Εμφανίζονται 1 - 20 Αποτελέσματα από 154 για την αναζήτηση '"полимерная матрица"', χρόνος αναζήτησης: 0,86δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: This research was funded by the Russian Science Foundation, project number 24-23-00269. Link to information about the project: https://rscf.ru/en/project/24-23-00269/, Исследование выполнено при поддержке Российского научного фонда, научный проект № 24-23-00269, https://rscf.ru/project/24-23-00269/

    Πηγή: Drug development & registration; Том 14, № 1 (2025); 171-180 ; Разработка и регистрация лекарственных средств; Том 14, № 1 (2025); 171-180 ; 2658-5049 ; 2305-2066

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/2016/1368; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2016/2693; Chen J., Sun R., Pan C., Sun Y., Mai B., Li Q. X. Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry. 2020;68(43):11908–11919. DOI:10.1021/acs.jafc.0c03996.; Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23(4):795. DOI:10.3390/molecules23040795.; Liu X., Steele J. C., Meng X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution. 2017;223:161–169. DOI:10.1016/j.envpol.2017.01.003.; Casey J. A., Tartof S. Y., Davis M. F., Nachman K. E., Price L., Liu C., Yu K., Gupta V., Innes G. K., Tseng H. F., Do V., Pressman A. R., Rudolph K. E. Impact of a Statewide Livestock Antibiotic Use Policy on Resistance in Human Urine Escherichia coli Isolates: A Synthetic Control Analysis. Environmental Health Perspectives. 2023;131(2):027007. DOI:10.1289/ehp11221.; Dutta T. K., Yadav S. K., Chatterjee A. Antibiotics as feed additives for livestock: Human health concerns. Indian Journal of Animal Health. 2019;58(2-Special Issue):121–136. DOI:10.36062/ijah.58.2spl.2019.121-136.; Simjee S., Ippolito G. European regulations on prevention use of antimicrobials from January 2022. Brazilian Journal of Veterinary Medicine. 2022;44:e000822. DOI:10.29374/2527-2179.bjvm000822.; Umair M., Hassan B., Farzana R., Ali Q., Sands K., Mathias J., Afegbua S., Haque M. N., Walsh T. R., Mohsin M. International manufacturing and trade in colistin, its implications in colistin resistance and One Health global policies: a microbiological, economic, and anthropological study. The Lancet Microbe. 2023;4(4):e264–e276. DOI:10.1016/s2666-5247(22)00387-1.; Alghirani M. M., Chung E. L. T., Jesse F. F. A., Sazili A. Q., Loh T. C. Could Phytobiotics replace Antibiotics as Feed Additives to Stimulate Production Performance and Health Status in Poultry? An Overview. Journal of Advanced Veterinary Research. 2021;11(4):254–265.; Gheisar M. M., Kim I. H. Phytobiotics in poultry and swine nutrition – a review. Italian Journal of Animal Science. 2017;17(1):92–99. DOI:10.1080/1828051x.2017.1350120.; Du S., Liu H., Lei T., Xie X., Wang H., He X., Tong R., Wang Y. Mangiferin: An effective therapeutic agent against several disorders (Review). Molecular Medicine Reports. 2018;18(6):4775–4786. DOI:10.3892/mmr.2018.9529.; Jyotshna N., Khare P., Shanker K. Mangiferin: A review of sources and interventions for biological activities. Bio-Factors. 2016;42(5):504–514. DOI:10.1002/biof.1308.; Biswas T., Sen A., Roy R., Maji S., Maji H. S. Isolation of Mangiferin from Flowering Buds of Mangifera indica L and its Evaluation of in vitro Antibacterial Activity. Research & Reviews: Journal of Pharmaceutical Analysis. 2015;4(3):49–56.; Singh S. K., Tiwari R. M., Sinha S. K., Danta C. C., Prasad S. K. Antimicrobial evaluation of mangiferin and its synthesized analogues. Asian Pacific Journal of Tropical Biomedicine. 