Εμφανίζονται 1 - 20 Αποτελέσματα από 487 για την αναζήτηση '"плоскоклеточный рак"', χρόνος αναζήτησης: 0,68δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The article was prepared with the sponsorship of the Petrovax Pharm., Статья подготовлена при спонсорской поддержке НПО «Петровакс Фарм».

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 4 (2024); 51-54 ; Опухоли головы и шеи; Том 14, № 4 (2024); 51-54 ; 2411-4634 ; 2222-1468

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/1024/651; Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer Am J Cancer Res 2020;10(3):727.; Wong K.C., Hui E.P. The role of PD-1 inhibitors in the treatment of nasopharyngeal carcinoma. Cancer Treat Rev 2018;67:88–98. DOI:10.1016/j.oraloncology.2020.104640; Eagle R.A., Trowsdale J. Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 2007;7(9):737–44. DOI:10.1038/nri2144; Xu Y., Liu Y, Ge Y. et al. Drug resistance mechanism and reversal strategy in lung cancer immunotherapy. Front Pharmacol 2023;14:1230824. DOI:10.3389/fphar.2023.1230824; Raulet D.H., Guerra N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 2009;9(8):568–80. DOI:10.1038/nri2604; Lanier L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008;9(5):495–502. DOI:10.1038/ni1581; Groh V., Wu J., Yee C., Spies T. Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419(6908):734–8. DOI:10.1038/nature01112; Lee A.W., Ma B.B., Ng W.T., Chan A.T. Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol 2015;33(29):3356–64. DOI:10.1200/JCO.2015.60.9347; https://ogsh.abvpress.ru/jour/article/view/1024

  6. 6
    Academic Journal

    Συνεισφορές: The work was carried out with the support of the Autonomous NonProfit Organization “Moscow Center for Innovative Technologies in Healthcare” (grant agreement 2112–10 / 22)., Работа выполнена при поддержке Автономной некоммерческой организации «Московский центр инновационных технологий в здравоохранении» (грантовое соглашение 2112–10/22).

    Πηγή: Malignant tumours; Том 14, № 4 (2024); 29-36 ; Злокачественные опухоли; Том 14, № 4 (2024); 29-36 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1422/1021; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой 2022. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. − илл. – 239 с.; Posner M.R., Hershock D.M., Blajman C.R., et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 2007;357(17):1705–1715. https://doi.org/10.1056/nejmoa070956; Vermorken J.B., Remenar E., van Herpen C., et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 2007;357(17):1695–1704. https://doi.org/10.1056/nejmoa071028; Adelstein D.J., Li Y., Adams G.L., et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 2003;21(1):92–8. https://doi.org/10.1200/JCO.2003.01.008; Pignon J.P., Le Maitre A., Maillard E., Bourhis J. Meta-Analysis of Chemotherapy in Head and Neck Cancer (MACHNC): An update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009;92(1):4–14. https://doi.org/10.1016/j.radonc.2009.04.014; Okano S., Homma A., Kiyota N., et al. Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck. Jpn J Clin Oncol 2021;51(2):173–179. https://doi.org/10.1093/jjco/hyaa220; Rosenbaum P.R., Rubin D.B., The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70(1):41–55. https://doi.org/10.1093/biomet/70.1.41; National Comprehensive Cancer Network (NCCN). Head and Neck Cancer, Version 4.2024. NCCN Clinical Practice Guidelines in Oncology. https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf; Gregoire V., Lefebvre J.L., Licitra L., Felip E. Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010;21(5):v184–6. https://doi.org/10.1093/annonc/mdq185; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В. и соавт. Опухоли головы и шеи. Злокачественные опухоли. 2023;13(3s2–1):100–119.; Mehanna H., Robinson M., Hartley A., et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019;393(10166):51–60. https://doi.org/10.1016/S0140-6736(18)32752-1; Schüttrumpf L., Marschner S., Scheu K., et al. Definitive chemoradiotherapy in patients with squamous cell cancers of the head and neck - results from an unselected cohort of the clinical cooperation group “Personalized Radiotherapy in Head and Neck Cancer”. Radiat Oncol 2020;15(1):7. https://doi.org/10.1186/s13014-019-1452-4; Haddad R., O’Neill A., Rabinowits G., et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol. 2013;14(3):257–64. https://doi.org/10.1016/S1470-2045(13)70011-1; Zanoni D.K., Patel S.G., Shah J.P. Changes in the 8th Edition of the American Joint Committee on Cancer (AJCC) Staging of Head and Neck Cancer: Rationale and Implications. Curr Oncol Rep 2019;21(6):52. https://doi.org/10.1007/s11912-019-0799-x; Lazarev S., Gupta V., Ghiassi-Nejad Z., et al. Premature discontinuation of curative radiation therapy: Insights from head and neck irradiation. Adv Radiat Oncol 2017 Oct 23;3(1):62–69. https://doi.org/10.1016/j.adro.2017.10.006; Rocha P.H.P., Reali R.M., Decnop M., et al. Adverse radiation therapy effects in the treatment of head and neck tumors. Radiographics 2022;42(3):806–821. https://doi.org/10.1148/rg.210150; Lorch J.H., Goloubeva O., Haddad R.I., et al. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol 2011;12(2):153–9. https://doi.org/10.1016/S1470-2045(10)70279-5; Adelstein D.J., Moon J., Hanna E., et al. Docetaxel, cisplatin, and fluorouracil induction chemotherapy followed by accelerated fractionation/concomitant boost radiation and concurrent cisplatin in patients with advanced squamous cell head and neck cancer: a Southwest Oncology Group phase II trial (S0216). Head Neck 2010;32(2):221–228. https://doi.org/10.1002/hed.21179; Chitapanarux I., Lorvidhaya V., Kamnerdsupaphon P., et al. Systemic therapy/RT comparing cisplatin versus carboplatin in locally advanced nasopharyngeal cancer: randomised, non-inferiority, open trial. Eur J Cancer 2007;43(9):1399–1406. https://doi.org/10.1016/j.ejca.2007.03.022; Noronha V., Joshi A., Patil V.M., et al. Once-a-week versus once-every-3-weeks cisplatin systemic therapy/RT for locally advanced head and neck cancer: a phase III randomized noninferiority trial. J Clin Oncol 2018:36(11):1064–1072. https://doi.org/10.1200/JCO.2017.74.9457.; https://www.malignanttumors.org/jour/article/view/1422

