Εμφανίζονται 1 - 20 Αποτελέσματα από 89 για την αναζήτηση '"позитронная эмиссионная томография"', χρόνος αναζήτησης: 0,80δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: Radiatsionnaya Gygiena = Radiation Hygiene; Том 15, № 4 (2022); 122-133 ; Радиационная гигиена; Том 15, № 4 (2022); 122-133 ; 2409-9082 ; 1998-426X ; 10.21514/1998-426X-2022-15-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.radhyg.ru/jour/article/view/917/817; Наркевич Б.Я. Физико-техническое обеспечение ядерной медицины: современное состояние и перспективы развития // Радиационная онкология и ядерная медицина. 2012. № 1. С. 51-75.; National Council on Radiation Protection and Measurements. Medical radiation exposure of patients in the United States // NCRP Report No. 184, 2019.; Evaluation of medical exposure to ionizing radiation // UNSCEAR 2020/2021 Report Volume I. Annex A.; Онищенко Г.Г., Попова А.Ю., Романович И.К., и др. Современные принципы обеспечения радиационной безопасности при использовании источников ионизирующего излучения в медицине. Часть 1. Тенденции развития, структура лучевой диагностики и дозы медицинского облучения // Радиационная гигиена. 2019. Т. 12, № 1. С. 6-24. DOI:10.21514/1998-426X-2019-12-1-6-24.; Онищенко Г.Г., Попова А.Ю., Романович И.К., и др. Современные принципы обеспечения радиационной безопасности при использовании источников ионизирующего излучения в медицине. Часть 2. Радиационные риски и совершенствование системы радиационной защиты // Радиационная гигиена. 2019. Т. 12, № 2. С. 6-24. DOI:10.21514/1998-426X-2019-12-2-6-24.; Martin A., Eckerman K., Pawel D., et al. Improved Age- and Gender-Specific Radiation Risk Models Applied on Cohorts of Swedish Patients // Radiation Protection Dosimetry. 2021. Vol. 195, No 3-4. P. 334-338. DOI:10.1093/rpd/ncab075.; Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2020 г. (Радиационно-гигиенический паспорт Российской Федерации). М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2021. 130 с.; Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2019 г. (Радиационно-гигиенический паспорт Российской Федерации). М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2020. 136 c.; Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2018 г. (Радиационно-гигиенический паспорт Российской Федерации). М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2019. 130 с.; Радиационно-гигиенический паспорт России: Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2017 г. (Радиационно-гигиенический паспорт Российской Федерации). М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2018. 117 с.; Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2016 г. (Радиационно-гигиенический паспорт Российской Федерации). М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2017. 125 с.; Результаты радиационно-гигиенической паспортизации в субъектах Российской Федерации за 2015 г. (Радиационно-гигиенический паспорт Российской Федерации). М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2016. 125 с.; Водоватов А.В., Романович И.К., Историк О.А., и др. Предварительная оценка изменения структуры и коллективной дозы от КТ-исследований за период март-июнь 2020 г в связи с диагностикой COVID-19 в Российской Федерации. 2020. Препринт: https://covid19-preprints. microbe.ru/article/28 (Дата обращения: 27.07.2022) DOI:10.21055/preprints-3111724.; Звонова И.А., Чипига Л.А., Балонов М.И., Сухов В.Ю. Радионуклидная диагностика в Санкт-Петербурге: текущее состояние и проблемы развития // Радиационная гигиена. 2015. Т. 8, № 4. С. 32-41.; Костылев В.А., Рыжикова О.А., Сергиенко В.Б. Статус и перспектива развития методов позитронно-эмиссионной томографии в России // Медицинская физика. 2015. № 2. С. 5-16.; European Commission. Medical radiation exposure of the European population // Radiation Protection. 2019. № 180, part 1/2.; Verberne H.J., Acampa W., Anagnostopoulos C. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision // European Journal of Nuclear Medicine and Molecular Imaging. 2009. Vol. 36. P. 1201-1216. DOI:10.1007/s00259-015-3139-x.; Kapucu Ö.L., Nobili F., Varrone A., et al. EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2 // European Journal of Nuclear Medicine and Molecular Imaging. 2009. Vol. 36(12). P. 2093-102. DOI 10.1007/s00259-009-1266-y.; Балонов М.И., Голиков В.Ю., Звонова И.А., и др. Современные уровни медицинского облучения в России // Радиационная гигиена. 2015. Т. 8, № 3. С. 67-79.; Balonov M., Golikov V., Zvonova I., et al. Patient doses from medical examinations in Russia: 2009-2015 // Journal of Radiological Protection. 2018. Vol. 38, No 1. P. 121-139. DOI:10.1088/1361-6498/aa9b99.; Балонов М.И., Голиков В.Ю., Водоватов А.В., и др. Научные основы радиационной защиты в современной медицине, Том 1. Лучевая диагностика. Под ред. профессора М.И. Балонова. СПб.: НИИРГ имени проф. П.В. Рамзаева, 2019. Т. 1. 320 с.; Чипига Л.А. Сравнение расчетных методов определения эффективной и органных доз у пациентов при компьютерно-томографических исследованиях // Радиационная гигиена. 2017. Т. 10, № 1. С. 56–64. DOI:10.21514/1998-426Х-2017-10-1-56-64.; Chipiga L., Golikov V., Vodovatov A., Bernhardsson C. Comparison of organ absorbed doses in whole-body computed tomography scans of paediatric and adult patient models estimated by different methods // Radiation Protection Dosimetry. 2021. Vol. 195, No 3-4. P. 246-256. https://doi. Org/10.1093/rpd/ncab086.; https://www.radhyg.ru/jour/article/view/917

  4. 4
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 13, № 1 (2023); 91-101 ; Опухоли головы и шеи; Том 13, № 1 (2023); 91-101 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/871/575; Filetti S., Durante C., Hartl D., Leboulleux S. et al. Berruti on behalf of the ESMO Guidelines Committee. 2019. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30(12):1856–83. DOI:10.1093/annonc/mdz400; Клинические рекомендации. Дифференцированный рак щитовидной железы. 2020 г. Доступно по: https://cr.minzdrav.gov.ru/schema/329_1#doc_a1.; Gulec S., Ahuja S., Avram A. et al. A joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the European Thyroid Association, the Society of Nuclear Medicine and Molecular Imaging on Current Diagnostic and Theranostic Approaches in the Management of Thyroid Cancer. Thyroid 2021;31(7):1009–19. DOI:10.1089/ thy.2020.0826; Haddad R., Bischoff L., Ball D. et al. Thyroid Carcinoma. Version 2.2022. NCCN Clinical Practice Guidelines in Oncology. J Nat Compr Canc Netw 2022;20(8):925–51. DOI:10.6004/ jnccn.2022.0040; Шуринов А.Ю., Крылов В.В., Бородавина Е.В. Радиойодаблация при раке щитовидной железы. Исторические и современные аспекты. Обзор литературы. Онкологический журнал: лучевая диагностика, лучевая терапия 2021;4(4):9–19. DOI:10.37174/2587-7593-2021-4-4-9-19; Duren M., Siperstein A., Shen W. et al. Value of stimulated serum thyroglobulin levels for detecting persistent or recurrent differentiated thyroid cancer in high- and low-risk patients. Surgery 1999;26(1):13–9. DOI:10.1067/msy.1999.98849; Pacini F., Lippi F., Formica N. et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med 1987;28(12):1888–91.; Pineda J., Lee T., Ain K. et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995;80(5):1488–92. DOI:10.1210/ jcem.80.5.7744991; Roelants V., De Nayer P., Bouckaert A., Beckers C. The predictive value of serum thyroglobulin in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:722–7. DOI:10.1007/ BF00879658; Pacini F., Molinaro E., Castagna M. et al. Ablation of thyroid residues with 30 mCi 131I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab 2002;87(9):4063–8. DOI:10.1210/jc.2001-011918; Kukulska A., Krajewska J., Gawkowska-Suwiriska M. et al. Radioiodine thyroid remnant ablation in patients with differentiated thyroid carcinoma (DTC): prospective comparison of long-term outcomes of treatment with 30, 60, and 100 mCi. Thyroid Res 2010;3(1):9. DOI:10.1186/1756-6614-3-9; Toubeau M., Touzery C., Arveux P. et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after 131I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med 2004;45(6):988–94.; Haugen B., Alexander E., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1–133. DOI:10.1089/thy.2015.0020; Lamartina L., Grani G., Durante C., Filetti S. Recent advances in managing differentiated thyroid cancer. F1000Res 2018;7:86. DOI:10.12688/f1000research.12811.1; Gray J., Singh G., Uttley L., Balasubramanian S. Routine thyroglobulin, neck ultrasound and physical examination in the routine follow up of patients with differentiated thyroid cancer: where is the evidence? Endocrine 2018;62(1):26–33. DOI:10.1007/s12020-018-1720-3; Prpić M., Franceschi M., Romić M. et al. Thyroglobulin as a tumor marker in differentiated thyroid cancer – clinical considerations. Acta Clin Croat 2018;57(3):518–27. DOI:10.20471/acc.2018.57.03.16; Giovanella L., Clark P., Chiovato L. et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol 2014;171(2):R33–46. DOI:10.1530/EJE-14-0148; Spencer C. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab 2011;96(12):3615–27. DOI:10.1210/jc.2011-1740; Dekker B., Van der Horst-Schrivers A., Brouwers A. et al. Clinical irrelevance of lower titer thyroglobulin autoantibodies in patients with differentiated thyroid carcinoma. Eur Thyroid J 2022 20;11(6):e220137. DOI:10.1530/ETJ-22-0137; Brassard M., Borget I., Edet-Sanson A. et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab 2011;96(5):1352–9. DOI:10.1210/jc.2010-2708; Durante C., Montesano T., Attard M. et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab 2012;97(8):2748–53. DOI:10.1210/jc.2012-1123; Angell T., Spencer C., Rubino B. et al. In search of an unstimulated thyroglobulin baseline value in low-risk papillary thyroid carcinoma patients not receiving radioactive iodine ablation. Thyroid 2014;24(7):1127–33. DOI:10.1089/thy.2013.0691; Grani G., Fumarola A. Thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis of diagnostic accuracy. J Clin Endocrinol Metab 2014;99(6):1970–82. DOI:10.1210/jc.2014-1098; Torlontano M., Attard M., Crocetti U. et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab 2004;89(7):3402–7. DOI:10.1210/ jc.2003-031521; Grani G., Lamartina L., Cantisani V. et al. Enterobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 2018;7(1):1–7. DOI:10.1530/EC-17-0336; Lamartina L., Grani G., Biffoni M. et al. Risk stratification of neck lesions detected sonographically during the follow-up of differentiated thyroid cancer. J Clin Endocrinol Metab 2016;101(8):3036–44. DOI:10.1210/jc.2016-1440; Leboulleux S., Girard E., Rose M. et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92(9):3590–4. DOI:10.1210/jc.2007-0444; Leenhardt L., Erdogan M., Hegedus L. et al. 2013 European Thyroid Association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2(3):147–59. DOI:10.1159/000354537; Lamartina L., Deandreis D., Durante C., Filetti S. ENDOCRINE TUMOURS: imaging in the follow-up of differentiated thyroid cancer: current evidence and future perspectives for a risk-adapted approach. Eur J Endocrinol 2016;175(5):R185–202. DOI:10.1530/ EJE-16-0088; Grani G., Ramundo V., Falcone R. et al. Thyroid cancer patients with no evidence of disease: the need for repeat neck ultrasound. J Clin Endocrinol Metab 2019;104(11):4981–9. DOI:10.1210/jc.2019-00962; Castagna M., Maino F., Cipri C. et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol 2011;165(3):441–6. DOI:10.1530/EJE-11-0466; Tuttle R., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010;20(12):1341–9. DOI:10.1089/thy.2010.0178; Durante C., Attard M., Torlontano M. et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. J Clin Endocrinol Metab 2010;95(11):4882–8. DOI:10.1210/jc.2010-0762; Tuttle R., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010; 20(12):1341–9. DOI:10.1089/thy.2010.0178; Jeon M., Kim W., Park W. et al. Modified dynamic risk stratification for predicting recurrence using the response to initial therapy in patients with differentiated thyroid carcinoma. Eur J Endocrinol 2014;170:23–30. DOI:10.1530/EJE-13-0524; Han J., Kim W., Yim J. et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid 2012;22(8):784–90. DOI:10.1089/thy.2011.0322; Scheffel R., Zanella A., Antunes D. et al. Low recurrence rates in a cohort of differentiated thyroid carcinoma patients: a referral center experience. Thyroid 2015;25(8):883–9. DOI:10.1089/thy.2015.0077; Llamas-Olier A., Cuéllar D., Buitrago G. Intermediate-risk papillary thyroid cancer: risk factors for early recurrence in patients with excellent response to initial therapy. Thyroid 2018;28(10):1311–7. DOI:10.1089/thy.2017.0578; Ganly I., Nixon I., Wang L. et al. Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid 2015;25(10):1106–14. DOI:10.1089/thy.2015.0104; Comtois R., Theriault C., Del Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med 1993;34(11):1927–30.; Schlumberger M., Berg G., Cohen O. et al. Follow-up of low-risk patients with differentiated thyroid carcinoma. Eur J Endocrinol 2004;150(2):105–12. DOI:10.1530/eje.0.1500105; Sacks W., Fung C., Chang J. et al. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid 2010;20(11):1235–45. DOI:10.1089/thy.2009.0455; Dietlein M., Eschner W., Grünwald F. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Nuklearmedizin 2016;55:77–89. DOI:10.1055/s-0037-1616478; Gastanga M., Cantara S., Pacini F. Reappraisal of the indication for radioiodine thyroid ablation in differentiated thyroid cancer patients. J Endocrinol Invest 2016;39(10):1087–94. DOI:10.1007/s40618-016-0503-z; Deandreis D., Rubino C., Tala H. et al. Comparison of empiric versus whole-body-blood clearance dosimetry-based approach to radioactive iodine treatment in patients with metastases from differentiated thyroid cancer. J Nucl Med 2017;58(5):717–22. DOI:10.2967/jnumed.116.179606; Verburg F., Schmidt M., Kreissl M. et al. Procedural guideline for Iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma (version 5). Nuklearmedizin 2019;58(3):228–41. DOI:10.1055/a-0891-1839; Giovanella L., Treglia G., Sadeghi R. et al. Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 2014;99(2):440– 7. DOI:10.1210/jc.2013-3156; Francis G., Waguespack S., Bauer A. et al. American Thyroid Association Guidelines Task Force Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid 2015;25(7):716–59. DOI:10.1089/thy.2014.0460; Li J., He Z., Bansal V., Hennessey J. Low iodine diet in differentiated thyroid cancer: a review. Clin Endocrinol (Oxf) 2016;84(1):3–12. DOI:10.1111/cen.12846; Campennì А., Barbaro D., Guzzo M. et al. Personalized management of differentiated thyroid cancer in real life – practical guidance from a multidisciplinary panel of experts. Endocrine 2020;70(2):280–91. DOI:10.1007/s12020-020-02418-x; Feine U., Lietzenmayer R., Hanke J. et al. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. [In German]. Nuklearmedizin 1995;34(4):127–34.; Feine U., Lietzenmayer R., Hanke J. et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37(9):1468–72.; Asa S., Aksoy S., Vatankulu B. et al. The role of FDG-PET/CT in differentiated thyroid cancer patients with negative iodine-131 whole-body scan and elevated anti-Tg level. Ann Nucl Med 2014;28(10):970–9. DOI:10.1007/s12149-014-0897-7; Liu Y. The role of 18F-FDG PET/CT in the follow-up of well-differentiated thyroid cancer with negative thyroglobulin but positive and/or elevated antithyroglobulin antibody. Nucl Med Commun 2016;37(6):577–82. DOI:10.1097/MNM.0000000000000480; Ozkan E., Aras G., Kucuk N. Correlation of 18F-FDG PET/CT findings with histopathological results in differentiated thyroid cancer patients who have increased thyroglobulin or antithyroglobulin antibody levels and negative 131I whole-body scan results. Clin Nucl Med 2013;38(5):326–31. DOI:10.1097/RLU.0b013e318286827b; Liu M., Cheng L., Jin Y. et al. Predicting 131I-avidity of metastases from differentiated thyroid cancer using 18F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8(1):4352. DOI:10.1038/s41598-018-22656-4; Silberstein E. The problem of the patient with thyroglobulin elevation but negative iodine scintigraphy: the TENIS syndrome. Semin Nucl Med 2011;41(2):113–20. DOI:10.1053/j.semnuclmed.2010.10.002; Bartel C., Magerefteh S., Avram A. et al. Snmmi procedure standard for scintigraphy for differentiated thyroid cancer. J Nucl Med Technol 2020;48(3):202–9. DOI:10.2967/jnmt.120.243626; Avram А., Giovanella L., Greenspan B. et al. SNMMI procedure standard/eanm practice guideline for nuclear medicine evaluation and therapy of differentiated thyroid cancer: abbreviated version. J Nucl Med 2022;63(6):15N–35N.; Petranović P., Kreissl M., Campenni A. et al. SNMMI/EANM practice guideline vs. ETA Consensus Statement: differences and similarities in approaching differentiated thyroid cancer management-the EANM perspective. Eur J Nucl Med Mol Imaging 2022;49(12):3959–63. DOI:10.1007/s00259-022-05935-1; Giovanella L., Treglia G., Ceriani L., Verburg F. Detectable thyroglobulin with negative imaging in differentiated thyroid cancer patients. What to do with negative anatomical imaging and radioiodine scan? Nuklearmedizin 2014;53(1):1–10. DOI:10.3413/Nukmed-0618-13-08; Van Nostrand D. Radioiodine imaging for differentiated thyroid cancer: not all radioiodine images are performed equally. Thyroid 2019;29(7):901–9.; Donohoe K., Aloff J., Avram А. et al. Appropriate use criteria for nuclear medicine in the evaluation and treatment of differentiated thyroid cancer. J Nucl Med 2020;61(3):375–96. DOI:10.2967/jnumed.119.240945; Binse I., Poeppel T., Ruhlmann M. et al. 68Ga-DOTATOC PET/CT in patients with iodine- and 18F-FDG-negative differentiated thyroid carcinoma and elevated serum thyroglobulin. J Nucl Med 2016;57(10):1512–7. DOI:10.2967/jnumed.115.171942; Vrachimis A., Stegger L., Wenning C. et al. 68Ga-DOTATATE PET/ MRI and 18F-FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2016;43(10):1765–72. DOI:10.1007/s00259-016-3378-5; Czepczynski R., Matysiak-Grzes M., Gryczynska M. et al. Peptide receptor radionuclide therapy of differentiated thyroid cancer: efficacy and toxicity. Arch Immunol Ther Exp (Warsz) 2015;63(2):147–54. DOI:10.1007/s00005-014-0318-6; Versari A., Sollini M., Frasoldati A. et al. Differentiated thyroid cancer: A new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014;24(4):715–26. DOI:10.1089/thy.2013.0225; Roll W., Riemann B., Schafers M. et al. 177Lu-DOTATATE therapy in radioiodine-refractory differentiated thyroid cancer: a single center experience. Clin Nucl Med 2018;43(10):e346–51. DOI:10.1097/RLU.0000000000002219; Gubbi S., Koch C., Klubo-Gwiezdzinska J. Peptide receptor radionuclide therapy in thyroid cancer. Front endocrinol (Lausanne) 2022;13:896287. DOI:10.3389/fendo.2022.896287; Ryu Y.J., Lim S.Y., Na Y.M. et al. Prostate-specific membrane antigen expression predicts recurrence of papillary thyroid carcinoma after total thyroidectomy. BMC Cancer 2022;22(1):1278. DOI:10.1186/s12885-022-10375-z; Piek M., De Vries L., Donswijk M. et al. Ploeg IMC. Retrospective analysis of PSMA PET/CT thyroid incidental uptake in adults: incidence, diagnosis, and treatment/outcome in a tertiary cancer referral center and University Medical Center. Eur J Nucl Med Mol Imaging 2022;49(7):2392–400. DOI:10.1007/s00259-022-05679-y; https://ogsh.abvpress.ru/jour/article/view/871

  5. 5
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 10, № 4 (2020); 16-24 ; Опухоли головы и шеи; Том 10, № 4 (2020); 16-24 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2020-0-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/577/448; Kitahara C.M., Devesa S.S., Sosa J.A. Increases in thyroid cancer incidence and mortality-reply. JAMA 2017;318(4):390–1. DOI:10.1001/jama.2017.7910.; Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1–133. DOI:10.1089/thy.2015.0020.; Santhanam P., Solnes L.B., Rowe S.P. Molecular imaging of advanced thyroid cancer: iodinated radiotracers and beyond. Med Oncol 2017;34(12):189. DOI:10.1007/s12032-017-1051-x.; Fatourechi V., Hay I.D., Mullan B.P. et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid 2000;10(7):573–7. DOI:10.1089/thy.2000.10.573.; Sheikh A., Polack B., Rodriguez Y., Kuker R. Nuclear molecular and theranostic imaging for differentiated thyroid cancer. Mol Imaging Radionucl Ther 2017;26(Suppl 1):50–65. DOI:10.4274/2017.26.suppl.06.; Choudhury P.S., Guptа M. Differentiated thyroid cancer theranostics: radioiodine and beyond. Br J Radiol 2018;91(1091):20180136. DOI:10.1259/bjr.20180136.; Rosenbaum-Krumme S.J., Gorges R., Bockisch A., Binse I. 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imag 2012;39(9):1373–80. DOI:10.1007/s00259-012-2065-4.; Lee J.W., Lee S.M., Lee D.H., Kim Y.J. Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate-to-high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients. J Nucl Med 2013;54(8):1230–6. DOI:10.2967/jnumed.112.117119.; Gaertner F.C., Okamoto S., Shiga T. et al. FDG PET performed at thyroid remnant ablation has a higher predictive value for long-term survival of high-risk patients with well-differentiated thyroid cancer than radioiodine uptake. Clin Nucl Med 2015;40(5):378–83. DOI:10.1097/RLU.0000000000000699.; Nascimento C., Borget I., Al Ghuzlan A. et al. Postoperative fluorine-18-fluoro- deoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid 2015;25:437–44. DOI:10.1089/thy.2014.0320.; Triviño Ibáñez E.M., Muros M.A., Torres Vela E., Llamas Elvira J.M. The role of early 18F-FDG PET/CT in therapeutic management and ongoing risk stratification of high/intermediate-risk thyroid carcinoma. Endocrine 2015;51(3):490–8. DOI:10.1007/s12020-015-0708-5.; Qiu Z.-L., Wei W.-J., Shen C.-T. et al. Diagnostic performance of 18F-FDG PET/ CT in papillary thyroid carcinoma with negative 131I-WBS at first postablation, negative Tg and progressively increased TgAb level. Sci Rep 2017;7(1):2849. DOI:10.1038/s41598-017-03001-7.; Ruhlmann M., Binse I., Bockisch A., Rosenbaum-Krumme S.J. Initial [18F] FDG PET/CT in high-risk DTC patients. A three-year follow-up. Nuklearmedizin 2016;55:99–103. DOI:10.3413/Nukmed-0766-15-09.; Chang Y.W., Kim H.S., Jung S.P. et al. Pre-ablation stimulated thyroglobulin is a better predictor of recurrence in pathological N1a papillary thyroid carcinoma than the lymph node ratio. Int J Clin Oncol 2016;21:862–8. DOI:10.1007/s10147-016-0956-2.; Cho S.G., Kwon S.Y., Kim J. et al. Risk factors of malignant fluorodeoxyglucoseavid lymph node on preablation positron emission tomography in patients with papillary thyroid cancer undergoing radioiodine ablation therapy. Medicine (Baltimore) 2019;98(16):e14858. DOI:10.1097/MD.0000000000014858.; Shangguan L., Fang S., Zhang P. et al. Impact factors for the outcome of the first 131I radiotherapy in patients with papillary thyroid carcinoma after total thyroidectomy. Ann Nucl Med 2019;33:177–83. DOI:10.1007/s12149-018-01321-w.; Liu M., Cheng L., Jin Y. et al. Predicting 131I-avidity of metastases from differentiated thyroid cancer using 18F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8(1):4352. DOI:10.1038/s41598-018-22656-4; Kwon S.Y., Kim J., Jung S.H. et al. Preablative stimulated thyroglobulin levels can predict malignant potential and therapeutic responsiveness of subcentimeter-sized, 18F-fluorodeoxyglucose-avid cervical lymph nodes in patients with papillary thyroid cancer. Clin Nucl Med 2016;41(1):e32–8. DOI:10.1097/RLU.0000000000000889.; https://ogsh.abvpress.ru/jour/article/view/577