2012;2(2):S884–S887. DOI:10.1016/s2221-1691(12)60329-3.; Loan N. T. T., Long D. T., Yen P. N. D., Hanh T. T. M., Pham T. N., Pham D. T. N. Purification Process of Mangiferin from Mangifera indica L. Leaves and Evaluation of Its Bioactivities. Processes. 2021;9(5):852. DOI:10.3390/pr9050852.; Zheng M. S., Lu Z. Y. Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chinese medical journal. 1990;103(2):160–165.; Rechenchoski D. Z., Agostinho K. F., Faccin-Galhardi L. C., Garcia Lonni A. A. S., Honório da Silva J. V., Goulart de Andrade F., Pacheco Cunha A., Pontes Silva Ricardo N. M., Nozawa C., Carvalho Linhares R. E. Mangiferin: A promising natural xanthone from Mangifera indica for the control of acyclovir – resistant herpes simplex virus 1 infection. Bioorganic & Medicinal Chemistry. 2020;28(4):115304. DOI:10.1016/j.bmc.2020.115304.; Grienke U., Schmidtke M., von Grafenstein S., Kirchmair J., Liedl K. R., Rollinger J. M. Influenza neuraminidase: A druggable target for natural products. Natural Product Reports. 2012;29(1):11–36. DOI:10.1039/c1np00053e.; Mei S., Ma H., Chen X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food and Chemical Toxicology. 2021;149:111997. DOI:10.1016/j.fct.2021.111997.; Saha S., Sadhukhan P., Sil P. C. Mangiferin: A xanthonoid with multipotent anti‐inflammatory potential. BioFactors. 2016;42(5):459–474. DOI:10.1002/biof.1292.; Adin S. N., Gupta I., Aqil M., Mujeeb M., Ahad A. BBD Driven Optimization of Extraction of Therapeutically Active Xanthanoid Mangiferin from Mangifera indica L. Leaves and its Antioxidant Activity. Pharmacognosy Research. 2022;15(1):84–93. DOI:10.5530/097484900279.; Khurana R. K., Kaur R., Kaur M., Kaur R., Kaur J., Kaur H., Singh B. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software. Future Science OA. 2017;3(1):FSO167. DOI:10.4155/fsoa-2016-0055.; Morozkina S. N., Nhung Vu T. H., Generalova Y. E., Snetkov P. P., Uspenskaya M. V. Mangiferin as new potential anti-cancer agent and mangiferin-integrated polymer systems–a novel research direction. Biomolecules. 2021;11(1):79. DOI:10.3390/biom11010079.; Kim D. H., Jeong E. W., Baek Y., Lee H. G. Development of propolis extract-loaded nanoparticles with chitosan and hyaluronic acid for improving solubility and stability. LWT. 2023;181:114738. DOI:10.1016/j.lwt.2023.114738.; Wu T., Han W., Han Y., Ma L., Li M., Sun Y., Liua B., Tian B., Fu Q. Fabrication and characterization of zein-sodium alginate complex nanoparticles as an effective naringenin delivery system: Physicochemical stability, solubility, antioxidant activity. Journal of Molecular Liquids. 2023;386:122569. DOI:10.1016/j.molliq.2023.122569.; Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018;10(7):701. DOI:10.3390/polym10070701.; Falbo F., Spizzirri U.G., Restuccia D., Aiello F. Natural Compounds and Biopolymers-Based Hydrogels Join Forces to Promote Wound Healing. Pharmaceutics. 2023;15(1):271. DOI:10.3390/pharmaceutics15010271.; Bayer I. S. Hyaluronic Acid and Controlled Release: A Review. Molecules. 2020;25(11):2649. DOI:10.3390/molecules25112649.; Jabbari F., Babaeipour V., Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. International Journal of Biological Macromolecules. 2023;240:124484. DOI:10.1016/j.ijbiomac.2023.124484.; Snetkov P., Zakharova K., Morozkina S., Olekchnovich R., Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers. 2020;12(8):1800. DOI:10.3390/polym12081800.; Chi Y., Huang Y., Kang Y., Dai G., Liu Z., Xu K., Zhong W. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles. European Journal of Pharmaceutical Sciences. 