Showing 1 - 20 results of 31 for search '"повышенная температура"', query time: 0.63s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University

    File Description: application/pdf

  4. 4
  5. 5
    Conference

    Contributors: Борисов, Борис Владимирович

    File Description: application/pdf

    Relation: Научная инициатива иностранных студентов и аспирантов : сборник докладовI Международной научно-практической конференции, Томск, 27-29 апреля 2021 г. Т. 1. — Томск, 2021; http://earchive.tpu.ru/handle/11683/67784

  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: LTR analyses were performed at the Multiple-access Center for Microscopy of Biological Objects (Institute of Cytology and Genetics SB RAS). This work was supported by budget project No. 0259-2021-0011.

    Source: Vavilov Journal of Genetics and Breeding; Том 26, № 2 (2022); 169-178 ; Вавиловский журнал генетики и селекции; Том 26, № 2 (2022); 169-178 ; 2500-3259 ; 10.18699/VJGB-22-14

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3293/1601; Amano A., Nakagawa I., Yoshimori T. Autophagy in innate immunity against intracellular bacteria. J. Biochem. 2006;140(2):161-166. DOI 10.1093/jb/mvj162.; Bainbridge S.P., Bownes M. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 1981;66:57-80.; Barth J.M.I., Szabad J., Hafen E., Köhler K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ. 2011;18:915-924. DOI 10.1038/cdd.2010.157.; Bjedov I., Cochemé H.M., Foley A., Wieser D., Woodling N.S., Castillo-Quan J.I., Norvaisas P., Lujan C., Regan J.C., Toivonen J.M.; Murphy M.P., Thornton J., Kinghorn K.J., Neufeld T.P., Cabreiro F., Partridge L. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet. 2020;16:e1009083. DOI 10.1371/journal.pgen.1009083.; Bolobolova E.U., Dorogova N.V., Fedorova S.A. Major scenarios of genetically regulated cell death during oogenesis in Drosophila melanogaster. Russ. J. Genet. 2020;56:655-665. DOI 10.1134/S1022795420060034.; Carra S., Boncoraglio A., Kanon B., Brunsting J.F., Minoia M., Rana A., Vos M.J., Seidel K., Sibon O.C., Kampinga H.H. Identification of the Drosophila ortholog of HSPB8. J. Biol. Chem. 2010;285:37811-37822. DOI 10.1074/jbc.M110.127498.; Clancy D.J., Gems D., Harshman L.G., Oldham S., Stocker H., Hafen E., Leevers S.J., Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292(5514):104-106. DOI 10.1126/science.1057991.; Drummond-Barbosa D., Spradling A.C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 2001;231(1):265-278. DOI 10.1006/dbio.2000.0135. Graze R.M., Tzeng R.-Y., Howard T.S., Arbeitman M.N. Perturbation of IIS/TOR signaling alters the landscape of sex-differential gene expression in Drosophila. BMC Genom. 2018;19:893. DOI 10.1186/s12864-018-5308-3.; Hercus M.J., Loeschcke V., Rattan S.I.S. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology. 2003;4:149-156. DOI 10.1023/A:1024197806855.; Hou Y.-C.C., Chittaranjan S., Barbosa S.G., McCall K., Gorski S.M. Effector caspase Dcp-1 and IAP protein Bruce regulate starvationinduced autophagy during Drosophila melanogaster oogenesis. J. Cell Biol. 2008;182:1127-1139. DOI 10.1083/jcb.200712091.; Izquierdo J.I. How does Drosophila melanogaster overwinter? Entomol. Exp. Appl. 1991;59:51-58. DOI 10.1111/j.1570-7458.1991.tb01485.x.; Jolly C., Morimoto R.I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer. Inst. 2000;92(19):1564-1572. DOI 10.1093/jnci/92.19.1564.; Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A., Cheetham M.E., Chen B., Hightower L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105-111. DOI 10.1007/s12192-008-0068-7.; Kapahi P., Zid B.M., Harper T., Koslover D., Sapin V., Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 2004;14(10):885-890. DOI 10.1016/j.cub.2004.03.059.; Klionsky D.J., Cuervo A.M., Seglen P.O. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181-206. DOI 10.4161/auto.3678.; Kroemer G., Mariño G., Levine B. Autophagy and the integrated stress response. Mol. Cell. 2010;40(2):280-293. DOI 10.1016/j.molcel.2010.09.023.; Le Bourg É. Using Drosophila melanogaster to study the positive effects of mild stress on aging. Exp. Gerontol. 2011;46:345-348. DOI 10.1016/j.exger.2010.08.003.; Lin Y.-J., Seroude L., Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998;282(5390): 943-946. DOI 10.1126/science.282.5390.943.; Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986;55: 1151-1191. DOI 10.1146/annurev.bi.55.070186.005443.; Malkeyeva D., Kiseleva E., Fedorova S. Small heat shock protein Hsp67Bc plays a significant role in Drosophila melanogaster cold stress tolerance. J. Exp. Biol. 2020;223(Pt.21):jeb219592. DOI 10.1242/jeb.219592.; Malkeyeva D.A., Kiseleva E.V., Fedorova S.A. Loss of Hsp67Bc leads to autolysosome enlargement in the Drosophila brain. Cell Biol. Int. 2021. DOI 10.1002/cbin.11721.; Masoro E.J. Caloric restriction and aging: an update. Exp. Gerontol. 2000;35:299-305. DOI 10.1016/S0531-5565(00)00084-X.; Nezis I.P., Lamark T., Velentzas A.D., Rusten T.E., Bjørkøy G., Johansen T., Papassideri I.S., Stravopodis D.J., Margaritis L.H., Stenmark H., Brech A. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy. 2009;5: 298-302. DOI 10.4161/auto.5.3.7454.; Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014;20(3): 460-473. DOI 10.1089/ars.2013.5371.; Raut S., Mallik B., Parichha A., Amrutha V., Sahi C., Kumar V. RNAimediated reverse genetic screen identified Drosophila chaperones regulating eye and neuromuscular junction morphology. G3: Genes Genomes Genetics. (Bethesda). 2017;7(7):2023-2038. DOI 10.1534/g3.117.041632.; Sarikaya D.P., Belay A.A., Ahuja A., Dorta A., Green D.A., Extavour C.G. The roles of cell size and cell number in determining ovariole number in Drosophila. Dev. Biol. 2012;363:279-289. DOI 10.1016/j.ydbio.2011.12.017.; Sarkar S., Singh M.D., Yadav R., Arunkumar K.P., Pittman G.W. Heat shock proteins: molecules with assorted functions. Front. Biol. (Beijing). 2011;6(4):312. DOI 10.1007/s11515-011-1080-3.; Sarup P., Sørensen P., Loeschcke V. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Exp. Gerontol. 2014;50:34-39. DOI 10.1016/j.exger.2013.11.017.; Scott R.C., Schuldiner O., Neufeld T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell. 2004;7(2):167-178. DOI 10.1016/j.devcel.2004.07.009.; Sørensen J.G., Kristensen T.N., Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003;6:1025-1037. DOI 10.1046/j.1461-0248.2003.00528.x.; Tatar M., Kopelman A., Epstein D., Tu M.-P., Yin C.-M., Garofalo R.S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292(5514): 107-110. DOI 10.1126/science.1057987.; Vos M.J., Carra S., Kanon B., Bosveld F., Klauke K., Sibon O.C.M., Kampinga H.H. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell. 2016;15:217-226. DOI 10.1111/acel.12422.; Wang J., Wang Z., Zhang Z., Hua Q., Wang M., Shi C., Xue L., Zhang R., Xie X. Methuselah regulates longevity via dTOR: a pathway revealed by small-molecule ligands. J. Mol. Cell Biol. 2015; 7:280-282. DOI 10.1093/jmcb/mjv018.; Wit J., Kristensen T.N., Sarup P., Frydenberg J., Loeschcke V. Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Exp. Gerontol. 2013;48:1189-1195. DOI 10.1016/j.exger.2013.07.012.; Yamamoto R., Palmer M., Koski H., Curtis-Joseph N., Tatar M. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics. 2021;217(2):iyaa037. DOI 10.1093/genetics/iyaa037.; https://vavilov.elpub.ru/jour/article/view/3293