  6. 6
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 11, № 1 (2021); 115-121 ; Опухоли головы и шеи; Том 11, № 1 (2021); 115-121 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2021-11-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/617/469; Otsuki N., Morita N., Furukawa T. et al. Functional and oncological outcomes after retropharyngeal node dissection for papillary thyroid carcinoma. Eur Arch Otorhinolaryngol 2019;276(6):1809—14. DOI:10.1007/s00405-019-05420-w.; Kainuma K., Kitoh R., Yoshimura H., Usami S. The first report of bilateral retropharyngeal lymph node metastasis from papillary thyroid carcinoma and review of the literature. Acta Otolaryngol 2011;131(12):1341 —8. DOI:10.3109/00016489.2011.607844.; Lombardi D., Nicolai P., Antonelli A.R. et al. Parapharyngeal lymph node metastasis: an unusual presentation of papillary thyroid carcinoma. Head Neck 2004; 26(2):190—6. DOI:10.1002/hed.10341.; Otsuki N., Nishikawa T., Iwae S. et al. Retropharyngeal node metastasis from papillary thyroid carcinoma. Head Neck 2007;29(5):508—11. DOI:10.1002/hed.20536.; Togashi T., Sugitani I., Toda K. et al. Surgical management of retropharyngeal nodes metastases from papillary thyroid carcinoma. World J Surg 2014;38(11):2831 —7. DOI:10.1007/s00268-014-2707-8.; Wang X.L., Xu Z.G., Wu Y.H. et al. Surgical management of parapharyngeal lymph node metastasis of thyroid carcinoma: a retrospective study of 25 patients. Chin Med J (Engl) 2012;125(20):3635—9. PMID: 23075716.; Moritani S. Parapharyngeal metastasis of papillary thyroid carcinoma. World J Surg 2016;40(2):350—5. DOI:10.1007/s00268-015-3321-0.; Harries V., McGill M., Tuttle R.M. et al. Management of Retropharyngeal Lymph Node Metastases in Differentiated Thyroid Carcinoma. Thyroid 2020;30(5):688—95. DOI:10.1089/thy.2019.0359.; Thomas G., Pandey M., Jayasree K. et al. Parapharyngeal metastasis from papillary microcarcinoma of the thyroid: report of a case diagnosed by peroral fine needle aspiration. Br J Oral Maxillofac Surg 2002;40(3):229—31. DOI:10.1054/bjom.2001.0754.; Pang K.P., Goh C.H., Tan H.M. Parapharyngeal space tumours: an 18 year review. J Laryngol Otol 2002;116(3):170—5. DOI:10.1258/0022215021910447.; Shaha A.R., Shah J.P., Loree T.R. Patterns of nodal and distant metastasis based on histologic varieties in differentiated carcinoma of the thyroid. Am J Surg 1996;172(6):692—4. DOI:10.1016/s0002-9610(96)00310-8.; Mazzaferri E.L., Jhiang S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97(5):418—28. DOI:10.1016/0002-9343(94)90321-2.; Smith V.A., Sessions R.B., Lentsch E.J. Cervical lymph node metastasis and papillary thyroid carcinoma: does the compartment involved affect survival? Experience from the SEER database. J Surg Oncol 2012;106(4):357—62. DOI:10.1002/jso.23090.; Thompson A.M., Turner R.M., Hayen A. et al. A preoperative nomogram for the prediction of ipsilateral central compartment lymph node metastases in papillary thyroid cancer. Thyroid 2014;24(4):675—82. DOI:10.1089/thy.2013.0224.; Wada N., Duh Q.Y., Sugino K. et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg 2003;237(3):399—407. DOI:10.1097/01.SLA.0000055273.58908.19.; McCormack K.R., Sheline G.E. Retropharyngeal spread of carcinoma of the thyroid. Cancer 1970;26(6):1366—9. DOI:10.1002/1097-0142(197012)26:63.0.co;2-v.; Desuter G., Lonneux M., Plouin-Gaudon I. et al. Parapharyngeal metastases from thyroid cancer. Eur J Surg Oncol 2004;30(1):80—4. DOI:10.1016/j.ejso.2003.10.004.; Qiu Z.L., Xu Y.H., Song H.J., Luo Q.Y. Localization and identification of parapharyngeal metastases from differentiated thyroid carcinoma by 131I-SPECT/CT. Head Neck - J Sci Spec Head Neck 2011;33(2):171-7. DOI:10.1002/hed.21416.; Giordano L., Pilolli F., Toma S., Bussi M. Parapharyngeal metastases from thyroid cancer: surgical management of two cases with minimally-invasive video-assisted technique. Acta Otorhinolaryngol Ital 2015;35(4):289—92. PMID: 26824217.; Kholmatov R., Emejulu O., Murad F. et al. Locally advanced asymptomatic papillary thyroid cancer presenting with retropharyngeal lymph node metastasis symptoms. Gland Surg 2017;6(6): 733—7. DOI:10.21037/gs.2017.06.03.; Harisankar C.N.B., Vijayabhaskar R. An Interesting Case of Retropharyngeal Lymph Nodal Metastases in a Case of Iodine-Refractory Thyroid Cancer. Indian J Nucl Med 2018;33(2):125—7. DOI:10.4103/ijnm.IJNM_151_17.; Goyal N., Pakdaman M., Kamani D. et al. Mapping the distribution of nodal metastases in papillary thyroid carcinoma: Where exactly are the nodes? Laryngoscope 2017;127(8):1959—64. DOI:10.1002/lary.26495.; Rouviere H., Tobias M.J. Anatomy of the human lymphaticTsystem: a compendium translated from the original (French). Ann Arbor, Michigan: Edwards Bros. Inc., 1938. 318 p. DOI:10.1002/bjs.18002710531.; Lajud S.A., Aponte-Ortiz J.A., Garraton M., Giraldez L. A novel combined transoral and transcervical surgical approach for recurrent metastatic medullary thyroid cancer to the parapharyngeal space. J Robot Surg 2019. DOI:10.1007/s11701-019-00930-5.; Hartl D.M., Leboulleux S., Velayoudom-Cephise F.L. et al. Management of retropharyngeal node metastases from thyroid carcinoma. World J Surg 2015;39(5):1274—81. DOI:10.1007/s00268-015-2947-2.; Goepfert R.P., Liu C., Ryan W.R. Trans-oral robotic surgery and surgeon-performed trans-oral ultrasound for intraoperative location and excision of an isolated retropharyngeal lymph node metastasis of papillary thyroid carcinoma. Am J Otolaryngol 2015;36(5):710—4. DOI:10.1016/j.amjoto.2015.04.011.; Yu S.T., Chen W.Z., Xu D.B. et al. Minimally Invasive Video-Assisted Surgical Management for Parapharyngeal Metastases From Papillary Thyroid Carcinoma: A Case Series Report. Front Oncol 2019;9:1226. DOI:10.3389/fonc.2019.01226.; Givi B., Troob S.H., Stott W. et al. Transoral robotic retropharyngeal node dissection. Head Neck 2016;38(1):E981—6. DOI:10.1002/hed.24140.; Andrews G.A., Kwon M., Clayman G. et al. Technical refinement of ultrasound— guided transoral resection of parapharyn-geal/retropharyngeal thyroid carcinoma metastases. Head Neck 2011;33(2):166—70. DOI:10.1002/hed.21415; Byeon H.K., Duvvuri U., Kim W.S. et al. Transoral robotic retropharyngeal lymph node dissection with or without lateral oropharyngectomy. J Craniofac Surg 2013;24(4):1156—61. DOI:10.1097/scs.0b013e318293f860.; https://ogsh.abvpress.ru/jour/article/view/617

  7. 7
  8. 8
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; Том 11, № 1 (2020); 78-92 ; Лучевая диагностика и терапия; Том 11, № 1 (2020); 78-92 ; 2079-5343 ; 10.22328/2079-5343-2020-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/480/384; Cheson B.D., Fisher R.I., Barrington S.F., Cavalli F., Schwartz L.H., Zucca E., Lister T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification // J. Clin. Oncol. 2014. Vol. 32. P. 3059–3068. https://doi.org/10.1200/JCO.2013.54.8800.; Хоружик С.А., Жаврид Э.А., Сачивко Н.В. Сравнение диагностической эффективности рентгеновской компьютерной томографии, магнитно-резонансной томографии и диффузионно-взвешенной магнитно-резонансной томографии при дифференциации остаточных опухолей и образований посттерапевтического характера у пациентов с лимфомами после завершения лечения // Онкогематология. 2016. № 3. С. 40–48. https://doi.org/10.17650/1818-8346-2016-11-3-40-48.; Padhani A.R., Lecouvet F.E., Tunariu N., Koh D.M., De Keyzer F., Collins D.J., Sala E., Schlemmer H.P., Petralia G., Vargas H.A., Fanti S., Tombal H.B., de Bono J. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer // Eur. Urol. 2017. Vol. 71. P. 81–92. https://doi.org/10.1016/j.eururo.2016.05.033.; Lecouvet F.E, Talbot J.N., Messiou C., Bourguet P., Liu Y., de Souza N.M. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group // Eur. J. Cancer. 2014. Vol. 50. P. 2519–2531. https://doi.org/10.1016/j.ejca.2014.07.002.; Dimopoulos M.A., Hillengass J., Usmani S., Zamagni E., Lentzsch S., Davies F.E., Raje N., Sezer O., Zweegman S., Shah J., Badros A., Shimizu K., Moreau P., Chim C.S., Lahuerta J.J., Hou J., Jurczyszyn A., Goldschmidt H., Sonneveld P., Palumbo A., Ludwig H., Cavo M., Barlogie B., Anderson K., Roodman G.D., Rajkumar S.V., Durie B.G., Terpos E. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement // J. Clin. Oncol. 2015. Vol. 33. P. 657–664. https://doi.org/10.1200/JCO.2014.57.9961.; Barnes A., Alonzi R., Blackledge M., Charles-Edwards G., Collins DJ., Cook G., Coutts G., Goh V., Graves M., Kelly C., Koh DM., McCallum H., Miquel M.E., O’Connor J., Padhani A., Pearson R., Priest A., Rockall A., Stirling J., Taylor S., Tunariu N. van der Meulen J., Walls D., Winfield J., Punwani S. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer // Br. J. Radiol. 2018. Vol. 91. P. 20170577. https://doi.org/10.1259/bjr.20170577.; De Souza N.M., Winfield J.M., Waterton J.C., Weller A., Papoutsaki M.V., Doran S.J., Collins D.J., Fournier L., Sullivan D., Chenevert T., Jackson A., Boss M., Trattnig S., Liu Y. Implementing diffusion-weighted MRI for body imaging in prospective multicenter trials: current considerations and future perspectives // Eur. Radiol. 2018. Vol. 28. P. 1118–1131. https://doi.org/10.1007/s00330-017-4972-z.; Taouli B., Beer A.J., Chenevert T., Collins D., Lehman C., Matos C., Padhani A.R., Rosenkrantz A.B., Shukla-Dave A., Sigmund E., Tanenbaum L., Thoeny H., Thomassin-Naggara I., Barbieri S., CorcueraSolano I., Orton M., Partridge S.C., Koh D.M. Diffusion-weighted imaging outside the brain: Consensus statement from an ISMRM-sponsored workshop // J. Magn. Reson. Imaging. 2016. Vol. 44. P. 521–540. https://doi.org/10.1002/jmri.25196.; Albano D., Patti C., La Grutta L., Agnello F., Grassedonio E., Mulè A., et al. Comparison between whole-body MRI with diffusion-weighted imaging and PET/CT in staging newly diagnosed FDG-avid lymphomas // Eur. J. Radiol. 2016. Vol. 85. P. 313–318. https://doi.org/10.1016/j.ejrad.2015.; Maggialetti N., Ferrari C., Minoia C., Asabella A.N., Ficco M., Loseto G., De Tullio G., de Fazio V., Calabrese A., Guarini A., Rubini G., Brunese L. Role of WB-MR/DWIBS compared to 18 F-FDG PET/CT in the therapy response assessment of lymphoma // Radiol. Med. 2016. Vol. 121. P. 132–143. https://doi.org/10.1007/s11547-015-0581-6.; Herrmann K., Queiroz M., Huellner M.W., de Galiza Barbosa F., Buck A., Schaefer N., Stolzman P., Veit-Haibach P. Diagnostic performance of FDGPET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT // BMC Cancer. 