2022;168:106075. DOI:10.1016/j.ejps.2021.106075.; Lee J. H., Tachibana T., Wadamori H., Yamana K., Kawasaki R., Kawamura S., Isozaki H., Sakuragi M., Akiba I., Yabuki A. Drug-Loaded Biocompatible Chitosan Polymeric Films with Both Stretchability and Controlled Release for Drug Delivery. ACS Omega. 2023;8(1):1282–1290. DOI:10.1021/acsomega.2c06719.; Raveendran R. L., Anirudhan T. S. Development of Macroscopically Ordered Liquid crystalline hydrogel from Biopolymers with robust Antibacterial activity for controlled drug delivery applications. Polymer Chemistry. 2021;12(27):3992–4005. DOI:10.1039/D1PY00610J.; Shirvan A. R., Hemmatinejad N., Bahrami S. H., Bashari A. A comparison between solvent casting and electrospinning methods for the fabrication of neem extract-containing buccal films. Journal of Industrial Textiles. 2022;51(1_ suppl):311S–335S. DOI:10.1177/15280837211027785.; Filippova N. I., Teslev A. A. Application of mathematical modeling in the evaluation of in vitro drug release. Drug development & registration. 2017;4:218–226. (In Russ.); Sjöholm E., Mathiyalagan R., Rajan Prakash D., Lindfors L., Wang Q., Wang X., Ojala S., Sandler N. 3D-Printed Veterinary Dosage Forms–A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics. 2020;12(12):1239. DOI:10.3390/pharmaceutics12121239.; Herold S. E., Kyser A. J., Orr M. G., Mahmoud M. Y., Lewis W. G., Lewis A. L., Steinbach-Rankins J. M., Frieboes H. B. Release Kinetics of Metronidazole from 3D Printed Silicone Scaffolds for Sustained Application to the Female Reproductive Tract. Biomedical Engineering Advances. 2023;5:100078. DOI:10.1016/j.bea.2023.100078.; Yoo J., Won Y.-Y. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomaterials Science & Engineering. 2020;6(11):6053–6062. DOI:10.1021/acsbiomaterials.0c01228.; Huang X., Brazel C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release. 2001;73(2–3):121–136. DOI:10.1016/s0168-3659(01)00248-6.; Bakhrushina E. O., Sakharova P. S., Konogorova P. D., Pyzhov V. S., Kosenkova S. I., Bardakov A. I., Zubareva I. M., Krasnyuk I. I., Krasnyuk I. I. Jr. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics. 2024;16(1):115. DOI:10.3390/pharmaceutics16010115.; Yarce C. J., Pineda D., Correa C. E., Salamanca C. H. Relationship between Surface Properties and In Vitro Drug Release from a Compressed Matrix Containing an Amphiphilic Polymer Material. Pharmaceuticals. 2016;9(3):34. DOI:10.3390/ph9030034.; Strankowska J., Grzywińska M., Łęgowska E., Józefowicz M., Strankowski M. Transport Mechanism of Paracetamol (Acetaminophen) in Polyurethane Nanocomposite Hydrogel Patches—Cloisite® 30B Influence on the Drug Release and Swelling Processes. Materials. 2024;17(1):40. DOI:10.3390/ma17010040.; Danyuo Y., Ani C. J., Salifu A. A., Obayemi J. D., Dozie-Nwachukwu S., Obanawu V. O., Akpan U. M., Odusanya O. S., Abade-Abugre M., McBagonluri F., Soboyejo W. O. Anomalous Release Kinetics of Prodigiosin from Poly-N-Isopropyl-Acrylamid based Hydrogels for The Treatment of Triple Negative Breast Cancer. Scientific Reports. 2019;9(1):3862. DOI:10.1038/s41598-019-39578-4.; De Jesús Martín-Camacho U., Rodríguez-Barajas N., Sánchez-Burgos J. A., Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. International Journal of Pharmaceutics. 2023;640:123017. DOI:10.1016/j.ijpharm.2023.123017.; Ritger P. L., Peppas N. A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release. 1987;5(1):37–42. DOI:10.1016/0168-3659(87)90035-6.; Papadopoulou V., Kosmidis K., Vlachou M., Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. International Journal of Pharmaceutics. 2006;309(1–2):44–50. DOI:10.1016/j.ijpharm.2005.10.044.; https://www.pharmjournal.ru/jour/article/view/2016

