Showing 1 - 6 results of 6 for search '"повторяющиеся последовательности"', query time: 0.49s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: проект по фундаментальным научным исследованиям (тема № VI.53.1.5.), грант РФФИ № 14-04-00297

    Source: Vavilov Journal of Genetics and Breeding; Том 18, № 4/1 (2014); 618-629 ; Вавиловский журнал генетики и селекции; Том 18, № 4/1 (2014); 618-629 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/289/291; Сергеева Е.М., Салина Е.А. Мобильные элементы и эволюция генома растений // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 2. С. 382–397.; Хемлебенб В., Беридзе Т.Г., Бахман Л., Коварик Я., Торрес Р. Сателлитные ДНК // Усп. биол. химии. 2003. Т. 43. С. 267–306.; Alkhimova O.G., Mazurok N.A., Potapova T.A., Zakian S.M. et al. Diverse patterns of the tandem repeats organization in rye chromosomes // Chromosoma. 2004. V. 113. P. 42–52.; Anamthawat-Josson K., Heslop-Harrison J.S. Isolation and characterization of genome-specifi c DNA sequences in Triticeae species // Mol. Gen. Genet. 1993. V. 240. P. 151–158.; Ananiev E.V., Phillips R.L., Rines H.W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions // Proc. Natl Acad. Sci. USA. 1998. V. 95. P. 13073–13078.; Appels R., Baum B.R., Clarke B.C. The 5S DNA units of bread wheat (Triticum aestivum L.) // Plant Syst. Evol. 1992. V. 183. P. 183–194.; Appels R., Dvořák J. Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the Triticeae: Implications for the maintenance of homogeneity of a repeated gene family // Theor. Appl. Genet. 1982a. V. 63. P. 361–365.; Appels R., Dvořák J. The wheat ribosomal DNA spacer region: Its structure and variation in populations and among species // Theor. Appl. Genet. 1982b. V. 63. P. 337–348.; Appels R., Gerlach W.L., Dennis E.S. et al. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals // Chromosoma. 1980. V. 78. P. 293–311.; Bedbrook J.H., Jones J., O’Del M. A molecular distribution of telomeric heterochromatin in Secale species // Cell. 1980. V. 19. P. 545–560.; Belo A., Beatty M., Hondred D., Fengler K. et al. Allelic genome structural variations in maize detected by array comparative genome hybridization // Theor. Appl. Genet. 2010. V. 120. P. 355–367.; Bennett M., Leitch I.J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow // Ann. Bot. 2011. V. 107. P. 467–590.; Bennetzen J.L. The contribution of retroelements to plant genome organization, function and evolution // Trends Microbiol. 1996. V. 4. P. 347–353.; Biemont C. Genome size evolution: within-species variation in genome size // Heredity. 2008. V. 101. P. 297–298.; Bureau T.E., Wessler S.R. Tourist: a large family of invertedrepeat elements frequently associated with maize genes // Plant Cell. 1992. V. 4. P. 1283–1294.; Bureau T.E., Wessler S.R. Stowaway: a new family of invertedrepeat elements associated with genes of both monocotyledonous and dicotyledonous plants // Plant Cell. 1994. V. 6. P. 907–916.; Castilho A., Heslop-Harrison J.S. Physical mapping of 5S and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata // Genome. 1995. V. 38. P. 91–96.; Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes // Nature. 1994. V. 371. P. 215–220.; Copenhaver G.P., Pikaard C.S. RFLP and physical mapping with an rDNA-specifi c endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4 // Plant J. 1996. V. 9. P. 259–272.; Cox A.V., Bennett M.D., Dyer T.A. Specifi c 5S ribosomal RNA primers for plant species identifi cation in admixtures // Theor. Appl. Genet. 1992. V. 83. P. 684.; Cuadrado A., Jouve N. Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale // J. Hered. 2002. V. 93. P. 339–345.; Cullis C.A. Mechanisms and control of rapid genomic changes in fl ax // Ann. Bot. 2005. V. 95. P. 201–206.; Daboussi M., Capy P. Transposable elements in fi lamentous fungi // Annu. Rev. Microbiol. 2003. V. 57. P. 275–299.; Dvorák J., Luo M.C., Yang Z.L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and crossfertilizing Aegilops species // Genetics. 1998. V. 148. P. 423–434.; Feschotte C., Pritham E.J. DNA transposons and the evolution of eukaryotic genomes // Annu. Rev. Genet. 2007. V. 41. P. 331–368.; Flavell R.B. Amplifi cation, deletion and rearrangement: Major sources of variation during species divergence // Genome Evolution / Eds G.A. Dover, R.B. Flavell. London: Acad. Press, 1982.; Flavell R.B. Repetitive DNA and chromosome evolution in plants // Philos. T. R. Soc. Lon. B. 1986. V. 312. P. 227–242.; Flavell R.B., Bennett M.D., Smith J.B., Smith D.B. Genome size and the proportion of repeated nucleotide sequence DNA in plants // Biochem. Genet. 