2015. Vol. 15. P. 1002. https://doi.org/10.1186/s12885-015-2009-z.; Mayerhoefer M.E., Karanikas G., Kletter K., Prosch H., Kiesewetter B., Skrabs C., Porpaczy E., Weber M., Knogler T., Sillaber C., Jaeger U., Simonitsch-Klupp I., Ubl P., Müllauer L., Dolak W., Lukas J., Raderer M. Evaluation of Diffusion-Weighted Magnetic Resonance Imaging for Follow-up and Treatment Response Assessment of Lymphoma: Results of an 18 F-FDGPET/CT-Controlled Prospective Study in 64 Patients // Clin. Cancer Res. 2015. Vol. 21. P. 2506–2513. https://doi.org/10.1158/1078-0432.CCR-14-2454.; Littooij A.S., Kwee T.C., de Keizer B., Bruin M.C., Coma A., Beek F.J., Fijnheer R., Nievelstein R.A. Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: A prospective multicenter study // J. Magn. Reson. Imaging. 2015. Vol. 42. P. 1646–1655. https://doi.org/10.1002/jmri.24938.; Meignan M., Gallamini A., Meignan M., Gallamini A., Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma // Leuk. Lymphoma. 2009. Vol. 50. P. 1257–1260. https://doi.org/10.1080/10428190903040048.; Meignan M., Itti E., Gallamini A., Younes A. FDG PET/CT imaging as a biomarker in lymphoma // Eur. J. Nucl. Med. Mol. Imaging. 2015. Vol. 42. P. 623–633. https://doi.org/10.1007/s00259-014-2973-6.; Barrington S.F., Mikhaeel N.G., Kostakoglu L., Meignan M., Hutchings M., Müeller S.P., Schwartz L.H., Zucca E., Fisher R.I., Trotman J., Hoekstra O.S., Hicks R.J., O’Doherty M.J., Hustinx R., Biggi A., Cheson B.D. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group // J. Clin. Oncol. 2014. Vol. 32. P. 3048–3058.; Tsuji K., Kishi S., Tsuchida T., Yamauchi T., Ikegaya S., Urasaki Y., Fujiwara Y., Ueda T., Okazawa H., Kimura H. Evaluation of staging and early response to chemotherapy with whole-body diffusion-weighted MRI in malignant lymphoma patients: A comparison with FDG-PET/CT // J. Magn. Reson. Imaging. 2015. Vol. 41. P. 1601–1607. https://doi.org/10.1002/jmri.24714.; Алгоритмы диагностики и лечения злокачественных новообразований: клинический протокол / Министерство здравоохранения Республики Беларусь. Минск: Профессиональные издания, 2019. 616 с.; Хоружик С.А., Жаврид Э.А., Сачивко Н.В. Диагностическая эффективность диффузионно-взвешенной магнитно-резонансной томографии всего тела при очаговом и диффузном поражении костного мозга у пациентов с лимфомой // Медицинская визуализация. 2017. № 5. C. 66–81. https://doi.org/10.24835/1607-0763-2017-5-66-81.; Hoane B.R., Shields A.F., Porter B.A., Shulman H.M. Detection of lymphomatous bone marrow involvement with magnetic resonance imaging // Blood. 1991. Vol. 78. P. 728–738.; Adams H.J., Kwee T.C., Vermoolen M.A., de Keizer B., de Klerk J.M., Adam J.A., Fijnheer R., Kersten M.J., Stoker J., Nievelstein R.A. Whole-body MRI for the detection of bone marrow involvement in lymphoma: prospective study in 116 patients and comparison with FDG-PET // Eur. Radiol. 2013. Vol. 23. P. 2271–228. https://doi.org/10.1007/s00330-013-2835-9.; El Khouli R.H., Macura K.J., Barker P.B., Habba M.R., Jacobs M.A., Bluemke D.A. Relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced MRI of the breast // J. Magn. Reson. Imaging. 2009. Vol. 30. P. 999–1004. https://doi.org/10.1002/jmri.21947.; Crewson P.E. Reader agreement studies // Am. J. Roentgenol. 2005. Vol. 184. P. 1391–1397.; Padhani A.R., Koh D.M., Collins D.J. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions // Radiology. 2011. Vol. 261. P. 700–718. https://doi.org/10.1148/radiol.11110474.; Сакович Р.А., Хоружик С.А., Дзюбан А.В., Барановский О.А., Поддубный К.В., Готто С.И., Жаврид Э.А. Интерпретация исследований ФДГ-ПЭТ/КТ всего тела у пациентов с лимфомой после химиотерапии с использованием шкалы Довиль и полуколичественного анализа // Онкологический журнал. 2017. Т. 11, № 3. С. 5–16.; Adams H.J.A, Kwee T.C. Proportion of false-positive follow-up FDG-PET scans in lymphoma: Systematic review and meta-analysis // Crit. Rev. Oncol. Hematol. 2019. Vol. 141. P. 73–81. https://doi.org/10.1016/j.critrevonc.2019.05.010.; Adams H.J., Nievelstein R.A., Kwee T.C. Prognostic value of complete remission status at end-oftreatment FDG-PET in R-CHOP-treated diffuse large B-cell lymphoma: systematic review and meta-analysis // Br. J. Haematol. 2015. Vol. 170. P. 185–191. https://doi.org/10.1111/bjh.13420.; Хоружик С.А., Жаврид Э.А., Сачивко Н.В. Диффузионно-взвешенная магнитно-резонансная томография с расчетом измеряемого коэффициента диффузии при мониторинге и раннем прогнозировании регрессии опухолевых очагов в процессе химиотерапии лимфом // Медицинская визуализация. 2015. № 5. С. 83–99.; Toledano-Massiah S., Luciani A., Itti E., Zerbib P., Vignaud A., Belhadj K., Baranes L., Haioun C., Lin C., Rahmouni A. Whole-body diffusion-weighted imaging in Hodgkin lymphoma and diffuse large B-cell lymphoma // Radiographics. 2015. Vol. 35. P. 747–764. https://doi.org/10.1148/rg.2015140145.; Younes A., Hilden P., Coiffier B., Hagenbeek A., Salles G., Wilson W. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017) // Ann. Oncol. 2017. Vol. 28. P. 1436–1447. https://doi.org/10.1093/annonc/mdx097.; Bernstine H., Domachevsky L., Nidam M., Goldberg N., Abadi-Korek I., Shpilberg O., Groshar D. 18 F-FDG PET/MR imaging of lymphoma nodal target lesions: Comparison of PET standardized uptake value (SUV) with MR apparent diffusion coefficient (ADC) // Medicine (Baltimore). 2018. Vol. 97. e0490. https://doi.org/10.1097/MD.0000000000010490.

  9. 9
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 9, № 4 (2019); 10-16 ; Опухоли головы и шеи; Том 9, № 4 (2019); 10-16 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2019-9-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/444/398; Hong C.M., Lee W.K., Jeong S.Y. et al. Superiority of delayed risk stratification in differentiated thyroid cancer after total thyroidectomy and radioactive iodine ablation. Nucl Med Commun 2014;35(11):1119–26. DOI:10.1097/MNM.0000000000000183.; Sampson E., Brierley J.D., Le L.W. et al. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 2007;110(7):1451–6. DOI:10.1002/cncr.22956.; O’Neill C.J., Oucharek J., Learoyd D., Sidhu S.B. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist 2010;15(2):146–56. DOI:10.1634/theoncologist.2009-0190.; Verburg F.A., Hanscheid H., Luster M. Radioactive iodine (RAI) therapy for metastatic differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab 2017;31(3):279–90. DOI:10.1016/j.beem.2017.04.010.; Chung J.-K., Cheon G.J. Radioiodine therapy in differentiated thyroid cancer: the first targeted therapy in oncology. Endocrinol Metab (Seul) 2014;29(3):233–9. DOI:10.3803/EnM.2014.29.3.233.; Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1–133. DOI:10.1089/thy.2015.0020.; Pacini F., Ito Y., Luster M. et al. Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions. Expert Rev Endocrinol Metab 2012;7(5):541–54. DOI:10.1586/eem.12.36.; Schlumberger M., Brose M., Elisei R. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2(5):356–8. DOI:10.1016/s2213-8587(13)70215-8.; Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91(8):2892–9. DOI:10.1210/jc.2005-2838.; Maxon H.R., Thomas S.R., Hertzberg V.S. et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983;309(16):937–41. DOI:10.1056/NEJM198310203091601.; Castro M.R., Bergert E.R., Goellner J.R. et al. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab 2001;86(11):5627–32. DOI:10.1210/jcem.86.11.8048.; Kang S.Y., Bang J.-I., Kang K.W. et al. FDG PET/CT for the early prediction of RAI therapy response in patients with metastatic differentiated thyroid carcinoma. PLoS One 2019;14(6):e0218416. DOI:10.1371/journal.pone.0218416.; Feine U., Lietzenmayer R., Hanke J.P. et al. [18 FDG whole-body PET in differentiated thyroid carcinoma. Flip-flop in uptake patterns of18 FDG and131 I (In German)]. Nuklearmedizin 1995;34(4):127–34.; Duarte P.S., Marin J.F.G., de Carvalho J.W.A. et al. Iodine/FDG “flip-flop” phenomenon inside a large metastatic thyroid cancer lesion better characterized on SPECT/CT and PET/CT studies. Clin Nucl Med 2018;43(6):436–8. DOI:10.1097/RLU.0000000000002046.; Pace L., Klain M., Salvatore B. et al. Prognostic role of18 F-FDG PET/CT in the postoperative evaluation of differentiated thyroid cancer patients. Clin Nucl Med 2015;40(2):111–5. DOI:10.1097/RLU.0000000000000621.; Min J.J., Chung J.K., Lee Y.J. et al. Relationship between expression of the sodium/iodide symporter and131 I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 2001;28(5):639–45.; Chung J.K. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43(9):1188–200.; Moon S.H., Oh Y.L., Choi J.Y. et al. Comparison of18 F-fluorodeoxyglucose uptake with the expressions of glucose transporter type 1 and Na+ /I – symporter in patients with untreated papillary thyroid carcinoma. Endocr Res 2013;38(2):77–84. DOI:10.3109/07435800.2012.713426.; Kim S., Chung J.K., Min H.S. et al. Expression patterns of glucose transporter-1 gene and thyroid specific genes in human papillary thyroid carcinoma. Nucl Med Mol Imaging 2014;48(2):91–7. DOI:10.1007/s13139-013-0249-x.; Deandreis D., Al Ghuzlan A., Leboulleux S. et al. Do histological, immunohistochemical and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 2011;18(1):159–69. DOI:10.1677/ERC-10-0233.; Rivera M., Ghossein R.A., Schoder H. et al. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose positron emission tomography-positive thyroid carcinoma. Cancer 2008;113(1):48–56. DOI:10.1002/cncr.23515.; Liu M., Cheng L., Jin Y. et al. Predicting 131 I-avidity of metastases from differentiated thyroid cancer using 18 F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8(1):4352. DOI:10.1038/s41598-018-22656-4.; https://ogsh.abvpress.ru/jour/article/view/444

  10. 10
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; № 1 (2019); 86-91 ; Лучевая диагностика и терапия; № 1 (2019); 86-91 ; 2079-5343 ; 10.22328/2079-5343-2019-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/367/317; Murai M. Oya M. Renal cell carcinoma: Etiology, incidence and epidemiology // Curr. Opin. Urol. 2004. Vol. 14. Р. 229–233.; Ljungberg B., Campbell S.C., Choi H.Y., Jacqmin D., Lee J.E. et al. The epidemiology of renal cell carcinoma // Eur. Urol. 2011. Vol. 60. Р. 615–621.; Kozlowski M. Management of distant solitary recurrence in the patient with renal cancer. Contralateral kidney and other sites // Urol. Clin. North Am. 1994. No. 21 (4). Р. 601–624; 2011. No. 77 (2). Р. 379–384.; Santoni M., Conti A., Procopio G., Porta C., Ibrahim T., Barni S. et al. Bone metastases in patients with metastatic renal cell carcinoma: are they always associated with poor prognosis? // J. Exp. Clin. Canc. Res. 2015. No. 34 (1).; Kume H., Kakutani S., Yamada Y., Shinohara М., Tominaga Т., Suzuki М. et al. Prognostic factors for renal cell carcinoma with bone metastasis: who are the long-term survivors? // J. Urol. 2011. No. 185 (5). Р. 1611–1614.; Roodman G.D. Mechanisms of bone metastasis // N. Engl. J. Med. 2004. Vol. 350. Р. 1655–1664.; Beuselinck B., Oudard S., Rixe O., Wolter P., Blesius A., Ayllon J. et al. Negative impact of bone metastasis on outcome in clear-cell renal cell carcinoma treated with sunitinib // Ann. Oncol. 2010. No. 22 (4). Р. 794–800.; Santini D., Perrone G., Roato I., Godio L., Pantano F., Grasso D., Russo A., Vincenzi B., Fratto, M.E. Sabbatini R. et al. Expression pattern of receptor activator of NFkB (RANK) in a series of primary solid tumors and related bone metastases // J. Cell. Physiol. 2011. Vol. 226. Р. 780–784.; Pal S.K., Nelson R.A., Vogelzang N. Disease-specific survival in de novo metastatic renal cell carcinoma in the cytokine and targeted therapy era // PLoS ONE. 2013. Vol. 8. e63341.; Motzer R.J., Hutson T.E., Tomczak P., Michaelson M.D., Bukowski R.M., Oudard S., Negrier S., Szczylik C., Pili R., Bjarnason G.A. et al. Overall survival and updated results for sunitinib compared with interferon in patients with metastatic renal cell carcinoma // J. Clin. Oncol. 