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 27, № 1 (2025); 188-197 ; Вестник трансплантологии и искусственных органов; Том 27, № 1 (2025); 188-197 ; 1995-1191

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1871/1748; https://journal.transpl.ru/vtio/article/downloadSuppFile/1871/1824; https://journal.transpl.ru/vtio/article/downloadSuppFile/1871/1825; Общая фармакопейная статья «Трансдермальные пластыри» ОФС.1.4.1.0016. Государственная Фармакопея Российской Федерации. XV издание.; Лосенкова СО, Тюнина ЕД, Павлюченкова НА, Лосенков ПВ, Емельянов АА, Махотина МВ. Современный ассортимент трансдермальных лекарственных форм на фармацевтическом рынке России. Вестник Смоленской государственной медицинской академии. 2022; 21 (1): 152–159. doi:10.37903/vsgma.2022.1.20.; Басок ЮБ, Кузнецова ЕГ, Курылева ОМ, Перова НВ, Рыжикова ВА, Саломатина ЛА и др. Трансдермальные терапевтические системы / Под ред. В.И. Севастьянова, Е.Г. Кузнецовой. СПб.: Наукоемкие технологии, 2023; 276.; Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Releas. 2022; 351: 361–380. doi:10.1016/j.jconrel.2022.09.025. PMID: 36169040.; Севастьянов ВИ, Саломатина ЛА, Кузнецова ЕГ, Серегина МВ, Басок ЮБ. Трансдермальная лекарственная форма ацизола – антидота угарного газа. Перспективные материалы. 2008; 6: 55–59.; Maciejewski B, Dłabiszewska J, Mikolaszek B, Sznitowska M. The Impact of Liquid Components on Alteration of the Adhesion of Polyacrylate and Silicone Patches. Polymers (Basel). 2023; 15 (22): 4355. doi:10.3390/polym15224355. PMID: 38006080. PMCID: PMC10674843.; Кузнецова ЕГ, Рыжикова ВА, Саломатина ЛА, Севастьянов ВИ. Трансдермальный перенос лекарст­ венных веществ и способ его усиления. Вестник трансплантологии и искусственных органов. 2016; 18 (2): 152–162. doi:10.15825/1995-1191-2016-2-152-162.; Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv. 2020; 17 (2): 145– 155. doi:10.1080/17425247.2020.1713087. PMID: 31910342.; Vasyuchenko EP, Orekhov PS, Armeev GA, Bozdaganyan ME. CPE-DB: An Open Database of Chemical Penetration Enhancers. Pharmaceutics. 2021; 13 (1): 66. doi:10.3390/pharmaceutics13010066. PMID: 33430205. PMCID: PMC7825720.; Henkel-adhesives.com [Internet]. Product selection guid. Henkel. DURO-TAK and GELVA Transdermal Pressure Sensitive Adhesives [cited 2022 March 21]. Available from: https://www.henkel-adhesives.com/content/dam/uai/AIH/master/images/drug-delivery-polymers/durotak-gelva-production-guide-US-4pager-160920.pdf.; Севастьянов ВИ, Кузнецова ЕГ, Саломатина ЛА, Курылева ОМ, Басок ЮБ, Готье СВ. Патент RU2812184С1. Матрица на основе акрилового адгезива с комплексом активаторов чрескожного переноса для трансдермальных терапевтических систем. Опубликовано 24.01.2024.; Гаврилов АС. Фармацевтическая технология. Изготовление лекарственных препаратов (учебное пособие). Глава 5. Вспомогательные вещества / Под ред. А.С. Гаврилова. М.: ГЭОТАР-Медиа, 2010; 624.; Тутельян ВА, Кравченко ЛВ, Авреньева ЛИ, Морозов СВ. Оценка антиоксидантной и антитоксической эффективности природного флавоноида дигидрокверцетина.Токсикологическийвестник. 2005; 1: 14–20.; Tsoureli-Nikita E, Hercogova J, Lotti T, Menchini G. Evaluation of dietary intake of vitamin E in the treatment of atopic dermatitis: a study of the clinical course and evaluation of the immunoglobulin E serum levels. Int J Dermatol. 2002; 41 (3): 146–150. doi:10.1046/j.1365-4362.2002.01423.x. PMID: 12010339.; Быкова СФ, Давиденко ЕК, Ефименко СГ. Перспективы развития сырьевой базы производства новых типов пищевых растительных масел. Масла и жиры. 2014; 1: 20–24.; Lin T-K, Zhong L, Santiago JL. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci. 2017; 19 (1): 70. doi:10.3390/ijms19010070. PMID: 29280987.; Севастьянов ВИ. Биоматериалы, системы доставки лекарственных веществ и биоинженерия. Вестник трансплантологии и искусственных органов. 2009; 11 (3): 69–80. https://doi.org/10.15825/1995-1191-2009-3-69-80.; Ryzhikova VA, Tikhobayeva AA, Salomatina LA, Kursakov SV, Kuznetsova EG, Kuryleva OM, Sevastianov VI. Effect of the Transfer Activator on Functional Properties of the Bromocain Matrix Transdermal Therapeutic Systems. Inorganic Materials: Applied Research. 2014; 5 (5): 498–503. doi:10.1134/S2075113314050177.; Саутина НВ, Рыбакова АИ, Губайдуллин АТ, Галяметдинов ЮГ. Жидкокристаллическая мезофаза системы вода / АОТ / изопропилмиристат в процессах трансдермальной доставки аминокислот. Жидкие кристаллы и их практическое использование. 2020; 20 (2): 91–99. doi:10.18083/LCAppl.2020.2.91.; Саутина НВ, Рыбакова АИ, Галяметдинов ЮГ. Кинетика массопереноса L-лизина в обратных микроэмульсиях, стабилизированных АОТ. Жидкие кристаллы и их практическое использование. 2019; 19 (1): 26–32. doi:10.18083/LCAppl.2019.1.26.; https://journal.transpl.ru/vtio/article/view/1871