  7. 7
  8. 8
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 1 (2024); 39-48 ; Опухоли головы и шеи; Том 14, № 1 (2024); 39-48 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2024-14-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/967/618; De Sanjose S., Quint W.G., Alemany L. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 2010;11(11):1048—56. DOI:10.1016/S1470-2045(10)70230-8; Chaturvedi A.K., Engels E.A., Pfeiffer R.M. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29(32):4294-301. DOI:10.1200/JCO.2011.36.4596; Nasman A., Attner P., Hammarstedt L. et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 2009;125(2):362-6. DOI:10.1002/ijc.24339; Gillison M.L., Broutian T., Pickard R.K. et al. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA 2012;307(7):693-703. DOI:10.1001/jama.2012.101; Mehanna H., Beech T., Nicholson T. et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer - systematic review and meta-analysis of trends by time and region. Head Neck 2013;35(5):747-55. DOI:10.1002/hed.22015; Marklund L., Holzhauser S., de Flon C. et al. Survival of patients with oropharyngeal squamous cell carcinomas (OPSCC) in relation to TNM 8 - risk of incorrect downstaging of HPV-mediated non- tonsillar, non-base of tongue carcinomas. Eur J Cancer 2020;139:192-200. DOI:10.1016/j.ejca.2020.08.003; Gillison M.L., Koch W.M., Capone R.B. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92(9):709-20. DOI:10.1093/jnci/92.9.709; Amin M., Edge S., Greene F. et al. AJCC Cancer Staging Manual, 8th edn. New York: Springer, 2017.; Masterson L., Moualed D., Liu Z.W. et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. Eur J Cancer 2014;50(15):2636-48. DOI:10.1016/j.ejca.2014.07.001; Economopoulou P., Kotsantis I., Psyrri A. Special issue about head and neck cancers: HPV positive cancers. Int J Mol Sci 2020;21(9):3388. DOI:10.3390/ijms21093388; Gillison M.L., Trotti A.M., Harris J. et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019;393(10166):40-50. DOI:10.1016/s0140-6736(18)32779-x; Liu C., Mann D., Sinha U.K., Kokot N.C. The molecular mechanisms of increased radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an extensive review. J Otolaryngol Head Neck Surg 2018;47(1):59. DOI:10.1186/s40463-018-0302-y; Ang K.K., Harris J., Wheeler R. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363(1):24-35. DOI:10.1056/NEJMoa0912217; Posner M.R., Lorch J.H., Goloubeva O. et al. Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial. Ann Oncol 2011;22(5):1071-7. DOI:10.1093/annonc/mdr006; Roselló À., Albuquerque R., Roselló-Llabrés X. et al. Transoral robotic surgery vs open surgery in head and neck cancer. A systematic review of the literature. Med Oral Patol Oral Cir Bucal 2020;25(5):e599-607. DOI:10.4317/medoral.23632; Economopoulou P., De Bree R., Kotsantis I., Psyrri A. Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front Oncol 2019;9:827. DOI:10.3389/fonc.2019.00827; Bossi P., Miceli R., Benasso M. et al. Impact of treatment expertise on the outcome of patients with head and neck cancer treated within 6 randomized trials. Head Neck 2018;40(12):2648-56. DOI:10.1002/hed.25389; Szturz P., Wouters K., Kiyota N. et al. Weekly low-dose versus three-weekly high-dose cisplatin for concurrent chemoradiation in locoregionally advanced non-nasopharyngeal head and neck cancer: a systematic review and meta-analysis of aggregate data. Oncologist 2017;22(9):1056-66. DOI:10.1634/theoncologist.2017-0015; Vermorken J.B., Mesia R., Rivera F. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008;359(11):1116-27. DOI:10.1056/NEJMoa0802656; Mehanna H., Robinson M., Hartley A. et al. On behalf of the de-escalate HPV trial group. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus - positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019;393(10166):51-60. DOI:10.1016/S0140-6736(18)32752-1; Gleber-Netto F.O., Rao X., Guo T. et al. Variations in HPV function are associated with survival in squamous cell carcinoma. JCI Insight 2019;4(1):e124762. DOI:10.1172/jci.insight.124762; Brennan S., Baird A.M., O'Regan E., Sheils O. The role of human papilloma virus in dictating outcomes in head and neck squamous cell carcinoma. Front Mol Biosci 2021;8:677900. DOI:10.3389/fmolb.2021.677900; Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517(7536):576-82. DOI:10.1038/nature14129; Reder H., Wagner S., Gamerdinger U. et al. Genetic alterations in human papillomavirus-associated oropharyngeal squamous cell carcinoma of patients with treatment failure. Oral Oncol 2019;93:59-65. DOI:10.1016/j.oraloncology.2019.04.013; Harbison R.A., Kubik M., Konnick E.Q. et al. The mutational landscape of recurrent versus nonrecurrent human papillomavirus- related oropharyngeal cancer. JCI Insight 2018;3(14):e99327. DOI:10.1172/jci.insight.99327; Isaacsson Velho P.H., Castro G., Chung C.H. Targeting the PI3K pathway in head and neck squamous cell carcinoma. Am Soc Clin Oncol Educ Book 2015:123-8. DOI:10.14694/EdBook_AM.2015.35.123; Lechien J.R., Seminerio I., Descamps G. et al. Impact of HPV infection on the immune system in oropharyngeal and non- oropharyngeal squamous cell carcinoma: a systematic review. Cells 2019;8(9):1061. DOI:10.3390/cells8091061; Turksma A.W., Bontkes H.J., van den Heuvel H. et al. Effector memory T-cell frequencies in relation to tumour stage, location and HPV status in HNSCC patients. Oral Dis 2013;19(6):577-84. DOI:10.1111/odi.12037; Kareer R., Ahuja S., Chaudhary N., Arora R. Association of PD-L1 and p16 expression with clinicopathological parameters in oral cavity and oropharyngeal squamous cell carcinoma. Pathol Res Pract 2023;241:154266. DOI:10.1016/j.prp.2022.154266; Machiels J.P., Rene Leemans C., Golusinski W. et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020;31(11):1462-75. DOI:10.1016/j.annonc.2020.07.011; Mandal R., §enbabaoglu Y., Desrichard A. et al. The Head and Neck Cancer Immune Landscape and its Immunotherapeutic Implications. JCI Insight 2016;1(17):e89829. DOI:10.1172/jci.insight.89829; Wang Y., Xu Y., Hua Q. et al. Novel prognostic model based on im-mune signature for head and neck squamous cell carcinoma. BioMed Res Int 2020;2020:4725314. DOI:10.1155/2020/4725314; Zhang F., Liu Y., Yang Y., Yang K. Development and Validation of a fourteen-innate immunity-related gene pairs signature for predicting prognosis head and neck squamous cell carcinoma. BMC Cancer 2020;20(1):1015. DOI:10.1186/s12885-020-07489-7; Varilla V., Atienza J., Dasanu C.A. Immune alterations and immunotherapy prospects in head and neck cancer. Expert Opin Biol Ther 2013;13(9):1241-56. DOI:10.1517/14712598.2013.810716; Wang H., Zhao Q., Zhang Y. et al. Immunotherapy advances in locally advanced and recurrent/metastatic head and neck squamous cell carcinoma and its relationship with human papillomavirus. Front Immunol 2021;12:652054. DOI:10.3389/fimmu.2021.652054; Clancy K., Hamill C.S., O'Neill W.Q. et al. Impact of p16 status and anatomical site in anti-PD-1 immunotherapy-treated recurrent/ metastatic head and neck squamous cell carcinoma patients. Cancers (Basel) 2021;13(19):4861. DOI:10.3390/cancers13194861; Kanaan H., Kourie H.R., Awada A.H. Are virus-induced cancers more sensitive to checkpoint inhibitors? Future Oncol 2016;12(23):2665-8. DOI:10.2217/fon-2016-028; Näsman A., Romanitan M., Nordfors C. et al. Tumor infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS One 2012;7(6):e38711. DOI:10.1371/journal.pone.0038711; Green V.L., Michno A., Stafford N.D., Greenman J. Increased prevalence of tumour infiltrating immune cells in oropharyngeal tumours in comparison to other subsites: relationship to peripheral immunity. Cancer Immunol Immunother 2013;62(5):863-73. DOI:10.1007/s00262-013-1395-9; Matlung S.E., Wilhelmina van Kempen P.M., Bovenschen N. et al. Differences in T-cell infiltrates and survival between HPV+ and HPV- oropharyngeal squamous cell carcinoma. Future Sci OA 2016;2(1):Fso88. DOI:10.4155/fso.15.88; Welters M.J.P., Ma W., Santegoets S. et al. Intratumoral HPV16- specific T cells constitute a type i-oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin Cancer Res 2018;24(3):634-47. DOI:10.1158/1078-0432.CCR-17-2140; Heusinkveld M., Goedemans R., Briet R.J. et al. Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. Int J Cancer 2012;131(2):E74-85. DOI:10.1002/ijc.26497; Wood O., Woo J., Seumois G. et al. Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when compared to HPV independent tumors. Oncotarget 2016;7(35):56781-97. DOI:10.18632/oncotarget.10788; Schoenfeld J.D., Gjini E., Rodig S.J. et al. Evaluating the PD-1 axis and immune effector cell infiltration in oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2018;102(1):137-45. DOI:10.1016/j.ijrobp.2018.05.002; Oliveira-Costa J.P., de Carvalho A.F., da Silveira G.G. et al. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells. Oncotarget 2015;6(25):20902-20. DOI:10.18632/oncotarget.3939; Lyford-Pike S., Peng S., Young G.D. et al. Evidence for a Role of the PD-1:PD-L1 pathway in immune resistance of HPV- associated head and neck squamous cell carcinoma. Cancer Res 2013;73(6):1733-41. DOI:10.1158/0008-5472.CAN-12-2384; Green S.E., McCusker M.G., Mehra R. Emerging immune checkpoint inhibitors for the treatment of head and neck cancers. Expert Opin Emerg Drugs 2020;25(4):501-14. DOI:10.1080/14728214.2020.1852215; Sunshine J., Taube J.M. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 2015;23:32-8. DOI:10.1016/j.coph.2015.05.011; Ferris R.L., Blumenschein G., Fayette J. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375(19):1856-67. DOI:10.1056/NEJMoa1602252; Gulley J.L., Repasky E.A., Wood L.S., Butterfield L.H. Highlights of the 31st Annual Meeting of the Society for Immunotherapy of Cancer (Sitc), 2016. J Immunother Cancer 2017;5(1):55. DOI:10.1186/s40425-017-0262-1; Adusumilli P.S., Cha E., Cornfeld M. et al. New cancer immunotherapy agents in development: a report from an associated program of the 31st annual meeting of the Society for Immunotherapy of Cancer, 2016. J Immunother Cancer 2017;5:50. DOI:10.1186/s40425-017-0253-2; Massarelli E., William W., Johnson F. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 2019;5(1):67-73. DOI:10.1001/jamaoncol.2018.4051; Seiwert T.Y., Burtness B., Mehra R. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17(7):956-65. DOI:10.1016/S1470-2045(16)30066-3; Cohen E.E.W., Soulieres D., Le Tourneau C. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 2019;393(10167):156-67. DOI:10.1016/S0140-6736(18)31999-8; Soulieres D., Harrington K.J., Le Tourneau C. et al. Pembrolizumab (pembro) vs standard-of-care (SOC) in previously treated recurrent/ metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): 6-year follow-up of KEYNOTE-040. Ann Oncol 2022;33(Suppl_7):S295-322. DOI:10.1016/annonc/annonc1056; Burtness B., Harrington K.J., Greil R. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019;394(10212):1915-28. DOI:10.1016/s0140-6736(19)32591-7; Harrington K.J., Burtness B., Greil R. et al. Pembrolizumab with or without chemotherapy in recurrent or metastatic head and neck squamous cell carcinoma: updated results of the phase III KEYNOTE-048 study. JCO 2023;41(4):790-802. DOI:10.1200/JCO.21.02508.; Colevas A.D., Bahleda R., Braiteh F. et al. Safety and clinical activity of atezolizumab in head and neck cancer: results from a phase I trial. Ann Oncol. 2018;29(11):2247—53. DOI:10.1093/annonc/mdy411; Prendergast G.C., Malachowski W.J., Mondal A. et al. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol 2018;336:175-203. DOI:10.1016/bs.ircmb.2017.07.004; Godin-Ethier J., Hanafi L.A., Piccirillo C.A., Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 2011;17(22): 6985-91. DOI:10.1158/1078-0432.CCR-11-1331; Nayak-Kapoor A., Hao Z., Sadek R. et al. Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J Immunother Cancer 2018;6(1):61. DOI:10.1186/s40425-018-0351-9; Mitchell T.C., Hamid O., Smith D.C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase i/ii trial (ECHO-202/ KEYNOTE-037). J Clin Oncol 2018;36(32):3223-30. DOI:10.1200/JCO.2018.78.9602; Outh-Gauer S., Alt M., Le Tourneau C. et al. Immunotherapy in head and neck cancers: a new challenge for immunologists, pathologists and clinicians. Cancer Treat Rev 2018;65:54-64. DOI:10.1016/j.ctrv.2018.02.008; Yearley J., Gibson C., Yu N. et al. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 2017;23:(12):3158-67. DOI:10.1158/1078-0432.CCR-16-1761; Stanley M. HPV-immune response to infection and vaccination. Infect Agent Cancer 2010;5:19. DOI:10.1186/1750-9378-5-19; Whiteside T.L. Immune responses to cancer: are they potential biomarkers of prognosis? Front Oncol 2013;3:107. DOI:10.3389/fonc.2013.00107; Nguyen N., Bellile E., Thomas D. et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck 2016;38(7):1074-84. DOI:10.1002/hed.24406; Chow L.Q.M., Haddad R., Gupta S. et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol 2016;34(32):3838-45. DOI:10.1200/jco.2016.68.1478; Bauml J., Seiwert T.Y., Pfister D.G. et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol 2017;35(14):1542-9. DOI:10.1200/JCO.2016.70.1524; Pfister D.G., Haddad R.I., Worden F.P. et al. Biomarkers predictive of response to pembrolizumab in head and neck cancer. Cancer Med 2023;12(6):6603-14. DOI:10.1002/cam4.5434; Kumar B., Cordell K.G., Leeet J.S. al. EGFR, p16, HPV titer, Bcl-xL and p53, sex, and Smoking as indicators of response to therapy and survival in oropharyngeal cancer. JCO 2008;26(19):3128-37. DOI:10.1200/JCO.2007.12.7662; Sato F., Ono T., Kawahara A. et al. Prognostic impact of p16 and PD-L1 expression in patients with oropharyngeal squamous cell carcinoma receiving a definitive treatment. J Clin Pathol 2019;72(8):542-9. DOI:10.1136/jclinpath-2019-205818; Galvis M.M., Borges G.A., Oliveira T.B. et al. Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020;150:102966. DOI:10.1016/j.critrevonc.2020.102966; https://ogsh.abvpress.ru/jour/article/view/967

