Showing 1 - 20 results of 201 for search '"полиметилметакрилат"', query time: 0.83s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 60, № 1 (2024); 81-88 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 60, № 1 (2024); 81-88 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2024-60-1

    File Description: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/865/733; Ferrari, V. Printed thick-film capacitive sensors / V. Ferrari, M. Prudenziati // Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics. – Woodhead Publishing Limited, 2012. – P. 193–220. https://doi.org/10.1533/9780857096210.2.193; Capacitive sensor system for measurement of temperature and humidity / B. Oertel [et al.] // Fresenius J. Anal. Chem. – 1994. – Vol. 349. – P. 391–393. https://doi.org/10.1007/BF00326605; Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water / S. El-Akaad [et al.] // Sci. Rep. – 2020. – Vol. 10. – P. 14479. https://doi.org/10.1038/s41598-020-71325-y; Paper-based capacitive sensors for identification and quantification of chemicals at the point of care / J. Hu [et al.] // Talanta. – 2017. – Vol. 165. – P. 419–428. https://doi.org/10.1016/j.talanta.2016.12.086; Bindra, P. Capacitive gas and vapor sensors using nanomaterials / P. Bindra, A. Hazra // J. Mater. Sci.: Mater. Electron. – 2018. – Vol. 29. – P. 6129–6148. https://doi.org/10.1007/s10854-018-8606-2; Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review / N. Leibl [et al.] // Chemosensors. – 2021. – Vol. 9, № 6. – P. 123–141. https://doi.org/10.3390/chemosensors9060123; Jin Mei, C. A review on the determination heavy metals ions using calixarene-based electrochemical sensors / C. Jin Mei, S. Ainliah Alang Ahmad // Arab. J. Chem. – 2021. – Vol. 14, iss. 9. – P. 103303. https://doi.org/10.1016/j.arabjc.2021.103303; Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection / I. Bontidean [et al.] // Biosens. and Bioelectron. – 2003. – Vol. 18, N 5-6. – P. 547–553. https://doi.org/10.1016/s0956-5663(03)00026-5; Flexible sensors platform for determination of cadmium concentration in soil samples / M. Radovanović [et al.] // Comput. Electron. Agr. – 2019. – Vol. 166. – P. 105001. https://doi.org/10.1016/j.compag.2019.105001; Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection / H. Yu [et al.] // Sens. Actuators, B. – 2021. – Vol. 346. – P. 130488. https://doi.org/10.1016/j.snb.2021.130488; Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate / K. Hammarling [et al.] // Chemosensors. – 2018. – Vol. 6, № 3. – P. 30. https://doi.org/10.3390/chemosensors6030030; A dielectric coating for improved performance of capacitive sensors in all-polymer microfluidic devices / C. Offenzeller [et al.] // Microelectron. Eng. – 2020. – Vol. 223. – P. 111220. https://doi.org/10.1016/j.mee.2020.111220; Igreja, R. Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness / R. Igreja, C. J. Dias // Sens. Actuators, B. – 2006. – Vol. 115, № 1. – P. 69–78. https://doi.org/10.1016/j.snb.2005.08.019; Sensitive detection of heavy metal ions: An electrochemical approach / H. Patil [et al.] // Int. J. Mod. Phys. B. – 2018. – Vol. 32, № 19. – P. 1840042. https://doi.org/10.1142/s0217979218400428; A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions / T. Chabbah [et al.] // Chemosensors. – 2020. – Vol. 8, № 2. – P. 34. https://doi.org/10.3390/chemosensors8020034; Kholimatussadiah, S. A portable and low-cost parallel-plate capacitor sensor for alkali and heavy metal ions detection / S. Kholimatussadiah, T. A. Prijo // J. Adv. Dielectr. – 2018. – Vol. 8, № 4. – Art no. 1850026. https://doi.org/10.1142/s2010135x18500261; Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films / N. K. L. Wiziack [et al.] // Sens. Actuators, B. – 2007. – Vol. 122, iss. 2. – P. 484–492. https://doi.org/10.1016/j.snb.2006.06.016; Тонкие композиционные пленки полиметилметакрилата с наночастицами диоксида кремния / Д. В. Сапсалёв [и др.] // Журн. Белорус. гос. ун-та. Химия. – 2021. – № 2. – С. 36–49. https://doi.org/10.33581/2520-257X-2021-2-36-49; https://vestichem.belnauka.by/jour/article/view/865

  4. 4
    Academic Journal

    Contributors: The investigation was performed within the state program of scientific research for 2021–2025 «Energy and nuclear processes and technologies», subprogram «Energy processes and technologies» (assignment 2.25)., Работа выполнена в рамках государственной программы научных исследований на 2021– 2025 гг. «Энергетические и ядерные процессы и технологии», подпрограммы «Энергетические процессы и технологии» (задание 2.25).

    Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 3 (2024); 247-254 ; Доклады Национальной академии наук Беларуси; Том 68, № 3 (2024); 247-254 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-3

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1197/1198; Recent advances in portable heavy metal electrochemical sensing platforms / A. Garcia-Miranda Ferrari [et al.] // Environmental Science: Water Research & Technology. – 2020. – Vol. 6, N 10. – P. 2676–2690. https://doi.org/10.1039/d0ew00407c; A review on detection of heavy metals from aqueous media using nanomaterial-based sensors / J. A. Buledi [et al.] // Environmental Science and Pollution Research. – 2021. – Vol. 28. – Р. 58994–59002. https://doi.org/10.1007/s11356-020-07865-7; Detection of heavy metals using fully printed three electrode electrochemical sensor / S. G. R. Avuthu [et al.] // IEEE SENSORS 2014 Proceedings. – Valencia, Spain, 2014. – P. 669–672. https://doi.org/10.1109/icsens.2014.6985087; Nanostructured Sensors for Detection of Heavy Metals: A Review / Li Ming [et al.] // ACS Sustainable Chemistry & Engineering. – 2013. – Vol. 1, N 7. – P. 713–723. https://doi.org/10.1021/sc400019a; A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring / O. Kanoun [et al.] // Sensors. – 2021. – Vol. 21, N 12. – Art. 4131. https://doi.org/10.3390/s21124131; Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices / A. Shakeel [et al.] // Chemosphere. – 2022. – Vol. 303, part 1. – Art. 134923. https://doi.org/10.1016/j.chemosphere.2022.134923; A Portable Sensor System with Ultramicro Electrode Chip for the Detection of Heavy-Metal Ions in Water / Y. Wang [et al.] // Micromachines. – 2021. – Vol. 12, N 12. – Art. 1468. https://doi.org/10.3390/mi12121468; Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water / P. Pathak [et al.] // Sensors and Actuators B: Chemical. – 2021. – Vol. 344. – Art. 130263. https://doi.org/10.1016/j.snb.2021.130263; Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films / N. K. L. Wiziack [et al.] // Sensors and Actuators B: Chemical. – 2007. – Vol. 122, N 2. – P. 484–492. https://doi.org/10.1016/j.snb.2006.06.016; Heavy metal ion detection using a capacitive micromechanical biosensor array for environmental monitoring / G. Tsekenis [et al.] // Sensors and Actuators B: Chemical. – 2015. – Vol. 208. – P. 628–635. https://doi.org/10.1016/j.snb.2014.10.093; Ultrasensitive determination of mercury ions using a glassy carbon electrode modified with nanocomposites consisting of conductive polymer and amino-functionalized graphene quantum dots / B. Tian [et al.] // Microchimica Acta. – 2020. – Vol. 187. – Art. 210. https://doi.org/10.1007/s00604-020-4191-1; Selective Hg2+ sensor performance based various carbon‐nanofillers into CuO‐PMMA nanocomposites / D. F. Katowah [et al.] // Polymers for Advanced Technologies. – 2020. – Vol. 31, N 9. – P. 1946–1962. https://doi.org/10.1002/pat.4919; Eltayeb, N. E. Preparation and properties of newly synthesized Polyaniline@Graphene oxide/Ag nanocomposite for highly selective sensor application / N. E. Eltayeb, A. Khan // Journal of Materials Research and Technology. – 2020. – Vol. 9, N 5. – P. 10459–10467. https://doi.org/10.1016/j.jmrt.2020.07.031; Development of an impedimetric sensor based on carbon dots and chitosan nanocomposite modified electrode for Cu(II) detection in water / M. Echabaane [et al.] // Journal of Solid State Electrochemistry. – 2021. – Vol. 25. – P. 1797–1806. https://doi.org/10.1007/s10008-021-04949-3; Сенсорные слои полиметилметакрилата для емкостных датчиков анализа содержания катионов тяжелых металлов в воде / Д. В. Сапсалёв [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2024. – Т. 60, № 1. – С. 81–88. https://doi.org/10.29235/1561-8331-2024-60-1-81-88; https://doklady.belnauka.by/jour/article/view/1197