  11. 11
    Academic Journal

    Συνεισφορές: The work was completed by the grant of the Russian Science Foundation (project № 21-74-20093). Link to project information: https://rscf.ru/en/project/21-74-20093/, Работа выполнена за счет гранта Российского научного фонда (проект № 21-74-20093). Ссылка на информацию о проекте: https://rscf.ru/en/project/21-74-20093/

    Πηγή: Drug development & registration; Том 13, № 1 (2024); 75-80 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 75-80 ; 2658-5049 ; 2305-2066

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1735/1245; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1735/2079; Kopishinskaia S. V. Transthyretin familial amyloid polyneuropathy. Journal of Neurology and Psychiatry of S. S. Korsakov. 2018;118(10):82–89. (In Russ.) DOI:10.17116/jnevro201811810182.; Adams D., Suhr O. B., Hund E., Obici L., Tournev I., Campistol J. M., Slama M. S., Hazenberg B. P., Coelho T. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Current Opinion in Neurology. 2016;29:14–26. DOI:10.1097/WCO.0000000000000289.; Sekijima Y., Tojo K., Morita H., Koyama J., Ikeda S. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid. 2015;22:79–83. DOI:10.3109/13506129.2014.997872.; Ikram A., Donnelly J. P., Sperry B. W., Samaras C., Valent J., Hanna M. Diflunisal tolerability in transthyretin cardiac amyloidosis: A single center’s experience. Amyloid. 2018;25:197–202. DOI:10.1080/13506129.2018.1519507.; Rosenblum H., Castano A., Alvarez J., Goldsmith J., Helmke S., Maurer M. S. TTR (transthyretin) stabilizers are associated with improved survival in patients with TTR cardiac amyloidosis. Circulation: Heart Failure. 2018;11:e004769. DOI:10.1161/CIRCHEARTFAILURE.117.004769.; Amanpreet K., Shishu G., Katare O. P. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. Journal of Microencapsulation. 2016;33:475–486. DOI:10.1080/02652048.2016.1216189.; Rochín-Wong S., Rosas-Durazo A., Zavala-Rivera P., Maldonado A., Martínez-Barbosa M. E., Vélaz I., Tánori J. Drug Release Properties of Diflunisal from Layer-By-Layer Self-Assembled κ-Carrageenan/Chitosan Nanocapsules: Effect of Deposited Layers. Polymers. 2018;10(7):760. DOI:10.3390/polym10070760.; Figueroa-Pizano M. D., Vélaz I., Martínez-Barbosa M. E. A Freeze-Thawing Method to Prepare Chitosan-Poly(vinyl alcohol) Hydrogels Without Crosslinking Agents and Diflunisal Release Studies. Journal of Visualized Experiments. 2020;155:e59636. DOI:10.3791/59636.; Bashir M., Syed H. K., Asghar S., Irfan M., Almalki W. H., Menshawi S. A., Khan I. U., Shah P. A., Khalid I., Ahmad J., Gohar U. F., Peh K. K., Iqbal M. S. Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal. Polymers. 2020;12:1564. DOI:10.3390/polym12071564.; Zhong Z., Yang X., Fu X. B., Yao Y. F., Guo B. H., Huang Y., Xu J. Crystalline inclusion complexes formed between the drug diflunisal and block copolymers. Chinese Chemical Letters. 