  9. 9
    Academic Journal

    Συνεισφορές: The research was carried out at the expense of a grant from the Russian Science Foundation (grant No. 24-15-00356, https://rscf.ru/project/24-15-00356)., Исследование выполнено за счет гранта Российского научного фонда (грант № 24-15-00356, https://rscf.ru/project/24-15-00356).

    Πηγή: Advances in Molecular Oncology; Vol 11, No 4 (2024); 93-101 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 93-101 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  10. 10
    Academic Journal

    Συνεισφορές: First Pavlov State Medical University of Saint Petersburg, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова

    Πηγή: Vestnik dermatologii i venerologii; Vol 100, No 1 (2024); 85-92 ; Вестник дерматологии и венерологии; Vol 100, No 1 (2024); 85-92 ; 2313-6294 ; 0042-4609 ; 10.25208/vdv.1001

    Περιγραφή αρχείου: application/pdf

  11. 11
    Academic Journal

    Συνεισφορές: This work was financially supported by the Russian Science Foundation (grant No. 18-14-00022R).

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 204-214 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 204-214 ; 2500-3259 ; 10.18699/vjgb-24-15

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4091/1828; Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., AlGhalith G.A., Alexander H., … Willis A.D., Xu Z.Z., Zaneveld J.R., Zhang Y., Zhu Q., Knight R., Caporaso J.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37(8):852-857. DOI 10.1038/s41587-019-0209-9; Cameron S.J.S., Lewis K.E., Huws S.A., Hegarty M.J., Lewis P.D., Pachebat J.A., Mur L.A.J. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One. 2017;12(5):e0177062. DOI 10.1371/journal.pone.0177062; Chen Y., Wu F.H., Wu P.Q., Xing H.Y., Ma T. The role of the tumor microbiome in tumor development and its treatment. Front. Immunol. 2022;13:935846. DOI 10.3389/fimmu.2022.935846; Cheng C., Wang Z., Wang J., Ding C., Sun C., Liu P., Xu X., Liu Y., Chen B., Gu B. Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Transl. Lung. Cancer Res. 2020;9(3):693-704. DOI 10.21037/tlcr-19-590; Cheng T.Y., Cramb S.M., Baade P.D., Youlden D.R., Nwogu C., Reid M.E. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J. Thorac. Oncol. 2016; 11(10):1653-1671. DOI 10.1016/j.jtho.2016.05.021; Chiu C.Y., Miller S.A. Clinical metagenomics. Nat. Rev. Genet. 2019; 20(6):341-355. DOI 10.1038/s41576-019-0113-7; Costello E.K., Stagaman K., Dethlefsen L., Bohannan B.J., Relman D.A. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):12551262. DOI 10.1126/science.1224203; Druzhinin V.G., Matskova L.V., Demenkov P.S., Baranova E.D., Volobaev V.P., Minina V.I., Apalko S.V., Churina M.A., Romanyuk S.A., Shcherbak S.G., Ivanov V.I., Larionov A.V. Taxonomic diversity of sputum microbiome in lung cancer patients and its relationship with chromosomal aberrations in blood lymphocytes. Sci. Rep. 2020; 10(1):9681. DOI 10.1038/s41598-020-66654-x; Druzhinin V.G., Matskova L.V., Demenkov P.S., Baranova E.D., Volobaev V.P., Minina V.I., Larionov A.V., Titov V.A., Fucic A. Genetic damage in lymphocytes of lung cancer patients is correlated to the composition of the respiratory tract microbiome. Mutagenesis. 2021;36(2):143-153. DOI 10.1093/mutage/geab004; Goldstraw P. New staging system: How does it affect our practice? J. Clin. Oncol. 2013;31(8):984-991. DOI 10.1200/JCO.2012.42.7922; Gomes S., Cavadas B., Ferreira J.C., Marques P.I., Monteiro C., Sucena M., Sousa C., Vaz Rodrigues L., Teixeira G., Pinto P., Tavares de Abreu T., Bárbara C., Semedo J., Mota L., Carvalho A.S., Matthiesen R., Pereira L., Seixas S. Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci. Rep. 2019;9(1):12838. DOI 10.1038/s41598-019-49195-w; Haldar K., George L., Wang Z., Mistry V., Ramsheh M.Y., Free R.C., John C., Reeve N.F., Miller B.E., Tal-Singer R., Webb A.J., Brookes A.J., Tobin M.D., Singh D., Donaldson G.C., Wedzicha J.A., Brown J.R., Barer M.R., Brightling C.E. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir. Res. 2020;21(1):183. DOI 10.1186/s12931020-01448-3; Hasegawa A., Sato T., Hoshikawa Y., Ishida N., Tanda N., Kawamura Y., Kondo T., Takahashi N. Detection and identification of oral anaerobes in intraoperative bronchial fluids of patients with pulmonary carcinoma. Microbiol. Immunol. 2014;58(7):375-381. DOI 10.1111/1348-0421.12157; Herbst R.S., Heymach J.V., Lippman S.M. Lung cancer. N. Engl. J. Med. 2008;359(13):1367-1380. DOI 10.1056/NEJMra0802714; Hosgood H.D. 3rd, Sapkota A.R., Rothman N., Rohan T., Hu W., Xu J., Vermeulen R., He X., White J.R., Wu G., Wei F., Mongodin E.F., Lan Q. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ. Mol. Mutagen. 2014;55(8):643-651. DOI 10.1002/em.21878; Hosgood H.D. 3rd, Mongodin E.F., Wan Y., Hua X., Rothman N., Hu W., Vermeulen R., Seow W.J., Rohan T., Xu J., Li J., He J., Huang Y., Yang K., Wu G., Wei F., Shi J., Sapkota A.R., Lan Q. The respiratory tract microbiome and its relationship to lung cancer and environmental exposures found in rural China. Environ. Mol. Mutagen. 2019;60(7):617-623. DOI 10.1002/em.22291; Huang C., Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J. Transl. Med. 2019;17(1):225. DOI 10.1186/s12967-019-1971-7; Huang D., Su X., Yuan M., Zhang S., He J., Deng Q., Qiu W., Dong H., Cai S. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am. J. Cancer Res. 2019;9(9): 2047-2063; Kim O.H., Choi B.Y., Kim D.K., Kim N.H., Rho J.K., Sul W.J., Lee S.W. The microbiome of lung cancer tissue and its association with pathological and clinical parameters. Am. J. Cancer. Res. 2022;12(5):2350-2362; Kovaleva O., Podlesnaya P., Rashidova M., Samoilova D., Petrenko A., Zborovskaya I., Mochalnikova V., Kataev V., Khlopko Y., Plot nikov A., Gratchev A. Lung microbiome differentially impacts survival of patients with non-small cell lung cancer depending on tumor stroma phenotype. Biomedicines. 2020;8(9):349. DOI 10.3390/biomedicines8090349; Lee S.H., Sung J.Y., Yong D., Chun J., Kim S.Y., Song J.H., Chung K.S., Kim E.Y., Jung J.Y., Kang Y.A., Kim Y.S., Kim S.K., Chang J., Park M.S. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer. 2016;102:89-95. DOI 10.1016/j.lungcan.2016.10.016; Leng Q., Holden V.K., Deepak J., Todd N.W., Jiang F. Microbiota biomarkers for lung cancer. Diagnostics (Basel). 2021;11(3):407. DOI 10.3390/diagnostics11030407; Liu H.X., Tao L.L., Zhang J., Zhu Y.G., Zheng Y., Liu D., Zhou M., Ke H., Shi M.M., Qu J.M. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer. 2018;142(4):769-778. DOI 10.1002/ijc.31098; Liu N.N., Ma Q., Ge Y., Yi C.X., Wei L.Q., Tan J.C., Chu Q., Li J.Q., Zhang P., Wang H. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis. Oncol. 2020;4(1):33. DOI 10.1038/s41698-020-00138-z; Lozupone C., Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005; 71(12):8228-8235. DOI 10.1128/AEM.71.12.8228-8235.2005; Maddi A., Sabharwal A., Violante T., Manuballa S., Genco R., Patnaik S., Yendamuri S. The microbiome and lung cancer. J. Thorac. Dis. 2019;11(1):280-291. DOI 10.21037/jtd.2018.12.88; Mao Q., Jiang F., Yin R., Wang J., Xia W., Dong G., Ma W., Yang Y., Xu L., Hu J. Interplay between the lung microbiome and lung cancer. Cancer Lett. 2018;415:40-48. DOI 10.1016/j.canlet.2017.11.036; Molina J.R., Yang P., Cassivi S.D., Schild S.E., Adjei A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008;83(5):584-94. DOI 10.4065/83.5.584; Parte A.C., Sardà Carbasse J., Meier-Kolthoff J.P., Reimer L.C., Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020; 70(11):5607-5612. DOI 10.1099/ijsem.0.004332; Peters B.A., Hayes R.B., Goparaju C., Reid C., Pass H.I., Ahn J. The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiol. Biomark. Prev. 2019;28(4):731-740. DOI 10.1158/1055-9965.EPI-18-0966; Ran Z., Liu J., Wang F., Xin C., Shen X., Zeng S., Song Z., Xiong B. Analysis of pulmonary microbial diversity in patients with advanced lung cancer based on high-throughput sequencing technology. Zhongguo Fei Ai Za Zhi. 2020;23(12):1031-1038. DOI 10.3779/j.issn.1009-3419.2020.103.16 (in Chinese); Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. DOI 10.1186/gb-2011-12-6-r60; Shanahan E.R., Shah A., Koloski N., Walker M.M., Talley N.J., Morrison M., Holtmann G.J. Influence of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome. 2018;6(1): 150. DOI 10.1186/s40168-018-0531-3; Tsao M.S., Yoon J.Y. The eighth TNM classification for lung cancer – What is next? Lung Cancer. 2018;121:97-98. DOI 10.1016/j.lungcan.2018.04.018; Tsay J.J., Wu B.G., Badri M.H., Clemente J.C., Shen N., Meyn P., Li Y., Yie T.A., Lhakhang T., Olsen E., Murthy V., Michaud G., Sulaiman I., Tsirigos A., Heguy A., Pass H., Weiden M.D., Rom W.N., Sterman D.H., Bonneau R., Blaser M.J., Segal L.N. Airway mcrobiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit. Care. Med. 2018;198:1188-1198. DOI 10.1164/rccm.201710-2118OC; Wang K., Huang Y., Zhang Z., Liao J., Ding Y., Fang X., Liu L., Luo J., Kong J. A preliminary study of microbiota diversity in saliva and bronchoalveolar lavage fluid from patients with primary bronchogenic carcinoma. Med. Sci. Monit. 2019;25:2819-2834. DOI 10.12659/MSM.915332; Wu Y., Jiao N., Zhu R., Zhang Y., Wu D., Wang A.J., Fang S., Tao L., Li Y., Cheng S., He X., Lan P., Tian C., Liu N.N., Zhu L. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021;12(1):3063. DOI 10.1038/s41467-021-23265-y; Xavier J.B., Young V.B., Skufca J., Ginty F., Testerman T., Pearson A.T., Macklin P., … Johnson W.E., Jobin C., Ridlon J.M., Koh A.Y., Yu M., Kelly L., Wargo J.A. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192-204. DOI 10.1016/j.trecan.2020.01.004; Yagi K., Huffnagle G.B., Lukacs N.W., Asai N. The lung microbiome during health and disease. Int. J. Mol. Sci. 2021;22(19):10872. DOI 10.3390/ijms221910872; Yan X., Yang M., Liu J., Gao R., Hu J., Li J., Zhang L., Shi Y., Guo H., Cheng J., Razi M., Pang S., Yu X., Hu S. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 2015;5(10):3111-3122; Ying K.L., Brasky T.M., Freudenheim J.L., McElroy J.P., Nickerson Q.A., Song M.A., Weng D.Y., Wewers M.D., Whiteman N.B., Mathe E.A., Shields P.G. Saliva and lung microbiome associations with electronic cigarette use and smoking. Cancer Prev. Res. ( Phila). 2022;15(7):435-446. DOI 10.1158/1940-6207.CAPR-21-0601; Zhang W., Luo J., Dong X., Zhao S., Hao Y., Peng C., Shi H., Zhou Y., Shan L., Sun Q., Li Y., Zhao X. Salivary microbial dysbiosis is associated with systemic inflammatory markers and predicted oral metabolites in non-small cell lung cancer patients. J. Cancer. 2019; 10(7):1651-1662. DOI 10.7150/jca.28077; Zheng L., Sun R., Zhu Y., Li Z., She X., Jian X., Yu F., Deng X., Sai B., Wang L., Zhou W., Wu M., Li G., Tang J., Jia W., Xiang J. Lung microbiome alterations in NSCLC patients. Sci. Rep. 2021;11(1): 11736. DOI 10.1038/s41598-021-91195-2; Zhuo M., An T., Zhang C., Wang Z. Characterization of microbiota in cancerous lung and the contralateral non-cancerous lung within lung cancer patients. Front. Oncol. 2020;10:1584. DOI 10.3389/fonc.2020.01584; https://vavilov.elpub.ru/jour/article/view/4091