2009. Vol. 27. Р. 3584–3590.; Patil S., Figlin R., Hutson T., Michaelson M., Négrier S., Kim S. et al. Prognostic factors for progression-free and overall survival with sunitinib targeted therapy and with cytokine as first-line therapy in patients with metastatic renal cell carcinoma // Ann. Oncol. 2010. Vol. 22 (2). Р. 295–300.; Schmidt G.P., Reiser M.F., Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging // Skeletal Radiol. 2007. Vol. 36. Р. 1109–1119.; Wiktora Degi ortopedia i rehabilitacja // Wyd. Nauk. / eds. J. Kruczyński, A. Szulc. Warszawa: PZWL; 2015. 430 р.; Mathieu I., Mazy S., Willemart B. et al. Inconclusive triple diagnosis in breast cancer imaging: is there a place for scintimammography? // J. Nucl. Med. Mol. Imaging. 2005. Vol. 46. P. 1574–1581.; Groves A.M., Beadsmoore C.J., Cheow H.K., Balan K.K., Courtney H.M., Kaptoge S. et al. Can 16-detector multislice CT exclude skeletal lesions during tumour staging? Implications for the cancer patient // Eur. Radiol. 2006. Vol. 16. Р. 1066–1073.; Buhmann Kirchhoff S., Becker C., Duerr H.R., Reiser M., BaurMelnyk A. Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI // Eur. J. Radiol. 2009. Vol. 69. Р. 567–573.; Sohaib S., Cook G., Allen S., Hughes M., Eisen T., Gore M. Comparison of whole- body MRI and bone scintigraphy in the detection of bone metastases in renal cancer // Br. J. Radiol. 2009. Vol. 82. Р. 632–639.; Lauenstein T.C., Freudenberg L.S., Goehde S.C., Ruehm S.G., Goyen M., Bosk S., Debatin J.F., Barkhausen J. Whole-body MRI using a rolling table platform for the detection of bone metastases // Eur. Radiol. 2002. Vol. 12. Р. 2091–2099.; Ghanem N., Altehoefer C., Kelly T., Lohrmann C., Winterer J., Schafer O et al. Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors. // In Vivo. 2006. Vol. 20. Р. 173–182.; Adiga G.U., Dutcher J.P., Larkin M., Garl S, Koo J. Characterization of bone metastases in patients with renal cell cancer // B. J. U. Int. 2004. Vol. 93. Р. 1237–1240.; Frat A., Agildere M., Gencoglu A., Cakir B., Akin O., Akcali Z., Aktas A. Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99mTc-methylene diphosphonate scintigraphy // J. Comput. Assist Tomogr. 2006. Vol. 30. Р. 151–156.; Griffin N., Gore M.E., Sohaib S.A. Imaging in metastatic renal cell carcinoma // AJR Am. J. Roentgenol. 2007. Vol. 189. Р. 360–370.; Klepzig M., Sauer-Eppel H., Jonas D., Oremek G.M. Value of procollagen type 1 amino-terminal propeptide in patients with renal cell carcinoma // Anticancer Res. 2008. Vol. 28. Р. 2443–2446.; Alcaraz A., Gonzalez-Lopez R., Morote J., de la Piedra, C., Meseguer C., Esteban E., Climent M., Gonzalez-Gragera B., Alvarez-Ossorio J.L., Chirivella I. et al. Biochemical markers of bone turnover and clinical outcome in patients with renal cell and bladder carcinoma with bone metastases following treatment with zoledronic acid: The tugamo study // Br. J. Cancer. 2013. Vol. 109. Р. 121–130.; Pacifici R.T. Сells, osteoblasts, and osteocytes: Interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone // Ann. N. Y. Acad. Sci. 2016. Vol. 1364. Р. 11–24.; Waller M.L., Chowdhury F.U. The basic science of nuclear medicine // Orthopaedics and Trauma. 2011. Vol. 25, Nо. 2. P. 91–108.; Castell F., Cook G.J. Quantitative techniques in 18FDG PET scanning in oncology // Br. J. Cancer. 2008. Nо. 98 (10). P. 1597–1601.; Costelloe C.M., Chuang H.H., Madewell J.E. FDG PET for the Detection of Bone Metastases: Sensitivity, Specificity and Comparison with Other Imaging Modalities // PET Clin. 2010. Jul; Vol. 5 (3). Р. 281–295.; Gerety E.L. et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design // Ann. Oncol. 2015. Vol. 26. Р. 2113–2118.; Huyge V., Garcia C., Vanderstappen A., Alexiou J., Gil T., Flamen P. Progressive osteoblastic bone metastases in breast cancer negative on FDG-PET // Clin. Nucl. Med. 2009. Nо. 34 (7). P. 417–420.; Ito S., Kato K., Ikeda M., Iwano S., Makino N., Tadokoro M. Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer // J. Nucl. Med. 2007. Vol. 48 (6). P. 889–895.; Schmidt G.P., Schoenberg S.O., Schmid R., Stahl R., Tiling R., Becker C.R. et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT // Eur. Radiol. 2007 Vol. 17. Р. 939–949.; Johnston C., Brennan S., Ford S., Eustace S. Whole body MR imaging: applications in oncology // Eur. J. Surg. Oncol. 2006. Vol. 32. Р. 239–246.; Eustace S., Tello R., DeCarvalho V., Carey J., Wroblicka J.T., Melhem E.R., Yucel E.K. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases // AJR Am. J. Roentgenol. 1997. Vol. 169. Р. 1655–1661.; Steinborn M.M., Heuck A.F., Tiling R., Bruegel M., Gauger L., Reiser M.F. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system // J. Comput. Assist Tomogr. 1999. Vol. 23. Р. 123–129.; Engelhard K., Hollenbach H.P., Wohlfart K., von Imhoff E., Fellner F.A. Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer // Eur. Radiol. 2004. Vol. 14. Р. 99–105.; Wood S.L., Brown J.E. Skeletal metastasis in renal cell carcinoma: current and future management options // Canc. Treat Rev. 2012. Vol. 38 (4). Р. 284–291.; Seaman E., Goluboff E.T., Ross S., Sawczuk I.S. Association of radionuclide bone scan and serum alkaline phosphatase in patients with metastatic renal cell carcinoma // Urology. 1996. Vol. 48. Р. 692–695.; Althausen P., Althausen A., Jennings L.C., Mankin H.J. Prognostic factors and surgical treatment of osseous metastases secondary to renal cell carcinoma // Cancer. 1997. Vol. 80. Р. 1103–1109.; Koga S., Tsuda S., Nishikido M., Ogawa Y., Hayashi K., Hayashi T., Kanetake H. The diagnostic value of bone scan in patients with renal cell carcinoma // J. Urol. 2001. Vol. 166. Р. 2126–2128.; Wu H.C., Yen R.F., Shen Y.Y., Kao C.H., Lin C.C., Lee C.C. Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas — a preliminary report // J. Cancer Res. Clin. Oncol. 2002. Vol. 128. Р. 503–506.; Jadvar H., Kherbache H.M., Pinski J.K., Conti P.S. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma // Clin. Nephrol. 2003. Dec; Vol. 60 (6). Р. 395–400.

  11. 11
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 9, № 3 (2019); 49-60 ; Опухоли головы и шеи; Том 9, № 3 (2019); 49-60 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2019-9-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/422/389; Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2018. 250 с. Доступно по: http://www.oncology.ru/service/statistics/malignant_tumors/2017.pdf.; PET/CT in head and neck cancer. Ed. by Wai Lup Wong. Springer International Publishing, 2018. DOI:10.1007/978-3-319-61440-3.; MR imaging of the body. Ed. by E.J. Rummeny, P. Reimer, W. Heindel. Stuttgart; New York: Thieme, 2009. 1856 p.; Wong W.L., Sonoda L.I., Gharpurhy A. et al. 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in the assessment of occult primary head and neck cancers – an audit and review of published studies. Clin Oncol (R Coll Radiol) 2012;24(3):190–5. DOI:10.1016/j.clon.2011.11.001.; Алиева С.Б., Алымов Ю.В., Кропотов М.А. и др. Клинические рекомендации по диагностике и лечению плоскоклеточного рака головы и шеи. М., 2014. Доступно по: http://www.oncology.ru/association/clinical-guidelines/2014/36.pdf.; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В. и др. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Злокачественные опухоли 2018; 8(3, прил.):71–82. Доступно по: https://rosoncoweb.ru/standarts/RUSSCO/2018/2018-05.pdf. DOI: 10.18 027/2224-5057-2018-8-3s2-71-82.; National Comprehensive Cancer Network clinical practice guidelines in oncology (NCCN guidelines). Version 2.2019 for Head and Neck Cancers. Available at: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf.; Zhu L., Wang N. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg Oncol 2013;22(3):190–4. DOI:10.1016/j.suronc.2013.06.002.; Schwarz E., Hürlimann S., Soyka J.D. et al. FDG-positive Warthin’s tumors in cervical lymph nodes mimicking metastases in tongue cancer staging with PET/CT. Otolaryngol Head Neck Surg 2009;140(1):134–5. DOI:10.1016/j.otohns.2008.09.019.; Noij D.P., Pouwels P.J.W., Ljumanovic R. et al. Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma. Eur J Radiol 2015;84(1):108–16. DOI:10.1016/j.ejrad.2014.10.015.; Kyzas P.A., Evangelou E., Denaxa-Kyza D., Ioannidis J.P. 18 F-fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst 2008;100(10):712–20. DOI:10.1093/jnci/djn125.; Sun R., Tang X., Yang Y., Zhang C. (18)FDG-PET/CT for the detection of regional nodal metastasis in patients with head and neck cancer: a meta-analysis. Oral Oncol 2015;51(4):314–20. DOI:10.1016/j.oraloncology.2015.01.004.; Mak D., Corry J., Lau E. et al. Role of FDG-PET/CT in staging and follow-up of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 2011;55(5):487–99.; Schöder H., Carlson D.L., Kraus D.H. et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med 2006;47(5):755–62.; Rodrigo J.P., Grilli G., Shah J.P. et al. Selective neck dissection in surgically treated head and neck squamous cell carcinoma patients with a clinically positive neck: systematic review. Eur J Surg Oncol 2018;44(4):395–403. DOI:10.1016/j.ejso.2018.01.003.; Haerle S.K., Strobel K., Ahmad N. et al. Contrast-enhanced 18 F-FDG-PET/CT for the assessment of necrotic lymph node metastases. Head Neck 2011;33(3):324–9. DOI:10.1002/hed.21447.; Saindane A.M. Pitfalls in the staging of cervical lymph node metastasis. Neuroimaging Clin N Am 2013;23(1):147–66. DOI:10.1016/j.nic.2012.08.011.; Xu G.Z., Zhu X.D., Li M.Y. Accuracy of whole-body PET and PET-CT in initial M staging of head and neck cancer: a meta-analysis. Head Neck 2011;33(1):87–94. DOI:10.1002/hed.21400.; Griffioen G.H., Louie A.V., de Bree R. et al. Second primary lung cancers following a diagnosis of primary head and neck cancer. Lung Cancer 2015;88(1):94–9. DOI:10.1016/j.lungcan.2015.01.011.; Jain K.S., Sikora A.G., Baxi S.S., Morris L.G. Synchronous cancers in patients with head and neck cancer: risks in the era of human papillomavirus-associated oropharyngeal cancer. Cancer 2013;119(10):1832–7. DOI:10.1002/cncr.27988.; Rose B.S., Jeong J.H., Nath S.K. et al. Population-based study of competing mortality in head and neck cancer. J Clin Oncol 2011;29(26):3503–9. DOI:10.1200/JCO.2011.35.7301.; Strobel K., Haerle S.K., Stoeckli S.J. Head and neck squamous cell carcinoma (HNSCC) – detection of synchronous primaries with (18)F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 2009;36(6): 919–27. DOI:10.1007/s00259-009-1064-6.; Higgins K.A., Hoang J.K., Roach M.C. Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUVmean has superior prognostic value. Int J Radiat Oncol Biol Phys 2012;82(2):548–53. DOI:10.1016/j.ijrobp.2010.11.050.; Xie P., Li M., Zhao H. 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis. J Cancer Res Clin Oncol 2011;137(7):1085–93. DOI:10.1007/s00432-010-0972.; Schinagl D.A., Span P.N., Oyen W.J., Kaanders J.H. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 2011;38(8):1449–58. DOI:10.1007/s00259-011-1789.; Rohde M., Nielsen A.L., Johansen J. Up-front PET/CT changes treatment intent in patients with head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2018;45(4):613–21. DOI:10.1007/s00259-017-3873-3.; Weber W.A. Assessing tumor response to therapy. J Nucl Med 2009;50 Suppl 1: 1S–10S. DOI:10.2967/jnumed.108.057174.; Arens A.I., Troost E.G., Schinagl D. et al. FDG-PET/CT in radiation treatment planning of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 2011;55(5):521–8.; Wong K.W., Kwong D.L.W., Khong P.L. et al. Delineation of biological tumor volume from positron emission tomography images in nasopharyngeal carcinoma. J Biomed Sci Engineering 2014;07(11):857–65. DOI:10.4236/jbise.2014.711085.; Henriques de Figueiredo B.H., Zacharatou C., Galland-Girodet S. et al. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlentherapie Onkol 2015;191(3):217–24. DOI:10.1007/s00066-014-0752-8.; Okamoto S., Shiga T., Yasuda K. et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med 2013;54(2):201–7. DOI:10.2967/jnumed.112.109330.; Ware R.E., Matthews J.P., Hicks R.J. et al. Usefulness of fluorine‐18 fluorodeoxyglucose positron emission tomography in patients with a residual structural abnormality after definitive treatment for squamous cell carcinoma of the head and neck. Head Neck 2004;26(12):1008–17. DOI:10.1002/hed.20097.; Porceddu S.V., Pryor D.I., Burmeister E. et al. Results of a prospective study of positron emission tomography-directed management of residual nodal abnormalities in node-positive head and neck cancer after definitive radiotherapy with or without systemic therapy. Head Neck 2011;33(12):1675–82. DOI:10.1002/hed.21655.; Yao M., Smith R.B., Hoffman H.T. et al. Clinical significance of postradiotherapy [18F]-fluorodeoxyglucose positron emission tomography imaging in management of head-and-neck cancer – a long-term outcome report. Int J Radiat Oncol Biol Phys 2009;74(1):9–14. DOI:10.1016/j.ijrobp.2008.07.019.; Leung A.S., Rath T.J., Hughes M.A. et al. Optimal timing of first posttreatment FDG PET/CT in head and neck squamous cell carcinoma. Head Neck 2016;38 Suppl 1: E853–8. DOI:10.1002/hed.24112.; Lefebvre J.L., Ang K.K. Larynx preservation clinical trial design: key issues and recommendations – a consensus panel summary. Int J Radiat Oncol Biol Phys 2009;73(5):1293–303. DOI:10.1016/j.ijrobp.2008.10.047.; Castaldi P., Rufini V., Bussu F. et al. Can “early” and “late” 18F-FDG PET-CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol 2012;103(1):63–8. DOI:10.1016/j.radonc.2012.03.001.; Farrag A., Ceulemans G., Voordeckers M. et al. Can 18F-FDG-PET response during radiotherapy be used as a predictive factor for the outcome of head and neck cancer patients? Nucl Med Commun 2010;31(6):495–501. DOI:10.1097/MNM.0b013e3283334e2b.; Hentschel M., Appold S., Schreiber A. et al. Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 2011;38(7):1203–11. DOI:10.1007/s00259-011-1759-3.; Marcus C., Ciarallo A., Tahari A.K. et al. Head and neck PET/CT: therapy response interpretation criteria (Hopkins criteria) – interreader reliability, accuracy, and survival outcomes. J Nucl Med 2014;55(9):1411–6. DOI:10.2967/jnumed.113.136796.; Cheson B.D., Fisher R.I., Barrington S.F. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014;32(27):3059–68. DOI:10.1200/JCO.2013.54.8800.; Sjövall J., Bitzén U., Kjellén E. et al. Qualitative interpretation of PET scans using a Likert scale to assess neck node response to radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 2016;43(4):609–16. DOI:10.1007/s00259-015-3194-3.; Aiken A.H., Farley A., Baugnon K.L. et al. Implementation of a novel surveillance template for head and neck cancer: Neck Imaging Reporting and Data System (NI-RADS). J Am Coll Radiol 2016;13(6):743–6. DOI:10.1016/j.jacr.2015.09.032.; Castaldi P., Leccisotti L., Bussu F. et al. Role of (18)F-FDG PET-CT in head and neck squamous cell carcinoma. Acta Otorhinolaryngol Ital 2013;33(1):1–8.; Mirabile A., Miceli R., Calderone R.G. et al. Prognostic factors in recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 2019;41(6):1895–902. DOI:10.1002/hed.25636.; Isles M.G., McConkey C., Mehanna H.M. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol 2008;33(3):210–22. DOI:10.1111/j.1749-4486.2008.01688.; Abgral R., Querellou S., Potard G. et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med 2009;50(1):24–9. DOI:10.2967/jnumed.108.055806.; Liu T., Xu W., Yan W.L. et al. FDG-PET, CT, MRI for diagnosis of local residual or recurrent nasopharyngeal carcinoma, which one is the best? A systematic review. Radiother Oncol 2007;85(3):327–35. DOI:10.1016/j.radonc.2007.11.002.; Krabbe C.A., Pruim J., Dijkstra P.U. et al. 18F-FDG PET as a routine posttreatment surveillance tool in oral and oropharyngeal squamous cell carcinoma: a prospective study. J Nucl Med 2009;50(12):1940–7. DOI:10.2967/jnumed.109.065300.; Gupta T., Master Z., Kannan S. et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2011;38(11):2083–95. DOI:10.1007/s00259-011-1893.; Chen Y.J., Rath T., Mohan S. PET-computed tomography in head and neck cancer: current evidence and future directions. Magn Reson Imaging Clin N Am 2018;26(1):37–49. DOI:10.1016/j.mric.2017.08.003.; Benedetto R., Massicano A.V.F., Crenshaw B.K. et al. 89 Zr-DFO-cetuximab as a molecular imaging agent to identify cetuximab resistance in head and neck squamous cell carcinoma. Cancer Biother Radiopharm 2019;34(5):288–96. DOI:10.1089/cbr.2018.2616.; Even A.J., Hamming-Vrieze O., van Elmpt W. et al. Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget 2017;8(3):3870–80. DOI:10.18632/oncotarget.13910.; https://ogsh.abvpress.ru/jour/article/view/422

  12. 12
    Academic Journal

    Πηγή: Radiatsionnaya Gygiena = Radiation Hygiene; Том 10, № 4 (2017); 31-43 ; Радиационная гигиена; Том 10, № 4 (2017); 31-43 ; 2409-9082 ; 1998-426X ; 10.21514/1998-426X-2017-10-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.radhyg.ru/jour/article/view/525/531; Официальный сайт Центра развития ядерной медицины. – http://www.cdnm.ru/ (дата обращения 30.09.2017); Костылев, В.А. Статус и перспектива развития методов позитронно-эмиссионной томографии в России / В.А. Костылев, О.А. Рыжикова, В.Б. Сергиенко // Медицинская физика. – 2015. – № 2. – С. 5–16.; Дубинкин, Д.О. О гармонизации требований радиационной безопасности для развития ядерной медицины в России / Д.О. Дубинкин // Актуальные вопросы радиационной гигиены: тез. док. междунар. науч.-практ. конф., Санкт-Петербург, 1-3 октября 2014 г. – СПб., 2014. – http://www.fcpr.ru/netcat_files/userfiles/NIIRG_021014/Doklad-FTsPR_Dubinkin.pdf/ (дата обращения 30.09.2017); A Guide to Clinical PET in Oncology: Improving Clinical Management of Cancer Patients. IAEA-TECDOC-1605. International Atomic Energy Agency. Vienna, Austria, 2008.; Boellaard R., Delgado-Bolton R., Oyen W.J.G., Giammarile F. (et al.). FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J. Nucl. Med. Mol. Imaging, 2015, Vol. 42, pp. 328–354.; Anderson T., Elman S., Matesan M., Carnell J. (et al.). Pictorial Review of NCCN Guidelines for Use of FDG PET in Oncology. J Nucl Med, 2017, Vol. 58, № supplement 1 974.; Delbeke D., Coleman R.E., Guiberteau M.J., Brown M.L. Procedure Guideline for Tumor Imaging with 18F-FDG PET/ CT 1.0. J. Nucl. Med., 2006, Vol. 47, №5, pp. 885-895.; Ширяев, С.В. Современное состояние ПЭТ-диагностики в онкологии / С.В. Ширяев, Б.И. Долгушин, А.В. Хмелев // Вестник Московского Онкологического общества. – 2006. – № 3. – С. 1–9.; International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37, №2-4: 2007.; Публикация МКРЗ 105. Радиационная защита в медицине: пер. с англ. М.И. Балонова /под ред. Д. Валентина. – СПб.: ФГУН НИИРГ, 2011. – 66 с. – http://www.icrp.org/docs/P105Russian.pdf; http://niirg.ru/PDF/ICRP-105%20Ru.pdf (дата обращения 30.09.2017).; Martin C.J., Effective dose: how should it be applied to medical exposures? Brit. J Radiol., 2007, Vol. 80, pp. 639–647.; Iball G.R., Bebbington N.A., Burniston M. (еt al.). A national survey of computed tomography doses in hybrid PET-CT and SPECT-CT examinations in the UK. Nucl. Med. Commun., 2017, Vol. 38, pp. 459–470.; Willowson K.P., Bailey E.A., Bailey D.L. A retrospective evaluation of addition dose associated with low dose FDG protocols in whole-body PET/CT. Austral. Phys. Eng. Sci., 2012, Vol. 35, №1, pp. 49-53.; Radiation Protection 180 pt. 2. Diagnostic Reference Levels in Thirty-six European Countries. European Commission, 2014, 73 p.; Avramova-Cholakova S., Ivanova S., Petrova E., Garcheva M., Vassileva J. Patient Doses from PET-CT Procedures. Radiat. Protect. Dosim., 2015, Vol. 165, №1–4, pp. 430–433.; Etard C., Celier D., Roch P., Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat. Protect. Dosim., 2012, Vol. 152, № 4, pp. 334–338.; Kwon H.W., Jong Phil Kim, Hong Jae Lee, Jin Chul Paeng (et al.). Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea. J. Korean Med. Sci., 2016, Vol. 31, pp. S69-74.; Mattsson S., Söderberg M. Radiation Dose Management in CT, SPECT/CT and PET/Ct Techniques. Radiat. Protect. Dosim., 2011, Vol. 147, №1–2, pp. 13–21.; Водоватов, А.В. Новый подход к определению стандартного пациента для оптимизации защиты пациентов от медицинского облучения / А.В. Водоватов, И.Г. Камышанская, А.А. Дроздов // Радиационная гигиена. – 2014. – Т 7, № 4. – С. 104–116.; International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances. ICRP Publication 128. Ann. ICRP 44(2S), 2015.; Herrmann K., Bluemel C., Weineisen M., Schottelius M. (et al.). Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J. Nucl. Med., 2015, Vol. 56, №6, pp. 855-61.; Sandström M., Velikyan I., Garske-Román U., Sörensen J. (et al.). Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumours. J. Nucl. Med., 2013, Vol. 54, № 10, pp. 1755-1759.; Чипига, Л.А. Оценка коэффициентов перехода от произведения дозы на длину сканирования к эффективной дозе для КТ всего тела путем фантомных экспериментов / Л.А. Чипига, В.Ю. Голиков, Е.Н. Шлеенкова, А.В. Поздняков // Медицинская физика. – 2016. – T. 4. – C. 55–62.; Stauss J., Franzius C., Pfluger T., Juergens K.U. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur. J. Nucl. Med. Mol. Imag., 2008, Vol. 35, №8, pp. 1581-1588.; Surti S. Update on Time-of-Flight PET Imaging. J. Nucl. Med., 2015, Vol. 56, №1, pp. 98-105. 26. Sureshbabu W., Mawlawi O. PET/CT Imaging Artifacts. J. Nucl. Med. Technol., 2005, Vol. 33, pp. 156-161. Поступила: 20.10.2017 г.; https://www.radhyg.ru/jour/article/view/525

  13. 13
  14. 14