2017;28:1268–1275. DOI:10.1016/j.cclet.2017.04.001.; Kegley Z., Makay M., Rogers J., Phelps K., Malcom C., Hellmig D., Kroninger A., Bi X. Polyamidoamine dendrimer-polyethylene glycol hydrogel for solubility enhancement and sustained release of diflunisal. Journal of Sol-Gel Science and Technology. 2022;104:160–168. DOI:10.1007/s10971-022-05904-y.; How K. N., Yap W. H., Lim C. L. H., Goh B. H., Lai Z. W. Hyaluronic Acid-Mediated Drug Delivery System Targeting for Inflammatory Skin Diseases: A Mini Review. Front Pharmacol. 2020;11:1105. DOI:10.3389/fphar.2020.01105.; Chen Z. What’s new about the mechanism of methotrexate action in psoriasis? British Journal of Dermatology. 2018;179(4):818–819. DOI:10.1111/bjd.16908.; Gupta R. C., Lall R., Srivastava A., Sinha A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Frontiers in Veterinary Science. 2019;6:192. DOI:10.3389/fvets.2019.00192.; Snetkov P., Morozkina S., Olekhnovich R., Vu T. H. N., Tyanutova M., Uspenskaya M. Curcumin/Usnic Acid-Loaded Electrospun Nanofibers Based on Hyaluronic Acid. Materials. 2020;13(16):3476. DOI:10.3390/ma13163476.; Cavallaro G., Pierro P., Palumbo F. S., Testa F., Pasqua L., Aiello R. Drug delivery devices based on mesoporous silicate. Drug Delivery. 2004;11(1):41–46. DOI:10.1080/10717540490265252.; Bashir M., Ahmad J., Asif M., Khan S. U. D., Irfan M., Ibrahim A. Y., Asghar S., Khan I. U., Iqbal M. S., Haseeb A., Khalid S. H., Abourehab M. A. S. Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: in vitro and in vivo Evaluation. International Journal of Nanomedicine. 2021;16:1457–1472. DOI:10.2147/IJN.S294653.; Bayer I. S. Hyaluronic Acid and Controlled Release: A Review. Molecules. 2020;25(11):2649. DOI:10.3390/molecules25112649.; Shlini P., Sana F. M., Shambhavi U. Isolation and purification of hyaluronic acid like components from Ipomoea Batatas (sweet potato). European Journal of Pharmaceutical and Medical Research. 2017;4(8),282–286.; Mihajlova P. A., Generalova Ju. E. Research of the chromatographic behavior of diflunisal. In: I International Scientific and Practical Conference dedicated to the memory of Professor P. V. Kuznetsov. Chromatography in chemistry, medicine and biology: current issues, achievements and innovations. Kemerovo. 2021. P. 124–127. (In Russ.); Proksch E. pH in nature, humans and skin. The Journal of Dermatology. 2018;45(9):1044–1052. DOI:10.1111/1346-8138.14489.; https://www.pharmjournal.ru/jour/article/view/1735

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Συγγραφείς: null I. V. Markova

    Πηγή: Nauka ta progres transportu, Iss 6(78), Pp 118-125 (2018)
    Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту; № 6(78) (2018); 118-125
    Наука и прогресс транспорта. Вестник Днепропетровского национального университета железнодорожного транспорта; № 6(78) (2018); 118-125
    Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport; № 6(78) (2018); 118-125

    Περιγραφή αρχείου: application/pdf; text/html

  18. 18
  19. 19
  20. 20