  12. 12
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 22, № 6 (2023); 130-137 ; Сибирский онкологический журнал; Том 22, № 6 (2023); 130-137 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-0-31-36

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2843/1188; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В., Новик А.В., Романов И.С. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Злокачественные опухоли. 2022; 12(3s2-1): 94–112. [Bolotina L.V., Vladimirova L.Yu., Den’gina N.V., Novik A.V., Romanov I.S. Guidlines for treatment of head and neck malignant tumours. Malignant tumours. 2022; 12(3s2-1): 94–112. (in Russian)]. doi:10.18027/2224-5057-2022-12-3s2-94-112.; Guo K., Xiao W., Chen X., Zhao Z., Lin Y., Chen G. Epidemiological Trends of Head and Neck Cancer: A Population-Based Study. Biomed Res Int. 2021. doi:10.1155/2021/1738932. Erratum in: Biomed Res Int.; Tumban E. A Current Update on Human PapillomavirusAssociated Head and Neck Cancers. Viruses. 2019; 11(10): 922. doi:10.3390/v11100922.; Caudell J.J., Gillison M.L., Maghami E., Spencer S., Pfster D.G., Adkins D., Birkeland A.C., Brizel D.M., Busse P.M., Cmelak A.J., Colevas A.D., Eisele D.W., Galloway T., Geiger J.L., Haddad R.I., Hicks W.L., Hitchcock Y.J., Jimeno A., Leizman D., Mell L.K., Mittal B.B., Pinto H.A., Rocco J.W., Rodriguez C.P., Savvides P.S., Schwartz D., Shah J.P., Sher D., St John M., Weber R.S., Weinstein G., Worden F., Yang Bruce J., Yom S.S., Zhen W., Burns J.L., Darlow S.D. NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. J Natl Compr Canc Netw. 2022; 20(3): 224–34. doi:10.6004/jnccn.2022.0016.; Zhang Y., Weinberg R.A. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018; 12(4): 361–73. doi:10.1007/s11684-018-0656-6.; Pastushenko I., Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019; 29(3): 212–26. doi:10.1016/j.tcb.2018.12.001.; Siqueira J.M., Heguedusch D., Rodini C.O., Nunes F.D., Rodrigues M.F.S.D. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. Cancer Drug Resist. 2023; 6(1): 116–37. doi:10.20517/cdr.2022.107.; Pan G., Liu Y., Shang L., Zhou F., Yang S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 2021; 41(3): 199–217. doi:10.1002/cac2.12138.; Scanlon C.S., Van Tubergen E.A., Inglehart R.C., D’Silva N.J. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 2013; 92(2): 114–21. doi:10.1177/0022034512467352.; Pal A., Barrett T.F., Paolini R., Parikh A., Puram S.V. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene. 2021; 40(32): 5049–65. doi:10.1038/s41388-021-01868-5.; Qian X., Nie X., Wollenberg B., Sudhoff H., Kaufmann A.M., Albers A.E. Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells. Adv Exp Med Biol. 2019; 1139: 23–40. doi:10.1007/978-3-030-14366-4_2.; Bornes L., Belthier G., van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med. 2021; 10(11): 2403. doi:10.3390/jcm10112403.; Peinado H., Olmeda D., Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007; 7(6): 415–28. doi:10.1038/nrc2131.; Masui T., Ota I., Yook J.I., Mikami S., Yane K., Yamanaka T., Hosoi H. Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. Int J Oncol. 2014; 44(3): 693–9. doi:10.3892/ijo.2013.2225.; Ota I., Masui T., Kurihara M., Yook J.I., Mikami S., Kimura T., Shimada K., Konishi N., Yane K., Yamanaka T., Kitahara T. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells. Oncol Rep. 2016; 35(1): 261–6. doi:10.3892/or.2015.4348.; Soleymani L., Zarrabi A., Hashemi F., Hashemi F., Zabolian A., Banihashemi S.M., Moghadam S.S., Hushmandi K., Samarghandian S., Ashrafzadeh M., Khan H. Role of ZEB Family Members in Proliferation, Metastasis, and Chemoresistance of Prostate Cancer Cells: Revealing Signaling Networks. Curr Cancer Drug Targets. 2021; 21(9): 749–67. doi:10.2174/1568009621666210601114631.; Yazdani J., Ghavimi M.A., Jabbari Hagh E., Ahmadpour F. The Role of E-Cadherin as a Prognostic Biomarker in Head and Neck Squamous Carcinoma: A Systematic Review and MetaAnalysis. Mol Diagn Ther. 2018; 22(5): 523–35. doi:10.1007/ s40291-018-0351-y.; Kumar V., Panda A., Dash K.C., Bhuyan L., Mahapatra N., Mishra P. Immunohistochemical Expression of the Epithelial to Mesenchymal Transition Proteins E-cadherin and ß-catenin in Grades of Oral Squamous Cell Carcinoma. J Pharm Bioallied Sci. 2021; 13(Suppl 1): 555–60. doi:10.4103/jpbs.JPBS_562_20.; Liu L.K., Jiang X.Y., Zhou X.X., Wang D.M., Song X.L., Jiang H.B. Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol. 2010; 23(2): 213–24. doi:10.1038/modpathol.2009.160.; Ling Z., Cheng B., Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer. 2021; 148(7): 1548–61. doi:10.1002/ijc.33352.; Na T.Y., Schecterson L., Mendonsa A.M., Gumbiner B.M. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A. 2020; 117(11): 5931–7. doi:10.1073/pnas.1918167117.; Goyal N., Singh M., Sagar N., Khurana N., Singh I. Association of E-cadherin & vimentin expression with clinicopathological parameters in lingual squamous cell carcinomas & their role in incomplete epithelial mesenchymal transition. Indian J Med Res. 2021; 153(4): 484–91. doi:10.4103/ijmr.IJMR_1409_18.; Greco A., De Virgilio A., Rizzo M.I., Pandolf F., Rosati D., de Vincentiis M. The prognostic role of E-cadherin and β-catenin overexpression in laryngeal squamous cell carcinoma. Laryngoscope. 2016; 126(4): 148–55. doi:10.1002/lary.25736.; Zhao Z., Ge J., Sun Y., Tian L., Lu J., Liu M., Zhao Y. Is E-cadherin immunoexpression a prognostic factor for head and neck squamous cell carcinoma (HNSCC)? A systematic review and meta-analysis. Oral Oncol. 2012; 48(9): 761–7. doi:10.1016/j.oraloncology.2012.02.024.; Nambiyar K., Ahuja A., Bhardwaj M. A study of epithelial-mesenchymal transition immunohistochemical markers in primary oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 132(6): 680–6. doi:10.1016/j.oooo.2021.05.016.; Ukpo O.C., Thorstad W.L., Zhang Q., Lewis J.S. Lack of association of cadherin expression and histopathologic type, metastasis, or patient outcome in oropharyngeal squamous cell carcinoma: a tissue microarray study. Head Neck Pathol. 2012; 6(1): 38–47. doi:10.1007/s12105-011-0306-7.; Ueda G., Sunakawa H., Nakamori K., Shinya T., Tsuhako W., Tamura Y., Kosugi T., Sato N., Ogi K., Hiratsuka H. Aberrant expression of beta- and gamma-catenin is an independent prognostic marker in oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2006; 35(4): 356–61. doi:10.1016/j.ijom.2005.07.023.; Dumitru C.S., Ceausu A.R., Comsa S., Raica M. Loss of E-Cadherin Expression Correlates With Ki-67 in Head and Neck Squamous Cell Carcinoma. In Vivo. 2022; 36(3): 1150–4. doi:10.21873/invivo.12814.; Stenner M., Yosef B., Huebbers C.U., Preuss S.F., Dienes H.P., Speel E.J., Odenthal M., Klussmann J.P. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression? Histopathology. 2011; 58(7): 1117–26. doi:10.1111/j.1365-2559.2011.03805.x.; Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in diferent species. EMBO J. 1989; 8(6): 1711–7. doi:10.1002/j.1460-2075.1989.tb03563.x.; Huber A.H., Nelson W.J., Weis W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997; 90(5): 871–82. doi:10.1016/s0092-8674(00)80352-9.; Krishnamurthy N., Kurzrock R. Targeting the Wnt/betacatenin pathway in cancer: Update on efectors and inhibitors. Cancer Treat Rev. 2018; 62: 50–60. doi:10.1016/j.ctrv.2017.11.002.; Paluszczak J. The Signifcance of the Dysregulation of Canonical Wnt Signaling in Head and Neck Squamous Cell Carcinomas. Cells. 2020; 9(3): 723. doi:10.3390/cells9030723.; He T.C., Sparks A.B., Rago C., Hermeking H., Zawel L., da Costa L.T., Morin P.J., Vogelstein B., Kinzler K.W. Identifcation of c-MYC as a target of the APC pathway. Science. 1998; 281(5382): 1509–12. doi:10.1126/science.281.5382.1509.; Kartha V.K., Alamoud K.A., Sadykov K., Nguyen B.C., Laroche F., Feng H., Lee J., Pai S.I., Varelas X., Egloff A.M., Snyder-Cappione J.E., Belkina A.C., Bais M.V., Monti S., Kukuruzinska M.A. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Med. 2018; 10(1): 54. doi:10.1186/s13073-018 -0569-7.; Moon J.H., Lee S.H., Lim Y.C. Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin Exp Metastasis. 