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; № 6 (2015); 35-40 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; № 6 (2015); 35-40 ; 2414-0341 ; 1029-7448 ; undefined

    File Description: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/896/883; Ермолин, Н. П. Надежность электрических машин / Н. П. Ермолин, И. П. Жерихин. Л.: Энергия, 1976. 248 с.; Слоним, Н. М. Испытания асинхронных двигателей / Н. М. Слоним. М.: Энергия, 1980. 88 с.; Котеленец, Н. Ф. Испытания и надежность электрических машин / Н. Ф. Котеленец, Н. Л. Кузнецов. М.: Высш. шк., 1985. 232 с.; Воробьев, В. Е. Прогнозирование срока службы электрических машин / В. Е. Воробьев, В. Я. Кучер. СПб.: СЗТУ, 2004. 56 с.; Яманов, С. А. Старение, стойкость и надежность электрической изоляции / С. А. Яманов, Л. В. Яманова. М.: Энергоатомиздат, 1990. 176 с.; Надежность асинхронных электродвигателей / В. Б. Ванеев, [и др.]. М.: Наука, 1964. 524 с.; Сыромятников, И. А. Режимы работы асинхронных и синхронных двигателей / И. А. Сыромятников. М.: Энергия, 1984. 240 с.; Михеев, М. А. Основы теплопередачи / М. А. Михеев, И. М. Михеева. М.: Энергия, 1977. 344 с.; Филиппов, И. Ф. Основы теплообмена в электрических машинах / И. Ф. Филиппов. Л.: Энергия, 1974. 383 с.; Спосіб контролю i теплового захисту обмоток електричних машин, якi працюють у запиленому середовищі: пат. 107898 Україна: Н02Р 5/04, Н02К 15/12, Н02Н 5/10, G01K 13/08 / В. Є. Кривоносов, I. В. Жежеленко, О. В. Московець, С. В. Василенко; заявл. 26.02.2014; опубл. 25.02.2015; https://energy.bntu.by/jour/article/view/896; undefined