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 7, № 3 (2017); 103-107 ; Опухоли головы и шеи; Том 7, № 3 (2017); 103-107 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2017-7-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/295/292; Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г .В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России, 2017. Доступно по: http://oncologyassociation.ru/docs/medstat/sostoyznie/2015.pdf. [State of oncological care in Russia in 2015 (morbidity and mortality). Editors: A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI imeni P.A. Hertzena – filial FGBU “NMIRC” Minzdrava Rossii, 2017. (In Russ.) Available at: http://oncology-association.ru/docs/medstat/ sostoyznie/2015.pdf.].; Cooper D.S., Doherty G.M., Haugen B.R. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214. DOI:10.1089/thy.2009.0110. PMID: 19860577.; Spitzweg C., Bible K.C., Hofbauer L.C., Morris J.C. Advanced radioiodinerefractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol 2014;2(10):830–42. DOI:10.1016/S2213-8587(14)70051-8. PMID: 24898835.; Семенов Д.Ю., Борискова М.Е., Фарафонова У.В. и др. Прогностическое значение экспрессии натрий-йодного симпортера для высокодифференцированного рака щитовидной железы. Клиническая и экспериментальная тиреоидология 2015;11(1):50–8. [Semyonov D.Yu., Boriskova M.E., Farafonova U.V. et al. Prognostic value of sodium-iodide symporter (NIS) in differentiated thyroid cancer. Klinicheskaya i eksperimentalnaya tireoidologiya = Clinical and Еxperimental Тhyroidology 2015;11(1):50–8. (In Russ.)]. DOI:10.14341/ket2015150-58.; Riesco-Eizaguirre G. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I-targeting to the membrane. Endocr Relat Cancer 2006;13(1):257–69. DOI:10.1677/erc.1.01119.; Zhang Q., Liu S.Z., Zhang Q. et al. MetaAnalyses of Association Between BRAF (V600E) Mutation and Clinicopathological Features of Papillary Thyroid Carcinoma. Cell Physiol Biochem 2016;38(2):763–76. DOI:10.1159/000443032. PMID: 26871894.; Mian C., Barollo S., Pennelli G. et al. Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol (Oxf.) 2008;68(1):108–16. DOI:10.1111/j.1365-2265.2007.03008.; Lee W., Min H. S., Lee S. M. et al. Relations between pathological markers and radioiodine scan and 18F-FDG PET/ CT findings in papillary thyroid cancer patients with recurrent cervical nodal metastases. Nucl Med Mol Imaging 2015;49(2):127–34. DOI:10.1007/s13139015-0324-6. PMCID: PMC4463869.; Wong K.P., Lang B.H. New molecular targeted therapy and redifferentiation therapy for radioiodine-refractory advanced papillary thyroid carcinoma: literature review. J Thyroid Res 2012;2012:818204. DOI:10.1155/2012/818204.; Haugen B.R., Alexander E.K., Bible K.C. et al. American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1–33. DOI:10.1089/thy.2016.0628. PMID: 28114862.; Schlumberger M., Tahara M., Wirth L.J. et al. A phase 3, multicenter, double-blind, placebo-controlled trial of lenvatinib (E7080) in patients with 131I-refractory differentiated thyroid cancer (SELECT). J Clin Oncol 2014;23(Suppl.):Abstract LBA6008:5s. DOI:10.1200/jco.2014.32.18.; Румянцев П.О., Фомин Д.К., Румянцева У.В. Критерии резистентности высокодифференцированного рака щитовидной железы к терапии радиоактивным йодом. Опухоли головы и шеи 2014;3:4–9. [Rumyantsev P.О., Fomin D.K., Rumyantseva U.V. Criteria of the resistance of the high differentiated thyroid gland carcinoma to the active iodine therapy. Opukholi golovy i shei = Head and Neck Tumors 2014;3:4–9. (In Russ.)]. DOI:10.17650/2222-1468.; Joensuu H., Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987;28:910–4. PMID: 3572549.; Grunwald F., Kalicke T., Feine U. et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547–52. DOI:10.1007/s002590050493.; Salvatori M., Biondi B., Rufini V. Imaging in endocrinology: 18F-FDG PET/CT in differentiated thyroid carcinoma: clinical indications and controversies in the diagnosis and followup of differentiated thyroid cancer. Eur J Endocrinol 2015;173(3):115–30. DOI:10.1530/EJE-15-0066.; Hallett W.A. Quantification in clinical fluorodeoxyglucose positron emission tomography. Nucl Med Commun 2004;25(7):647–50. PMID: 15208490.; Deandreis D., Al-Ghuzlan A., Leboulleux S. et al. Do histological, immunohistochemical and metabolic (radioiodine and fluorodeoxyglucose uptake) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 2011;18:159–69. DOI:10.1677/ERC-10-0233.; Rivera M., Tuttle R.M., Ghossein R. Histopathological characterization of radioactive iodine refractory thyroid carcinomas FDG-PET positive thyroid carcinoma. Cancer 2008;113:48–56. DOI:10.1002/cncr.23515.; O J.H., Lodge M.A., Wahl R.L. Practical PERCIST: A Simplified Guide to PETResponse Criteria in Solid Tumors 1.0. Radiology 2016;280(2):576–84. DOI:10.1148/radiol.2016142043. PMID: 26909647.; Vanderhoek M., Perlman S., Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med 2012;53:4–11. DOI:10.2967/jnumed.111.093443. PMID: 22213818.; Wahl R., Jacene H., Kasamon Y., Lodge M. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009;50(Suppl 1):122–50. DOI:10.2967/jnumed.108.057307. PMID: 19403881.; Larson S.M., Erdi Y., Akhurst T. et al. Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PETFDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis. Clin Positron Imaging 1999;2(3):159–71. DOI:10.1016/S1095-0397(99)00016-3. PMID: 14516540.; Kim B.H., Kim S.-J., Kim S. et al. High metabolic tumor volume and total lesion glycolysis are associated with lateral lymph node metastasis in patients with incidentally detected thyroid carcinoma. Ann Nucl Med 2015;29(8):721–9. DOI:10.1007/s12149-015-0994-2.; Brose M.S., Nutting C.M., Jarzab B. et al. DECISION Investigators. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, doubleblind, phase 3 trial. Lancet 2014;384:319– 28. DOI:10.1016/S0140-6736(14)604219. PMCID: PMC4366116.; Marotta V., Ramundo V., Camera L. et al. Sorafenib in advanced iodine-refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG-PET. Clin Endocrinol 2013;78:760–7. DOI:10.1111/cen.12057. PMID: 23009688.; Schlumberger M., Brose M., Elisei R. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2(5):356–8. DOI:10.1016/S2213-8587(13)70215-8.; https://ogsh.abvpress.ru/jour/article/view/295

  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 15, № 1 (2016); 73-77 ; Сибирский онкологический журнал; Том 15, № 1 (2016); 73-77 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/313/315; Добродеев А.Ю., Афанасьев С.Г., Тузиков С.А., Завьялов А.А., Завьялова М.В., Перельмутер В.М., Крицкая Н.Г., Вторушин С.В. Первичная злокачественная опухоль сердца // Сибирский онкологический журнал. 2008. № 1. С. 95–99.; Национальное руководство по радионуклидной диагностике: в 2 т. / Под ред. Ю.Б. Лишманова, В.И. Чернова. Томск: STT, 2010. Т. 1. 290 с.; Тимошенко А.О., Корнева Е.П., Ростовцев М.В. МСКТ в диагностике первичных опухолей сердца // Сибирский онкологический журнал. Приложение № 2. 2011. С. 68–69.; Matushansky I., Charytonowicz E., Mills J., Siddiqi S., Hricik T., Cordon-Cardo C. MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st century // Expert Rev. Anticancer Ther. 2009. Vol. 9 (8). P. 1135–1144. doi:10.1586/era.09.76.; Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart (World Health Organization Classification of Tumours) / Ed. by W.D. Travis, E. Brambilla, H.K. Müller-Hermelink, C.C. Harris. IARCPress, Lyon, 2004. 341 p.; https://www.siboncoj.ru/jour/article/view/313

  18. 18
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 5, № 4 (2015); 11-15 ; Опухоли головы и шеи; Том 5, № 4 (2015); 11-15 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2015-5-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/180/185; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2012 году (заболеваемость и смертность). М., 2014. [Kaprin А.D., Starinsky V.V., Petrovа G.V. Malignant tumors in Russia in 2012 (morbidity and fatality). Мoscow, 2014. (In Russ.)].; Sherman S.I. Thyroid carcinoma. Lancet 2003;361(9356):501–11.; Sipos J.A., Mazzaferri E.L. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol) 2010;22(6):395–404.; Davies L., Welch H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006;295(10): 2164–7.; Eustatia-Rutten C.F., Corssmit E.P., Biermasz N.R. et al. Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab 2006;91(1):313–9.; O’Neill C.J., Oucharek J., Learoyd D., Sidhu S.B. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist 2010;15(2):146–56.; Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91(8):2892–9.; Dinneen S.F., Valimaki M.J., Bergstralh E.J. et al. Distant metastases in papillary thyroid carcinoma: 100 cases observed at one institution during 5 decades. J Clin Endocrinol Metab 1995;80(7):2041–5.; Валдина Е.А. Заболевания щитовидной железы. СПб.: Питер, 2006. [Valdinа Е.А. Thyroid gland diseases. Saint-Petersburg: Piter, 2006. (In Russ.)].; Showalter T.N., Siegel B.A., Moley J.F. et al. Prognostic factors in patients with welldifferentiated thyroid cancer presenting with pulmonary metastasis. Cancer Biother Radiopharm 2008;23(5):655–9.; Sampson E., Brierley J.D., Le L.W. et al. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 2007;110(7):1451–6.; Schlumberger M.J. Diagnostic follow-up of well-differentiated thyroid carcinoma: Historical perspective and current status. J Endocrinol Invest 1999;22(11 Suppl):3–7.; Casara D., Rubello D., Saladini G. et al. Different features of pulmonary metastases in differentiated thyroid cancer: natural history and multivariate analysis of prognostic variables. J Nucl Med 1993;34(10):1626–31.; Schlumberger M.J., Arcangioli O., Piekarski J.D. et al. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med 1988;29(11):1790–4.; Wang H., Fu H.L., Li J.N. et al. Comparison of whole-body 18F-FDG SPECT and posttherapeutic 131I scintigraphy in the detection of metastatic thyroid cancer. Clin Imaging 2008;32(1):32–7.; Hooft L., Hoekstra O.S., Devillé W. et al. Diagnostic accuracy of 18Ffluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer. J Clin Endocrinol Metab 2001;86(8):3779–86.; Khan N., Oriuchi N., Higuchi T. et al. PET in the follow-up of differentiated thyroid cancer. Br J Radiol 2003;76(910): 690–5.; Sisson J.C., Ackermann R.J., Meyer M.A., Wahl R.L. Uptake of 18-fluoro-2-deoxy-Dglucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 1993;77(4):1090–4.; https://ogsh.abvpress.ru/jour/article/view/180

  19. 19
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 31, № 2 (2016); 31-34 ; Сибирский журнал клинической и экспериментальной медицины; Том 31, № 2 (2016); 31-34 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2016-31-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/19/20; Ben(Haim S., Murthy V.L., Breault С. et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study // J. Nucl. Med. – 2013. – Vol. 54, No. 6. – P. 873–879.; Henzlova M.J., Cerqueira M.D., Mahmarian J.J. et al. Stress protocols and tracers // J. Nucl. Cardiol. – 2006. – Vol. 13, No. 6. – P. 80–90.; Hsu B., Chen F.C., Wu T.C. et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc(sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease // Eur. J. Nucl. Med. Mol. Imaging. – 2014. – Vol. 41, No. 12. – P. 2294–2306.; Ito Y., Katoh C., Noriyasu K. et al. Estimation of myocardial blood flow reserve by 99mTc(sestamibi imaging: comparison with the results of [15O] H2O PET // Eur. J. Nucl. Med. Mol. Imaging. – 2003. – Vol. 30, No. 2. – P. 281–287.; Liu C., Sinusas A.J. Is assessment of absolute myocardial perfusion with SPECT ready for prime time? // J. Nucl. Med. – 2014. – Vol. 55, No. 10. – P. 1573–1575.; Storto G., Sorrentino A.R., Pellegrino T. et al. Effects of type 2 diabetes mellitus on coronary microvascular function and myocardial perfusion in patients without obstructive coronary artery disease // Eur. J. Nucl. Med. Mol. Imaging. – 2007. – Vol. 34, No. 8. – P. 1156–1161.; Tsukamoto Т., Ito Y., Noriyasu K. et al. Quantitative Assessment of Regional Myocardial Flow Reserve Using Tc(99m(Sestamibi Imaging Comparison With Results of O(15 Water PET // Circ. J. – 2005. – Vol. 69, No. 2. – P. 188–193.; Windecker S., Kolh P., Alfonso F. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio( Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI) // Eur. Heart J. – 2014. – Vol. 35, No. 37. – P. 2541–2619.; https://www.sibjcem.ru/jour/article/view/19

  20. 20