2021; 38(2): 163–74. doi:10.1007/s10585-021-10081-3.; Matly A., Quinn J.A., McMillan D.C., Park J.H., Edwards J. The relationship between β-catenin and patient survival in colorectal cancer systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021; 163. doi:10.1016/j.critrevonc.2021.103337.; Flach S., Kumbrink J., Walz C., Hess J., Drexler G., Belka C., Canis M., Jung A., Baumeister P. Analysis of genetic variants of frequently mutated genes in human papillomavirusnegative primary head and neck squamous cell carcinoma, resection margins, local recurrences and corresponding circulating cell-free DNA. J Oral Pathol Med. 2022; 51(8): 738–46. doi:10.1111/jop.13338.; Rapado-González Ó., Brea-Iglesias J., Rodríguez-Casanova A., Bao-Caamano A., López-Cedrún J.L., Triana-Martínez G., Díaz-Peña R., Santos M.A., López-López R., Muinelo-Romay L., Martínez-Fernández M., Díaz-Lagares Á., Suárez-Cunqueiro M.M. Somatic mutations in tumor and plasma of locoregional recurrent and/or metastatic head and neck cancer using a next-generation sequencing panel: A preliminary study. Cancer Med. 2023; 12(6): 6615–22. doi:10.1002/cam4.5436.; Devaraja K., Aggarwal S., Verma S.S., Gupta S.C. Clinicopathological peculiarities of human papilloma virus driven head and neck squamous cell carcinoma: A comprehensive update. Life Sci. 2020; 245. doi:10.1016/j.lfs.2020.117383.; Hu Z., Müller S., Qian G., Xu J., Kim S., Chen Z., Jiang N., Wang D., Zhang H., Saba N.F., Shin D.M., Chen Z.G. Human papillomavirus 16 oncoprotein regulates the translocation of β-catenin via the activation of epidermal growth factor receptor. Cancer. 2015; 121(2): 214–25. doi:10.1002/cncr.29039.; Ledinek Ž., Sobočan M., Knez J. The Role of CT-NNB1 in Endometrial Cancer. Dis Markers. 2022. doi:10.1155/2022/1442441.; Xu C., Xu Z., Zhang Y., Evert M., Calvisi D.F., Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022; 132(4). doi:10.1172/JCI154515.; Wang X., Li R., Wu L., Chen Y., Liu S., Zhao H., Wang Y., Wang L., Shao Z. Histone methyltransferase KMT2D cooperates with MEF2A to promote the stem-like properties of oral squamous cell carcinoma. Cell Biosci. 2022; 12(1): 49. doi:10.1186/s13578-022-00785-8.; Friedl P., Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147(5): 992–1009. doi:10.1016/j.cell.2011.11.016.; https://www.siboncoj.ru/jour/article/view/2843

  13. 13
    Academic Journal

    Πηγή: Biomedical Photonics; Том 13, № 4 (2024); 33-39 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/679/476; Rogers H.W., Weinstock M.A., Harris A.R., Hinckley M.R., Feldman S.R., Fleischer A.B., Coldiron B.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006 // Arch Dermatol. – 2010. − Vol. 146(3). – Р. 283-287.; Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2023 году. − Москва: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. − 2024. – С. 262.; Firnhaber J.M. Basal cell and cutaneous squamous cell carcinomas: diagnosis and treatment // American family physician. – 2020. – Vol. 102(6). – Р. 339-346.; Rosen T., Lebwohl M.G. Prevalence and awareness of actinic keratosis: barriers and opportunities // Journal of the American Academy of Dermatology. – 2013. – Vol. 68(1). – Р. S2-S9.; Karia P.S., Han J., Schmults C.D. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012 // Journal of the American Academy of Dermatology. – 2013. – Vol. 68(6). – Р. 957-966.; Игнатова А.В. Актуальные проблемы лечения местно-распространенного и метастатического плоскоклеточного рака кожи // Современная онкология. – 2021. – Т. 23. – №. 1. – С. 94-98.; Nehal K.S., Bichakjian C.K. Update on keratinocyte carcinomas // New England Journal of Medicine. – 2018. – Vol. 379(4). – Р. 363-374.; Dirschka T. et al. Real-world approach to actinic keratosis management: practical treatment algorithm for ofce-based dermatology // Journal of Dermatological Treatment. – 2017. – Vol. 28(5). – Р. 431-442.; Клинические рекомендации РФ 2020 «Плоскоклеточный рак кожи».; Calzavara-Pinton P.G. et al. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma // British Journal of Dermatology. – 2008. – Vol. 159(1). – Р. 137-144.; Keyal U. et al. Present and future perspectives of photodynamic therapy for cutaneous squamous cell carcinoma // Journal of the American Academy of Dermatology. – 2019. – Vol. 80(3). – Р. 765-773.; Filonenko E.V., Okushko S.S. Actinic keratosis (review of literature) // Biomedical Photonics. – 2022. – Vol. 11(1). – P. 37-48. doi:10.24931/2413–9432–2022–11-1-37-48.; Kaprin A.D., Ivanova-Radkevich V.I., Urlova A.N., Asratov A.T., Gushchina Yu., Sh., Libo L., Xiaojun C., Filonenko E.V. Photodynamic therapy opportunities for the treatment of erythroplasia of Queyrat // Biomedical Photonics. – 2020. – Vol. 9(1). – P. 34-41. doi:10.24931/2413–9432–2020–9-1–34–41.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of extramammary Paget disease // Biomedical Photonics. – 2022. – Vol. 11(3). – P. 24-34. doi:10.24931/2413–9432–2022–11-3-24–34.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of patients with mycosis fungoides // Biomedical Photonics. – 2022. – Vol. 11(1). – P. 27-36. doi:10.24931/2413–9432–2022–11-1-27-37.; Филоненко Е. В., Иванова-Радкевич В. И. Фотодинамическая терапия пациентов с болезнью Боуэна // Biomedical Photonics. – 2024. – Т. 12, №. 4. – С. 22-29.; Wong T. H. et al. British Association of Dermatologists and British Photodermatology Group guidelines for topical photodynamic therapy 2018 // British Journal of Dermatology. – 2019. – Vol. 180(4). – Р. 730-739.; Xu M., Kong L., Jamil M. Advancements in skin cancer treatment: focus on photodynamic therapy: a review // American Journal of Cancer Research. – 2024. – Vol. 14(10). – Р. 5011.; Choi S.H., Kim K.H., Song K.H. Efect of methyl aminolevulinate photodynamic therapy with and without ablative fractional laser treatment in patients with microinvasive squamous cell carcinoma: a randomized clinical trial // JAMA dermatology. – 2017. – Vol. 153(3). – Р. 289-295.; Kübler A. C. et al. Treatment of squamous cell carcinoma of the lip using Foscan-mediated photodynamic therapy // International journal of oral and maxillofacial surgery. – 2001. – Vol. 30(6). – Р. 504-509.; Капинус В.Н., Каплан М.А., Спиченкова И.С., Шубина А.М., Ярославцева-Исаева Е.В. Фотодинамическая терапия эпителиальных злокачественных новообразований кожи // Фотодинамическая терапия и фотодиагностика. – 2014. – Т. 3, № 3. – С. 9-14.; Fargnoli M.C. et al. Photodynamic therapy for the treatment of microinvasive squamous cell carcinoma of the lower lip: a case report // Giornale italiano di dermatologia e venereologia: organo ufciale, Societa italiana di dermatologia e siflografa. – 2014. – Vol. 150(3). – Р. 331-335.; Sotiriou E., Apalla Z., Ioannides D. Complete resolution of a squamous cell carcinoma of the skin using intralesional 5‐aminolevulinic acid photodynamic therapy intralesional PDT for SCC // Photodermatology, Photoimmunology & Photomedicine. – 2010. – Vol. 26(5). – Р. 269-271.; Li Q. et al. Clearance of a thick invasive squamous cell carcinoma after multiple treatments with topical photodynamic therapy // Photomedicine and Laser Surgery. – 2010. – Vol. 28(5). – Р. 703-706.; Rossi R. et al. Squamous cell carcinoma of the eyelid treated with photodynamic therapy // Journal of chemotherapy. – 2004. – Vol. 16(3). – Р. 306-309.; Стрункин Д.Н., Жарикова И.П., Кожевников Ю.А., Задонцева Н.С. Фотодинамическая терапия плоскоклеточного рака кожи щеки (клиническое наблюдение) // Biomedical Photonics. – 2017. – Т. 6, № 2. – С. 38-40.; Wang X. et al. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticlemediated photodynamic therapy in a mouse model // International journal of nanomedicine. – 2015. – Р. 347-355.; Shi L. et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles // International Journal of Nanomedicine. – 2013. – Р. 2669-2676.; Mascaraque-Checa M. et al. Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy // Molecular metabolism. – 2022. – Vol. 60. – Р. 101496.; Anand S. et al. Fluorouracil enhances photodynamic therapy of squamous cell carcinoma via a p53-independent mechanism that increases protoporphyrin IX levels and tumor cell death // Molecular cancer therapeutics. – 2017. – Vol. 16(6). – Р. 1092-1101.