  16. 16
    Academic Journal

    Contributors: М.В.Жукова, Президиум РАН

    Source: Vavilov Journal of Genetics and Breeding; Том 17, № 2 (2013); 265-276 ; Вавиловский журнал генетики и селекции; Том 17, № 2 (2013); 265-276 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/148/150; Вайсман Н.Я., Илинский Ю.Ю., Голубовский М.Д. Популяционно-генетический анализ продолжительности жизни Drosophila melanogaster: сходные эффекты эндосимбионта Wolbachia и онкосупрессора lgl в условиях температурного стресса // Журн. общ. биологии. 2009. Т. 70. № 5. С. 438–447.; Кашнер Д. Жизнь микробов в экстремальных условиях. Л.: Мир, 1981. 522 с.; Жукова М.В., Воронин Д.А., Киселева Е.В. Изменение ультраструктуры симбиотических бактерий Wolbachia в яичниках и ранних эмбрионах Drosophila под влиянием повышенной температуры // Цитология. 2008. Т. 50. № 12. С. 1050–1060.; Bordenstein S.R., Bordenstein S.R. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility // PLoS One. 2011. V. 6. e29106.; Chapman R.F., Page W.W. Factors affecting the mortality of the grasshopper, Zonocerus variegatus, in Southern Nigeria // J. Anim. Ecol. 1979. V. 48. P. 271–288.; Clark M.E., Anderson C., Cande J., Karr T.L. Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research // Genetics. 2005. V. 170. P. 1667–1675.; Cossins A., Bowler K. Temperature Biology of Animals. London: Chapman and Hall, 1987. 339 p.; Dobson S.L., Bourtzis K., Braig H.R. et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues // Insect. Biochem. Mol. Biol. 1999. V. 29. P. 153–160.; Hayes S.F., Burgdorfer W. Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis // Infect. Immun. 1982. V. 37. P. 779–785.; Kozek W.J. What is new in the Wolbachia/Dirofi laria interaction? // Vet. Parasitol. 2005. V. 133. P. 127–132.; Loesel R., Nässel D.R., Strausfeld N.J. Common design in a unique midline neuropil in the brains of arthropods // Arthropod Struct. Dev. 2002. V. 31. P. 77–91.; McGraw E.A., Merritt D.J., Droller J.N., O’Neill S.L. Wolbachia density and virulence attenuation after transfer into a novel host // Proc. Natl Acad. Sci. US. 2002. V. 99. P. 2918–2923.; Min K.T., Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death // Proc. Natl Acad. Sci. USA. 1997. V. 94. P. 10792–10796.; McMeniman C.J., Lane R.V., Cass B.N. et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti // Science. 2009. V. 323. P. 141–144.; Moreira L.A., Iturbe-Ormaetxe I., Jeffery J.A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium // Cell. 2009. V. 139. P. 1268–1278.; Petavy G., David J.R., Gilbert P., Moreteau B. Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes // J. Therm. Biol. 2001. V. 26. P. 29–39.; Pintureau B., Pizzol J., Bolland P. Effects of endosymbiotic Wolbachia on the diapause in Trichogramma hosts and effects of the diapause on Wolbachia // Entomol. Exp. Appl. 2003. V. 106. P. 193–200.; Precht H.J., Christophersen H., Hensel H., Larcher W. Temperature and Life. Berlin: Springer-Verlag, 1973. 514 p.; Rasgon J.L., Gamston C.E., Ren X. Survival of Wolbachia pipientis in cell-free medium // Appl. Environ. Microbiol. 2006. V. 72. P. 6934–6937.; Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain for electron microscopy // J. Cell Biol. 1963. V. 17. P. 208–212.; Serbus L.R., Casper-Lindley C., Landmann F., Sullivan W. The genetics and cell biology of Wolbachia-host interactions // Annu. Rev. Genet. 2008. V. 42. P. 683–707.; Terasaki M., Runft L.L., Hand A.R. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation // Mol. Biol. Cell. 2001. V. 12. P. 1103–1116.; Thomas M.B., Blanford S. Thermal biology in insect-parasite interactions // Trends Ecol. Evol. 2003. V. 18. No. 7. P. 344–350.; van Opijnen T.V., Breeuwer J.A.J. High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite // Exp. Appl. Acarol. 1999. V. 23. P. 871–881.; Wiwatanaratanabutr I., Kittayapong P. Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus // J. Invertebr. Pathol. 2009. V. 102. P. 220–224.; https://vavilov.elpub.ru/jour/article/view/148

  17. 17
  18. 18
  19. 19
  20. 20