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Contributors: The reported study was funded by the Russian Foundation for Basic Research, project No. 19-33-90128\19, Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-33-90128\19

    Source: Fine Chemical Technologies; Vol 16, No 6 (2021); 490-501 ; Тонкие химические технологии; Vol 16, No 6 (2021); 490-501 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1771/1807; https://www.finechem-mirea.ru/jour/article/view/1771/1814; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1771/518; Мэнсон Дж., Сперлинг Л. Полимерные смеси и композиты: пер. с англ., под ред. Ю.К. Годовского. М.: Химия; 1979. 440 с.; Tscharnuter W. Photon correlation spectroscopy in particle sizing. In: Meyers R.A. (Ed.) Encyclopedia of Analytical Chemistry. 2000. P. 5469–5485.; Грицкова И.А., Копылов В.М., Симакова Г.А., Гусев С.А., Маркузе И.Ю. Полимеризация стирола в присутствии поверхностно-активных кремнийорганических веществ различной природы. Высокомолекулярные соединения. Серия Б. 2010;52(9):1689–1695.; Грицкова И.А., Ботова О.И., Шитов Р.О., Гринфельд Е.А. Получение искусственных латексов на основе изопрен-стирольного термоэластопласта. Тонкие химические технологии. 2014;9(5):61–63.; Larsson M., Hill A., Duffy J. Suspension stability; why particle size, zeta potential and rheology are important. Annu. Trans. Nord. Rheol. Soc. 2012;12:209–214.; Холмберг К., Йёнссон Ю., Кронберг Б., Линдман Б. Поверхностно-активные вещества и полимеры в водных растворах. М.: Лаборатория знаний; 2020. 531 с. ISBN 978-5-00101-767-7; Жданов А.А., Грицкова И.А., Чирикова О.В., Щеголихина О.И. Кремнийорганические ПАВ – стабилизаторы частиц полистирольных суспензий. Коллоидный журнал. 1995;57(1):30–33.; Семчиков Ю.Д. Высокомолекулярные соединения. Москва, Н. Новгород: Изд-во НГТУ: Издательский центр «Академия»; 2008. 368 с. ISBN 978-5-7695-5389-9,5-76953028-6.; Lee V.Ya. Organosilicon Compounds: Theory and Experiment (Synthesis). Academic Press; 2017. 758 p. ISBN 978-0-12-801981-8; Саладжес Д.Л. Поверхностно-активные вещества –виды и применение. Буклет FIRP 300 A, 2002. 49 с.; Srividhya M., Chandrasekar K., Baskar G., Reddy B.S.R., Physico-chemical properties of siloxane surfactants in water and their surface energy characteristics. Polymer. 2007;48(5):1261–1268. https://doi.org/10.1016/j.polymer.2007.01.015; Curstedt T., Calkovska A., Johansson J. New Generation Synthetic Surfactants. Neonatology. 2013;103(4): 327–330. https://doi.org/10.1159/000349942; Шинода К., Накагава Т., Тамамуси Б., Исемура Т. Коллоидные поверхностно-активные вещества. пер. с англ., под ред. А.Б. Таубмана, М.: Мир, 1966. 319 с.; Зимон А.Д. Адгезия жидкости и смачивание. М.: Химия; 1974. 416 с.; Liu J., Zhang F.F., Song Y.H., Lv K. Zhang N., Li Y.C. The synthesis of nonionic hyperbranched organosilicone surfactant and characterization of its wetting ability. Coatings. 2021;11(1). https://doi.org/10.3390/coatings11010032; Aveyard B. Surfactants: In Solution, at Interfaces and in Colloidal Dispersions. Oxford, New-York: Oxford University Press; 2019. 576 p. ISBN 978-0-19-882860-0

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20