  14. 14
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 1 (2024); 16-30 ; Опухоли головы и шеи; Том 14, № 1 (2024); 16-30 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2024-14-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/965/616; Vermorken J.B., Trigo J., Hitt R. et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25(16):2171-7. DOI:10.1200/jco.2006.06.7447; Langer C.J. Targeted therapy in head and neck cancer: state of the art 2007 and review of clinical applications. Cancer 2008;112(12):2635-45. DOI:10.1002/cncr.23521; Guigay J., Auperin A., Fayette J. et al. Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as frst-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2021;22(4):463-75. DOI:10.2139/ssrn.3700967; Mirabile A., Miceli R., Calderone R.G. et al. Prognostic factors in recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 2019;41(6):1895-902. DOI:10.1002/hed.25636; Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor Perspect Biol 2014;6(3):a008912. DOI:10.1101/cshperspect.a008912; Yarden Y., Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12(8):553-63. DOI:10.1038/nrc3309; Zhang X., Gureasko J., Shen K. et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006;125(6):1137-49. DOI:10.1016/j.cell.2006.05.013; Lemmon M.A., Schlessinger J., Ferguson K.M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor Perspect Biol 2014;6(4):a020768. DOI:10.1101/cshperspect.a020768; Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141(7):1117-34. DOI:10.1016/j.cell.2010.06.011; Trivedi S., Concha-Benavente F., Srivastava R.M. et al. Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol;41(5):678-84. DOI:10.1093/annonc/mdu156; Li S., Schmitz K.R., Jeffrey P.D. et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005;7(4):301-11. DOI:10.1016/j.ccr.2005.03.003; Bhat R., Watzl C.J.P. Serial killing of tumor cells by human natural killer cells - enhancement by therapeutic antibodies. PLoS One 2007;2(3):e326. DOI:10.1371/journal.pone.0000326; Srivastava R.M., Lee S.C., Andrade Filho P.A. et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 2013;19(7):1858-72. DOI:10.1158/1078-0432.ccr-12-2426; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012;12(4):253-68. DOI:10.1038/nri3175; Ostrand R.S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol 2010;59(10):1593-600. DOI:10.1007/s00262-010-0855-8; Ochando J.C., Chen S.H. Myeloid-derived suppressor cells in transplantation and cancer. Immunol Res 2012;54(1-3):275-85. DOI:10.1007/s12026-012-8335-1; Gabitass R.F., Annels N.E., Stocken D.D. et al. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol 2011;60(10):1419-30. DOI:10.1007/s00262-011-1028-0; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39-51. DOI:10.1016/j.cell.2010.03.014; Mantovani A., Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010;22(2):231-7. DOI:10.1016/j.coi.2010.01.009; Liu C.Y., Wang Y.M., Wang C.L. et al. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(-)/CD15+/CD33+ myeloid-derived suppressor cells and CD8 + T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010;136(1):35-45. DOI:10.1007/s00432-009-0634-0; Kusmartsev S., Nefedova Y., Yoder D., Gabrilovich D.I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004;172(2):989-99. DOI:10.4049/jimmunol.172.2.989; Cheng P., Corzo C.A., Luetteke N. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 2008;205(10):2235-49. DOI:10.1084/jem.20080132; Brandau S., Trellakis S., Bruderek K. et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 2011;89(2):311-7. DOI:10.1189/jlb.0310162; Gallina G., Dolcetti L., Serafini P. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006;116(10):2777-90. DOI:10.1172/jci28828; Bronte V., Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005;5(8):641-54. DOI:10.1038/nri1668; Vasquez-Dunddel D., Pan F., Zeng Q. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013;123(4):1580-9. DOI:10.1172/jci60083; Guilliams M., Bruhns P., Saeys Y. et al. The function of Ғсү receptors in dendritic cells and macrophages. Nat Rev Immunol 2014;14:94-108. DOI:10.1038/nri3582; Jing L., Srivastava R.V., Ettyreddy A. et al. Cetuximab ameliorates suppressive phenotypes of myeloid antigen presenting cells in head and neck cancer patients. J Immunother Cancer 2015;3:54. DOI:10.1186/s40425-015-0097-6; Стукань А.И., Мурашко Р.А., Цыган Н.А. и др. Адаптивный иммунный ответ в патогенезе и лечении плоскоклеточного рака головы и шеи: влияние факторов иммуносупрессии и гендерных особенностей. Опухоли головы и шеи 2022;12(3):114-26. (In Russ.). DOI:10.17650/2222-1468-2022-12-3-114-126; Кутукова С.И., Беляк Н.П., Раскин Г.А. и др. Системное воспаление и иммунологическое микроокружение в прогнозе течения солидных опухолей. Злокачественные опухоли 2019;9(1):29-37.; Zimmermann M., Zouhair A., Azria D. et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol 2006;1:11. DOI:10.1186/1748-717x-1-11; Ray K., Ujvari B., Ramana V. et al. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer. Cytokine Growth Factor Rev 2018;41:18-27. DOI:10.1016/j.cytogfr.2018.04.002; Grellier N., Deray G., Yousfi A. et al. Carence martiale fonctionnelle, inflammation et fatigue apres radiotherapie Functional iron deficiency, inflammation and fatigue after radiotherapy. Bull Cancer 2015;102(9):780-5. DOI: 10. 1016/j.bulcan.2015.06.001; Bonner J.A., Harari P.M., Giralt J. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354(6):567-78. DOI:10.1056/nejmoa053422; Ang K.K., Zhang Q., Rosenthal D.I. et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 2014;32(27):2940-50. DOI: 1200/jco.2013.53.5633; Maahs L., Ghanem A.I., Gutta R. Cetuximab and anemia prevention in head and neck cancer patients undergoing radiotherapy BMC Cancer 2022;22:626. DOI:10.1186/s12885-022-09708-9; Horsman M.R., Soresen B.S., Busk M. et al. Therapeutic modification of hypoxia. Clini Oncol 2021;33(11):492-509. DOI:10.1016/j.clon.2021.08.014; https://ogsh.abvpress.ru/jour/article/view/965