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 29, № 1 (2014); 17-24 ; Сибирский журнал клинической и экспериментальной медицины; Том 29, № 1 (2014); 17-24 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2014-29-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/53/54; Врублевский А.В., Бошенко А.В., Ицкович И.Э. и соавт. Современные методы визуализации коронарных артерий в диагностике коронарного атеросклероза // Кардиология. - 2007. - Т. 47, № 7. - С. 83-93.; Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза // Рекомендации ВНОК. - М.: 2005. - С. 9-14.; Оганов Р.Г. Концепция факторов риска как основа профилактики сердечно-сосудистых заболеваний // Врач. - 2001. - № 7. - С. 3-6.; Alexopoulos N., Raggi P. Calcification in atherosclerosis // Nat. Rev. Cardiol. - 2009. - Vol. 6. - P. 681-688.; Annovazzi A., Bonanno E., Arca M. et al. 99mTc-interleukin-2 scintigraphy for the in vivo imaging of vulnerable atherosclerotic plaques // Eur. J. Nucl. Med. Mol. Imaging. - 2006. - Vol. 33. -P. 117-126.; Antonov A.S., Kolodgie F.D., Munn D.H. et al. Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis // Am. J. Pathol. - 2004. - Vol. 165. - P. 247-258.; Ayala-Lopez W., Xia W., Varghese B. et al. Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages // J. Nucl. Med. - 2010. - Vol. 51. - P. 768-774.; Ben-Haim S., Kupzov E., Tamir A. et al. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT // J. Nucl. Med. - 2004. - Vol. 45. - P. 1816-1821.; Bozoky Z., Balogh L., Mathe D. et al. Preparation and investigation of 99m technetium-labeled low-density lipoproteins in rabbits with experimentally induced hypercholesterolemia // Eur. Biophys. J. - 2004. - Vol. 33. -P. 140-145.; Canat X., Guillaumont A., Bouaboula M. et al. Peripheral benzodiazepine receptor modulation with phagocyte differentiation // Biochem. Pharmacol. - 1993. - Vol. 46. -P. 551-554.; Chiu J.J., Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives // Physiol. Rev. - 2011. - Vol. 91. - P. 327-387.; Dalm V.A., van Hagen P.M., van Koetsveld P.M. et al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells // Am. J. Physiol. Endocrinol. Metab. - 2003. - Vol. 285. - E344-E353.; Davies J.R., Rudd J.H., Fryer T.D. et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and highresolution magnetic resonance imaging // Stroke. - 2005. -Vol. 36. - P. 2642-2647.; Davies M.J., Richardson P.D., Woolf N. et al. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content // Br. Heart J. - 1993. - Vol. 69. - P. 377-381.; Falk E., Shah P.K., Fuster V. Coronary plaque disruption // Circulation. - 1995. - Vol. 92. - P. 657-671.; Falk E. Pathogenesis of atherosclerosis // J. Am. Coll. Cardiol. - 2006. - Vol. 47. - P. 7-12.; Fayad Z.A., Mani V., Woodward M. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial // Lancet. - 2011. - Vol. 378. - P. 1547-1559.; Frayn K. The glucose-fatty acid cycle: a physiological perspective // Biochem. Soc. Trans. - 2003. - Vol. 31. - P. 1115-1119.; Fujimoto S., Hartung D., Ohshima S. et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy // J. Am. Coll. Cardiol. - 2008. - Vol. 52. - P. 1847-1857.; Gaemperli O., Shalhoub J., Owen D.R. et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography // Eur. Heart. J. - 2012. - Vol. 33. - P. 1902-1910.; George R.T. 18F-sodium fluoride positron emission tomography: an in vivo window into coronary atherosclerotic plaque biology // J. Am. Coll. Cardiol. - 2012. - Vol. 59. - P. 1549-1550.; Greenland P., LaBree L., Azen S.P. et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals // JAMA. - 2004. - Vol. 291. - P. 210215.; Haider. N., Hartung. D., Fujimoto. S. et al. Dual molecular imaging for targeting metalloproteinase activity and apoptosis in atherosclerosis: molecular imaging facilitates understanding of pathogenesis // J. Nucl. Cardiol. - 2009. - Vol. 16. - P. 753-762.; Hartung D., Petrov A., Haider N. et al. Radiolabeled Monocyte Chemotactic Protein 1 for the detection of inflammation in experimental atherosclerosis // J. Nucl. Med. - 2007. - Vol. 48. - P. 1816-1821.; Hartung D., Sarai M., Petrov A. et al. Resolution of apoptosis in atherosclerotic plaque by dietary modification and statin therapy // J. Nucl. Med. - 2005. - Vol. 46. - P. 2051-2056.; Hoshiga M., Alpers C.E., Smith L.L. et al. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery // Circ Res. - 1995. - Vol. 77. - P. 1129-1135.; Ishino S., Kuge Y., Takai N. et al. 99mTc-Annexin A5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits // Eur. J. Nucl. Med. Mol. Imaging. - 2007. - Vol. 34. - P. 889-890.; Isobe S., Tsimikas S., Zhou J. et al. Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5 // J. Nucl. Med. - 2006. - Vol. 47. - P. 1497-1505.; Iuliano L., Signore A., Vallabajosula S. et al. Preparation and biodistribution of 99m technetium labelled oxidized LDL in man // Atherosclerosis. - 1996. - Vol. 126. - P. 131-141.; Johnson L.L., Schofield L., Donahay T. et al. 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries // J. Nucl. Med. - 2005. - Vol. 46. -P. 1186-1193.; Kato K., Schober O., Ikeda M. et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT // Eur. J. Nucl. Med. Mol. Imaging. - 2009. - Vol. 36. - P. 1622-1628.; Kietselaer B.L., Reutelingsperger C.P., Heidendal G.A. et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis // N. Engl. J. Med. - 2004. - Vol. 350. - P. 14721473.; Kolodgie F.D., Petrov A., Virmani R. et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque // Circulation. - 2003. - Vol. 108. - P. 3134-3139.; Koopman G., Reutelingsperger C.P., Kuijten G.A. et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis // Blood. - 1994. -Vol. 84. - P. 1415-1420.; Kuge Y., Takai N., Ogawa Y. et al. Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques // Eur. J. Nucl. Med. Mol. Imaging. - 2010. - Vol. 37. - P. 20932104.; Kwee R.M., Truijman M.T., Mess W.H. et al. Potential of integrated [18F] fluorodeoxyglucose positron-emission tomography/CT in identifying vulnerable carotid plaques // AJNR Am. J. Neuroradiol. - 2011. - Vol. 32. - P. 950-954.; Kzhyshkowska J., Neyen C., Gordon S. Role of macrophage scavenger receptors in atherosclerosis // Immunobiology. -2012. - Vol. 217. - P. 492-502.; Laitinen I., Marjamaki P., Haaparanta M. et al. Uptake of [C-11]PK11195, a marker of inflammatory cells, into atherosclerotic plaques in mice // Basic Clin. Pharmacol. Toxicol. - 2008. -Vol. 102, Is. Sup. S1. - P. 48-49.; Laitinen I., Saraste A., Weidl E. et al. Evaluation of alpha(v)beta(3) integrin-targeted positron emission tomography tracer F-18-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice // Circ. Cardiovasc. Imaging. - 2009. -Vol. 2. - P. 331-338.; Li X., Samnick S., Lapa C. et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors // EJNMMI Research. -2012. - Vol. 2. - P. 52.; Libby P. Inflammation in atherosclerosis // Nature. - 2002. -Vol. 420. - P. 868-874.; Matter C.M., Wyss M.T., Meier P. et al. 18F-choline images murine atherosclerotic plaques ex vivo // Arterioscler. Thromb. Vasc. Biol. - 2006. - Vol. 26. - P. 584-589.; Nahrendorf M., Keliher E., Panizzi P. et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis // J. Am. Coll. Cardiol. Cardiovasc. Imaging. - 2009. - Vol. 2. - P. 1213-1222.; O’Rourke R.A., Brundage B.H., Froelicher V.F. et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease // J. Am. Coll. Cardiol. - 2000. - Vol. 36. - P. 326-340.; Ogawa M., Ishino S., Mukai T. et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study // J. Nucl. Med. - 2004. - Vol. 45. - P. 1245-1250.; Ohtsuki K., Hayase M., Akashi K. et al. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study // Circulation. - 2001. - Vol. 104. - P. 203-208.; Opalinska M., Stompor T., Pach D. et al. Imaging of inflamed carotid artery atherosclerotic plaques with the use of (99m)Tc-HYNIC-IL-2 scintigraphy in end-stage renal disease patients // Eur. J. Nucl. Med. Mol. Imaging. - 2012. - Vol. 39. - P. 673-682.; Razavian M., Tavakoli S., Zhang J. et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation // J. Nucl. Med. - 2011. - Vol. 52. - P. 1795-1802.; Roger V.L., Go A.S., Lloyd-Jones D.M. et al. Heart disease and stroke statistics-2011 update: a report from the American Heart Association // Circulation. - 2011. - Vol. 123. - e18-e209.; Rogers I.S., Nasir K., Figueroa A.L. et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina // J. Am. Coll. Cardiol. Img. - 2010. - Vol. 3. - P. 388-397.; Rominger A., Saam T., Wolpers S. et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease // J. Nucl. Med. - 2009. - Vol. 50. - P. 1611-1620.; Rudd J.H., Warburton E.A., Fryer T.D. et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography // Circulation. - 2002. - Vol. 105. - P. 2708-2711.; Saam T., Rominger A., Wolpers S. et al. Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study // Eur. J. Nucl. Med. Mol. Imaging. - 2010. - Vol. 37. - P. 1203-1212.; Sarai M., Hartung D., Petrov A. et al. Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging // J. Am. Coll. Cardiol. - 2007. - Vol. 50. - P. 23052312.; Sheikine Y., Akram K. FDG-PET imaging of atherosclerosis: Do we know what we see? // Atherosclerosis. - 2010. - Vol. 211. -P. 371-380.; Tabas I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress // Antioxid. Redox. Signal. - 2009. - Vol. 11. - P. 2333-2339.; Tahara N., Kai H., Ishibashi M. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography // J. Am. Coll. Cardiol. - 2006. - Vol. 48. - P. 1825-1831.; Tawakol А., Migrino R.Q., Bashian G.G. et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients // J. Am. Coll. Cardiol. - 2006. - Vol. 48. - P. 1818-1824.; Tekabe Y., Li Q., Luma J. et al. Noninvasive monitoring the biology of atherosclerotic plaque development with radiolabeled annexin V and matrix metalloproteinase inhibitor in spontaneous atherosclerotic mice // J. Nucl. Cardiol. - 2010. -Vol. 17. - P. 1073-1081.; Teras M., Kokki T., Durand-Schaefer N. et al. Dual-gated cardiac PET-clinical feasibility study // Eur. J. Nucl. Med. Mol. Imaging. - 2010. - Vol. 37. - P. 505-516.; Vallabhajosula S., Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine // J. Nucl. Med. -1997. - Vol. 38, № 11. - P. 1788-1796.; Vallabhajosula S., Machac J., Knesaurek K. Imaging atherosclerotic macrophage density by positron emission tomography using F-18-fluorodeoxyglucose (FDG) // J. Nucl. Med. - 1996. - Vol. 37. - P. 38.; Wildgruber M., Swirski F.K., Zernecke A. Molecular imaging of inflammation in atherosclerosis // Theranostics. - 2013. - Vol. 3. - P. 865-884.; Williams G., Kolodny G.M. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet // Am. J. Roentgenol. - 2008. - Vol. 190. - W151-156.; Wykrzykowska J., Lehman S., Williams G. et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation // J. Nucl. Med. - 2009. - Vol. 50. - P. 563-568.; Xia W., Hilgenbrink A.R., Matteson E.L. et al. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages // Blood. - 2009. - Vol. 113. - P. 438-446.; Yun M., Jang S., Cucchiara A. et al. 18F FDG uptake in thelarge arteries: a correlation study with the atherogenic risk factors // Semin. Nucl. Med. - 2002. - Vol. 32. - P. 70-76.; Zhao Y., Kuge Y., Zhao S. et al. Comparison of 99mTc-annexin A5 with 18F-FDG for the detection of atherosclerosis in ApoE-/- mice // Eur. J. Nucl. Med. Mol. Imaging. - 2007. - Vol. 34. -P. 1747-1755.; https://www.sibjcem.ru/jour/article/view/53