow Haemophilus influenzae type b vaccines in the Vaccine Adverse Event Reporting System, 1990-2013. J Pediatr. 2015; 166(4) 992-7.; МУ 3.3.1.1095-02. Медицинские противопоказания к проведению профилактических прививок препаратами национального календаря прививок. Методические указания. 2002.; https://www.biopreparations.ru/jour/article/view/85; undefined