  15. 15
    Academic Journal

    Συνεισφορές: The work was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 37-47 ; Опухоли головы и шеи; Том 13, № 4 (2023); 37-47 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/935/605; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6): 394–424. DOI:10.3322/caac.21492; Ettinger K.S., Ganry L., Fernandes R.P. Oral cavity cancer. Oral Maxillofac Surg Clin North Am 2019;31(1):13–29.; International Agency for Research on Cancer Global Cancer Observatory Lip, oral cavity Source: Globocan 2020.; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2023. 239 с.; Amit M., Yen T.C., Liao C.T. et al. Clinical nodal stage is a significant predictor of outcome in patients with oral cavity squamous cell carcinoma and pathologically negative neck metastases: results of the international consortium for outcome research. Ann Surg Oncol 2013;20(11):3575–81. DOI:10.1245/s10434-013-3044-0; Peters T.T., Senft A., Hoekstra O.S. et al. Pretreatment screening on distant metastases and head and neck cancer patients: validation of risk factors and influence on survival. Oral Oncol 2015;51(3):267–71. DOI:10.1016/j.oraloncology.2014.12.006; D’Cruz A.K., Vaish R., Kapre N. et al. Elective versus therapeutic neck dissection in node-negative oral cancer. N Engl J Med 2015;373(6):521–9. DOI:10.1056/NEJMoa1506007; Ding Z., Xiao T., Huang J. et al. Elective neck dissection versus observation in squamous cell carcinoma of oral cavity with clinically N0 neck: a systematic review and meta-analysis of prospective studies. J Oral Maxillofac Surg 2019;77(1):184–94. DOI:10.1016/j.joms.2018.08.007; Bradley P.J., Ferlito A., Silver C.E. et al. Neck treatment and shoulder morbidity: still a challenge. Head Neck 2011;33(7):1060–7. DOI:10.1002/hed.21495; Dilber M., Kasapoglu F., Erisen L. et al. The relationship between shoulder pain and damage to the cervical plexus following neck dissection. Eur Arch Otorhinolaryngol 2007;264(11):1333–8. DOI:10.1007/s00405-007-0357-2; Giammarile F., Schilling C., Gnanasegaran G. et al. The EANM practical guidelines for sentinel lymph node localisation in oral cavity squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2019;46(3):623–37. DOI:10.1007/s00259-018-4235-5; de Veij Mestdagh P.D., Schreuder W.H., Vogel W.V. et al. Mapping of sentinel lymph node drainage using SPECT/CT to tailor elective nodal irradiation in head and neck cancer patients (SUSPECT-2): a single-center prospective trial. BMC Cancer 2019;19(1):1110. DOI:10.1186/s12885-019-6331-8; Rouvière H. Anatomie des lymphatiques de l’homme. J Am Med Associat (Rev) 1932;99(20):1716. DOI:10.1001/jama.1932.02740720070042; Chong V. Cervical lymphadenopathy: what radiologists need to know. Cancer Imaging 2004;4(2):116–20. DOI:10.1102/1470-7330.2004.0020; Robbins K.T., Clayman G., Levine P.A. et al. Neck Dissection Classification Update. Arch Otolaryngol Head Neck Surg 2002;128(7):751. DOI:10.1001/archotol.128.7.751; Gould E.A., Winship T., Philbin P.H., Kerr H.H. Observations on a “sentinel node”: in cancer of the parotid. Cancer 1960;13: 77–8. DOI:10.1002/1097-0142(196001/02)13:13.0.co;2-d; Cabanas R.M. An approach for the treatment of penile carcinoma. Cancer 1977;39(2):456–66. DOI:10.1002/1097-0142(197702)39:23.0.co;2-i; Gershenwald J.E., Scolyer R.A., Hess K.R. et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017;67(6):472–92. DOI:10.3322/caac.21409; Lyman G.H., Somerfield M.R., Bosserman L.D. et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2017;35(5):561–4. DOI:10.1200/JCO.2016.71.0947; Manca G., Rubello D., Romanini A. et al. Sentinel lymph node mapping in melanoma: the issue of false-negative findings. Clin Nucl Med 2014;39(7):e346–54. DOI:10.1097/RLU.0000000000000366; Govers T.M., Hannink G., Merkx M.A. et al. Sentinel node biopsy for squamous cell carcinoma of the oral cavity and oropharynx: a diagnostic meta-analysis. Oral Oncol 2013;49(8):726–32. DOI:10.1016/j.oraloncology.2013.04.006; Schilling C., Stoeckli S.J., Haerle S.K. et al. Sentinel European node trial (SENT): 3-year results of sentinel node biopsy in oral cancer. Eur J Cancer 2015;51(18):2777–84. DOI:10.1016/j.ejca.2015.08.023; Yang Y., Zhou J., Wu H. Diagnostic value of sentinel lymph node biopsy for cT1/T2N0 tongue squamous cell carcinoma: a meta-analysis. Eur Arch Otorhinolaryngol 2017;274(11):3843–52. DOI:10.1007/s00405-017-4740-3; Chaturvedi P., Datta S., Arya S. et al. Prospective study of ultra-sound-guided fine-needle aspiration cytology and sentinel node biopsy in the staging of clinically negative T1 and T2 oral cancer. Head Neck 2015;37(10):1504–8. DOI:10.1002/hed.23787; Liu M., Wang S.J., Yang X., Peng H. Diagnostic efficacy of sentinel lymph node biopsy in early oral squamous cell carcinoma: a meta-analysis of 66 studies. PLoS One 2017;12(1):e0170322. DOI:10.1371/journal.pone.0170322; Kim D.H., Kim Y., Kim S.W., Hwang S.H. Usefulness of sentinel lymph node biopsy for Oral cancer: a systematic review and meta-analysis. Laryngoscope 2020;131(2):E459–65. DOI:10.1002/lary.28728; Suárez Ajuria M., Gallas Torreira M., García García A. et al. Efficacy of different sentinel lymph node biopsy protocols in oral squamous cell carcinoma: systematic review and meta-analysis. Head Neck 2022;44(7):1702–14. DOI:10.1002/hed.27042; National Comprehensive Cancer Network. Head and Neck Cancer Clinical Practice Guidelines in Oncology; Updated February 2023.; Vassiliou L.V., Acero J., Gulati A. et al. Management of the clinically N0 neck in early-stage oral squamous cell carcinoma (OSCC). An EACMFS position paper. J Craniomaxillofac Surg 2020;48(8):711–8. DOI:10.1016/j.jcms.2020.06.004; Cramer J.D., Sridharan S., Ferris R.L. et al. Sentinel lymph node biopsy versus elective neck dissection for stage I to II oral cavity cancer. Laryngoscope 2019;129(1):162–9. DOI:10.1002/lary.27323; Hasegawa Y., Tsukahara K., Yoshimoto S. et al. Neck dissections based on sentinel lymph node navigation versus elective neck dissections in early oral cancers: a randomized, multicenter, and noninferi ority trial. J Clin Oncol 2021;39(18):202–36. DOI:10.1200/JCO.20.03637; Abdul-Razak M., Mwagiru D., Veness M. et al. Does sentinel lymph node biopsy accurately stage the clinically negative neck in early oral cavity squamous cell carcinoma? J Oral Maxillofac Surg 2022;80(6):1134–42. DOI:10.1016/j.joms.2022.02.006; Saleem M.I., Peng T., Zhu D. et al. Sentinel Lymph Node Biopsy Versus Elective Node Dissection in Stage cT1-2N0 Oral Cavity Cancer. Laryngoscope 2022;132(5):989–98. DOI:10.1002/lary.29895; Котов М.А., Раджабова З.А., Новиков С.Н. и др. Биопсия сигнального лимфатического узла шеи при плоскоклеточном раке языка cT1–2N0 : проспективное одноцентровое исследование. Опухоли головы и шеи 2020;10(1):84–92. DOI:10.17650/2222-1468-2020-10-1-84-92; Мудунов А.М., Гельфанд И.М., Кропотов М.А. и др. Улучшение диагностики «скрытого» метастазирования при плоско-клеточном раке слизистой оболочки полости рта сТ1–2N0М0. Опухоли головы и шеи 2022;12(1):12–25. DOI:10.17650/2222-1468-2022-12-1-12-25; Nahum A.M., Mullally W., Marmor L. A syndrome resulting from radical neck dissection. Arch Otolaryngol 1961;74(4):424–8. URL: https://pubmed.ncbi.nlm.nih.gov/14477989/; Jang S.S., Davis M.E., Vera D.R. et al. Role of sentinel lymph node biopsy for oral squamous cell carcinoma: current evidence and future challenges. Head Neck 2023;45(1):251–65. DOI:10.1002/hed.27207; https://ogsh.abvpress.ru/jour/article/view/935

  16. 16
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 3 (2024); 41-48 ; Опухоли головы и шеи; Том 14, № 3 (2024); 41-48 ; 2411-4634 ; 2222-1468