1974. V. 12. P. 257–269.; Flavell R.B., O’Dell M. Ribosomal RNA genes on homologous chromosomes of groups 5 and 6 in hexaploid wheat // Heredity. 1976. V. 37. P. 372–385.; Flavell A.J., Dunbar E., Anderson R. et al. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants // Nucl. Acids Res. 1992. V. 20. P. 3639–3644.; Frey M., Reinecke J., Grant S. et al. Excision of the En/Spm transposable element of Zea mays requires two elementencoded proteins // EMBO J. 1990. V. 9. P. 4037–4044.; Gerlach W.L., Bedbrook J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley // Nucl. Acid Res. 1979. V. 7. P. 1869–1885.; Gerlach W.L., Dyer T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes // Nucl. Acids Res. 1980. V. 8. P. 4851–4865.; Heslop-Harrison J.S. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes // Plant Cell. 2000. V. 12. P. 617–636.; Hu T.T., Pattyn P., Bakker E.G., Cao J. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change // Nat. Genet. 2011. V. 43. P. 476–481.; Jurka J., Kapitonov V.V. PIFs meet Tourists and Harbingers: a superfamily reunion // Proc. Natl Acad. Sci. USA. 2001. V. 98. P. 12315–12316.; Kajikawa M., Okada N. LINEs mobilize SINEs in the eel through a shared 3′ sequence // Cell. 2002. V. 111. P. 433–444.; Kapitonov V., Jurka J. Rolling-circle transposons in eukaryotes // Proc. Natl Acad. Sci. USA. 2001. V. 98. P. 8714–8719.; Kilian A., Kleinhofs A. Cloning and mapping of telomere-associated sequences from Hordeum vulgare L. // Mol. Gen. Genet. 1992. V. 235. P. 153–156.; Kishii M., Tsujimoto H. Genus-specific localization of the TaiI family of tandem-repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat // Genome. 2002. V. 45. P. 946–955.; Kit S. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues // J. Mol. Biol. 1961. V. 3. P. 711–716.; Kramerov D., Vassetzky N. Short retroposons in eukaryotic genomes // Int. Rev. Cytol. 2005. V. 247. P. 165–221.; Kubis S.E., Schmidt, T., Heslop-Harrison J.S. Repetitive DNA elements as a major component of plant genomes // Ann. Bot. 1998. V. 82. Р. P. 45–55.; Kumar A., Bennetzen J. Plant retrotransposons // Annu. Rev. Genet. 1999. V. 33. P. 479–532.; Laurie D.A., Bennett M.D. Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecifi c and intraspecific variation // Heredity. 1985. V. 55. P. 307–313.; Leitch I.J., Beaulieu J.M., Cheung K., Hanson L. et al. Punctuated genome size evolution in Liliaceae // J. Evol. Biol. 2007. V. 20. P. 2296–2308.; Linares C., Ferrer E., Fominaya A. Discrimination of the closely related A and D genomes of the hexaploid oat Avena sativa L. // Proc. Natl Acad. Sci. USA. 1998. V. 95. P. 12450–12455.; Lysak M.A., Koch M.A., Beaulieu J.M., Meister A., Leitch I.J. The dynamic ups and downs of genome size evolution in Brassicaceae // Mol. Biol. Evol. 2009. V. 26. P. 85–98.; Ma X.F., Gustafson J.P. Allopolyploidization-accommodated genomic sequence changes in Triticale // Ann. Bot. 2008. V. 101. P. 825–832.; McIntyre C.L., Pereira S., Moran L.B., Appels R. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat // Genome. 1990. V. 33. P. 635–640.; Ming R., Hou S., Feng Y. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.) // Nature. 2008. V. 452. P. 991–996.; Mitra R., Bhatia C.R. Repeated DNA sequences and polyploidy in cereal crops // DNA Systematics. V. II. Plants / Ed. S.K. Dutta. Boca Raton, Florida: CRC Press, 1986. P. 21–43.; Murata M., Heslop-Harrison J.S., Motoyoshi F. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones // Plant J. 1997. V. 12. P. 31–37.; Nagaki K., Tsujimoto H., Isono K., Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae // Genome. 1995. V. 38. P. 479–486.; Nagaki K., Tsujimoto H., Sasakuma T.H. Genome specific repetitive sequence, pEt2, of Elimus trachycaulus; in part of Afa family of Triticeae // Genome. 1998. V. 41. P. 134–136.; Navratilova A., Koblizkova A., Macas J. Survey of extrachromosomal circular DNA derived from plant satellite repeats // BMC Plant Biol. 2008. V. 8. P. 90.; Ozkan H., Tuna M., Kilian B., Mori N., Ohta S. Genome size variation in diploid and tetraploid wild wheats // AoB Plants. 2010. doi:10.1093/aobpla/plq015.; Paillard S., Schnurbusch T., Winzeler M., Messmer M. et al. An integrative genetic linkage map of winter wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2003. V. 107. P. 1235–1242.; Paux E., Roger D., Badaeva E., Gay G. et al. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B // Plant J. 2006. V. 48. P. 463–474.; Pestsova E., Ganal M.W., Rцder M.S. Isolation and mapping of microsatellite markers specifi c for the D genome of bread wheat // Genome. 2000a. V. 43. P. 689–697.; Poulter R., Goodwin T. DIRS 1 and the other tyrosine recombinase retrotransposons // Cytogenet. Genome Res. 2005. V. 110. P. 575–588.; Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarosa // Plant Mol. Biol. 1986. V. 4. P. 102–109.; Reeder R.H. Enhancers and ribosomal gene spacers // Cell. 1984. V. 38. P. 349–351.; Rubin E., Lithwick G., Levy A.A. Structure and evolution of the hAT transposon superfamily // Genetics. 2001. V. 158. P. 949–957.; Sabot F., Schulman A.H. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome // Heredity. 2006. V. 97. P. 381–388.; Salina E.A., Adonina I.G., Vatolina T.Yu., Kurata N.A. Comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch. and related species // Genetica. 2004. V. 122. P. 227–237.; Salina E.A., Lim Y.K., Badaeva E.D. et al. Philogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat poliploids // Genome. 2006. V. 49. P. 1023–1035.; Salina E.A., Pestsova E.G., Adonina I.G., Vershinin A.V. Identification of a new family of tandem repeats in Triticeae genomes // Euphytica. 1998. V. 100. P. 231–237.; SanMiguel P., Gaut B.S., Tikhonov A., Nakajima Y., Bennetzen J.L. The paleontology of intergene retrotransposons in maize // Nature Genet. 1998. V. 20. P. 43–45.; SanMiguel P., Tikhonov A., Jin Y.K. et al. Nested retrotransposons in the intergenic regions of the maize genome // Science. 1996. V. 274. P. 765–768.; Schmidt T., Heslop-Harrison J.S. Genomes, genes and junk: the large-scale organization of plant chromosomes // Trends Plant Sci. 1998. V. 3. P. 195–199.; Schranz M.E., Mohammadin S., Edger P.P. Ancient whole genome duplications, novelty and diversifi cation: the WGD Radiation Lag-Time Model // Curr. Opin. Plant Biol. 2012. V. 15. P. 147–153.; Sharma S., Raina S.N. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes // Cytogenet. Genome Res. 2005. V. 109. P. 15–26.; Somers D.J., Isaac P., Edwards K. et al. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2004. V. 109. P. 1105–1114.; Suoniemi A., Tanskanen J., Schulman A.H. Gypsy-like retrotransposons are widespread in the plant kingdom // Plant J. 1998. V. 13. P. 699–705.; Sýkorová E., Lim K.Y., Kunická Z., Chase M.W. et al. Telo mere variability in the monocotyledonous plant; order Asparagales // Proc. Biol. Sci. 2003. V. 270. P. 1893–1904.; Vershinin A.V., Schwarzacher T., Heslop-Harrison J.S. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes // Plant Cell. 1995. V. 7. P. 1823–1833.; Vicient C.M., Kalendar R., Anamthawat-Jonsson K., Schulman A.H. Structure, functionality, and evolution of the BARE 1 retrotransposon of barley // Genetica. 1999. V. 107. P. 53–63.; Vicient C.M., Kalendar R., Schulman A.H. Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants // Genome Res. 2001. V. 11. P. 2041–2049.; Vincentz M., Flavell R. Mapping of ribosomal RNA transcripts in wheat // Plant Cell. 1989. V. 1. P. 579–589.; Vitte C., Bennetzen J.L. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 17638–17643.; Vitte C., Panaud O. LTR retrotransposons and fl owering plant genome size: emergence of the increase/decrease model // Cytogenet. Genome Res. 2005. V. 110. P. 91–107.; Voytas D.F., Cummings M.P., Konieczny A.K. et al. Copia-like retrotransposons are ubiquitous among plant // Proc. Natl Acad. Sci. USA. 1992. V. 89. P. 7124–7128.; Wicker T., Guyot R., Yahiaoui N., Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements // Plant Physiol. 2003. V. 132. P. 52–63.; Wicker T., Sabot F., Hua-Van A., Bennetzen J.L. et al. A unified classification system for eukaryotic transposable elements // Nat. Rev. Genet. 2007. V. 8. P. 973–982.; Xu L., Chen H., Hu X., Zhang R. et al. Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms // Mol. Biol. Evol. 2006. V. 23. P. 1107–1108.; Zhang P., Friebe B., Gill B.S. Variation in the distribution of a genome-specifi c DNA sequences on chromosomes reveals evolutionary relations in the Triticum and Aegilops complex // Plant Syst. Evol. 2002. V. 235. P. 169–179.; Zupunski V., Gubensek F., Kordis D. Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons // Mol. Biol. Evol. 2001. V. 18. P. 1849–1863.; https://vavilov.elpub.ru/jour/article/view/289

  5. 5
  6. 6