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/1003/641; Global Burden of Disease Cancer. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol 2019;5(12):1749–68. DOI:10.1001/jamaoncol.2019.2996; Adjei Boakye E., Buchanan P., Hinyard L. et al. Incidence and risk of second primary malignant neoplasm after a first head and neck squamous cell carcinoma. JAMA Otolaryngolog Head Neck Surg 2018;144(8):727–37. DOI:10.1001/jamaoto.2018.0993; Faisal M., Le N.S., Grasl S. et al. Survival outcome in true carcinoma of unknown primary (tCUP) with p16 + сervical metastasis. Int Arch Otorhinolaryngol 2023(27):e687–93. DOI:10.1055/s-0042-1759575; Conway A.M., Mitchell C., Kilgour E. et al. Molecular characterisation and liquid biomarkers in carcinoma of unknown primary (CUP): taking the “U” out of “CUP.” Br J Cancer 2019;120(2):141–53.; Pavlidis N., Pentheroudakis G. Cancer of unknown primary site. Lancet 2012;379(9824):1428–35. DOI:10.1016/S0140-6736(11)61178-1; Sivars L., Bersani C., Grün N. et al. Human papillomavirus is a favourable prognostic factor in cancer of unknown primary in the head and neck region and in hypopharyngeal cancer. Mol Clin Oncol 2016;5(6):671–4. DOI:10.3892/mco.2016.1050; Rassy E., Nicolai P., Pavlidis N. Comprehensive management of HPV-related squamous cell carcinoma of the head and neck of unknown primary. Head Neck 2109;41(10):3700–11. DOI:10.1002/hed.25858; Müller von der Grün J., Tahtali A., Ghanaati S. et al. Diagnostic and treatment modalities for patients with cervical lymph node metastases of unknown primary site – current status and challenges. Radiat Oncol 2017;12(1):82. DOI:10.1186/s13014-017-0817-9; Burtness B., Harrington K.J., Greil R. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019;394(10212):1915–28. DOI:10.1016/S0140-6736(19)32591-7; Eskander A., Ghanem T., Agrawal A. et al. AHNS series: do you know your guidelines? Guideline recommendations for head and neck cancer of unknown primary site. Head Neck 2018;40(3):614–21. DOI:10.1002/hed.25026; Ren J., Yang W., Su J. et al. Human papillomavirus and p16 immunostaining, prevalence and prognosis of squamous carcinoma of unknown primary in the head and neck region Int J Cancer 2019;145:1465–74.; Kansy B.A., Concha-Benavente F., Srivastava R.M. et al. PD-1 status in CD8(+) T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res 2017;77(22):6353–64. DOI:10.1158/0008-5472.CAN-16-3167; Mandal R., Şenbabaoğlu Y., Desrichard A. et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016;1(17):e89829. DOI:10.1172/jci.insight.89829; Cohen E.E.W., Bell R.B., Bifulco C.B. et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer 2019;7(1):184. DOI:10.1186/s40425-019-0662-5; Binnewies M., Roberts E.W., Kersten K. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018;24(5):541–50. DOI:10.1038/s41591-018-0014-x; Elbehi A.M., Anu R.I., Ekine-Afolabi B., Cash E. Emerging role of immune checkpoint inhibitors and predictive biomarkers in head and neck cancers. Oral Oncol 2020;109:104977. DOI:10.1016/j.oraloncology.2020.104977; Patel J.J., Levy D.A., Nguyen S.A. et al. Impact of PD-L1 expression and human papillomavirus status in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinomaSystematic review and meta-analysis. Head Neck 2020;42(4):774–86. DOI:10.1002/hed.26036; Haratani K., Hayashi H., Takahama T. et al. Clinical and immune profiling for cancer of unknown primary site. J Immunother Cancer 2019;7(1):25. DOI:10.1186/s40425-019-0720-z; Dong P., Xiong Y., Yue J. et al. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol 2018;8:386. DOI:10.3389/fonc.2018.00386; Simsek M., Tekin S.B., Bilici M. Immunological agents used in cancer treatment. Eurasian J Med 2019;51(1):90–4. DOI:10.5152/eurasianjmed.2018.18194; Alsahafi E., Begg K., Amelio I. et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019;10(8):540. DOI:10.1038/s41419-019-1769-9; Hemminki K., Pavlidis N., Tsilidis K.K. et al. Age-dependent metastatic spread and survival: cancer of unknown primary as a model. Sci Rep 2016;6:23725. DOI:10.1038/srep23725; Cohen E.E., LaMonte S.J., Erb N.L. et al. American Cancer Society head and neck cancer survivorship care guideline. CA Cancer J Clin 2016;66(3):203–39. DOI:10.3322/caac.21343; Cummings M.A., Ma S.J., Van Der Sloot P. et al. Squamous cell carcinoma of the head and neck with unknown primary: trends and outcomes from a hospital-based registry. Ann Transl Med 2021;9(4):284. DOI:10.21037/atm-20-4631; Reuschenbach M., Tinhofer I., Wittekindt C. et al. A systematic review of the HPV-attributable fraction of oropharyngeal squamous cell carcinomas in Germany. Cancer Med 2019;8(4):1908–18. DOI:10.1002/cam4.2039; Sprave T., Rühle A., Hees K. et al. Radiotherapeutic management of cervical lymph node metastases from an unknown primary site – experiences from a large cohort treated with modern radiation techniques. Radiat Oncol 2020;15(1):80. DOI:10.1186/s13014-020-01529-z; Chung C.H., Zhang Q., Kong C.S. et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol 2014;32(35):3930–8. DOI:10.1200/JCO.2013.54.5228; https://ogsh.abvpress.ru/jour/article/view/1003

  17. 17
    Academic Journal

    Συνεισφορές: The work was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 27-36 ; Опухоли головы и шеи; Том 13, № 4 (2023); 27-36 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/934/604; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424. DOI:10.3322/caac.21492; Xie L., Shang Z. Burden of oral cancer in Asia from 1990 to 2019: estimates from the Global Burden of Disease 2019 study. PLoS One 2022;17(3):e0265950. DOI:10.1371/journal.pone.0265950; Ng J.H., Iyer N.G., Tan M.H., Edgren G. Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study. Head Neck 2017;39(2):297–304. DOI:10.1002/hed.24589; Regionalt cancercentrum. Nationellt vårdprogram huvud-och halscancer 2019. Available at: https://kunskapsbanken.cancercentrum.se/diagnoser/huvud-och-halscancer/.; Katirachi S.K., Grønlund M.P., Jakobsen K.K. et al. The prevalence of HPV in oral cavity squamous cell carcinoma, viruses. 2023;15(2):451. DOI:10.3390/v15020451; Tarabichi O., Bulbul M.G., Kanumuri V.V. et al. Utility of intraoral ultrasound in managing oral tongue squamous cell carcinoma : systematic review. Laryngoscope 2019;129(3):662–70. DOI:10.1002/lary.27403; Brouwer de Koning S.G., Schaeffers A., Schats W. et al. Assessment of the deep resection margin during oral cancer surgery : a systematic review. Eur J Surg Oncol 2021;47(9):2220–32. DOI:10.1016/j.ejso.2021.04.016; Yesuratnam A., Wiesenfeld D., Tsui A. et al. Preoperative evaluation of oral tongue squamous cell carcinoma with intraoral ultrasound and magnetic resonance imaging-comparison with histopathological tumour thickness and accuracy in guiding patient management. Int J Oral Maxillofac Surg 2014;43(7):787–94. DOI:10.1016/j.ijom.2013.12.009; Terada H., Sasaki E., Suzuki H. et al. An examination of the cutoff value of the depth of invasion for prophylactic neck dissection in stage I/II tongue cancer. Acta Otolaryngol 2020;140(5):422–6. DOI:10.1080/00016489.2020.1717606; van Lanschot C.G.F., Klazen Y.P., de Ridder M.A.J. et al. Depth of invasion in early stage oral cavity squamous cell carcinoma: the optimal cut-off value for elective neck dissection. Oral Oncol 2020;111:104940. DOI:10.1016/j.oraloncology.2020.104940; Muhammad A.Y., Dhanani R., Salman S. et al. Depth of invasion as a predictor of cervical nodal metastasis of oral tongue squamous cell carcinoma: findings from a tertiary care center in Pakistan. Cureus 2021;13(10):e18976. DOI:10.7759/cureus.18976; Sproll K.C., Leydag S., Holtmann H. et al. Is the prediction of one or two ipsilateral positive lymph nodes by computerized tomography and ultrasound reliable enough to restrict therapeutic neck dissection in oral squamous cell carcinoma (OSCC) patients? J Cancer Res Clin Oncol 2021;147(8):2421–33. DOI:10.1007/s00432-021-03523-8; Zanoni D.K., Patel S.G., Shah J.P. Changes in the 8 th edition of the American Joint Committee on Cancer (AJCC) staging of head and neck cancer: rationale and implications. Curr Oncol Rep 2019;21(6):52. DOI:10.1007/s11912-019-0799-x; Amin M.E.S., Greene F.L., Byrd D.R. et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging CA Cancer J Clin 2017;67(2):93–9. DOI:10.3322/caac.21388; Ebrahimi A., Gil Z., Amit M. et al. Primary tumor staging for oral cancer and a proposed modification incorporating depth of invasion: an international multicenter retrospective study JAMA Otolaryngol Head Neck Surg 2014;140:1138–48. DOI:10.1001/jamaoto.2014.1548; Klein Nulent T.J.W., Noorlag R., van Cann E.M. et al. Intraoral ultrasonography to measure tumor thickness of oral cancer : a systematic review and metaanalysis. Oral Oncol 2018;77:29–36. DOI:10.1016/j.oraloncology.2017.12.007; Locatello L.G., Bruno C., Pietragalla M. et al. A critical evaluation of computed tomography-derived depth of invasion in the pre-operative assessment of oral cancer staging. Oral Oncol 2020;107:104749. DOI:10.1016/j.oraloncology.2020.104749; Chin S.Y., Kadir K., Ibrahim N., Rahmat K. Correlation and accuracy of contrast-enhanced computed tomography in assessing depth of invasion of oral tongue carcinoma. Int J Oral and Maxillofac Surg 2021;50(6):718–24. DOI:10.1016/j.ijom.2020.09.025; Noorlag R., Klein Nulent T.J.W., Delwel V.E.J. et al. Assessment of tumour depth in early tongue cancer: Accuracy of MRI and intraoral ultrasound. 2020:110:104895. DOI:10.1016/j.oraloncology.2020.104895; Filauro M., Missale F., Marchi F. et al. Intraoral ultrasonography in the assessment of DOI in oral cavity squamous cell carcinoma: a comparison with magnetic resonance and histopathology Eur Arch Otorhinolaryngol 2021;278(8):2943–52. DOI:10.1007/s00405-020-06421-w; https://ogsh.abvpress.ru/jour/article/view/934

  18. 18
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 14, № 3 (2024); 64-76 ; Опухоли головы и шеи; Том 14, № 3 (2024); 64-76 ; 2411-4634 ; 2222-1468

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/1005/643; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 239 с.; Злокачественные новообразования полости рта. Клинические рекомендации. 2022. Доступно по: https://oncology-association.ru/wp-content/uploads/2022/12/kr-polost-rta_23.12.docx.; Чиссов В.И., Решетов И.В., Кравцов С.А. и др. 1000 операций микрохирургической аутотрансплантации органов и тканей в онкологии. Российский онкологический журнал 2009;1:4–14.; Практические рекомендации по лечению злокачественных опухолей Российского общества клинической онкологии. Доступно по: https://www.rosoncoweb.ru/standarts/RUSSCO/2022/.; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В. и др. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Злокачественные опухоли 2020;10(3s2–1): 93–108.; Osazuwa-Peters N., Simpson M.C., Zhao L. et al. Suicide risk among head and neck cancer survivors. Cancer 2018;124(20):4072–9. DOI:10.1002/cncr.31675; Kravtsov S., Ilina M., Galkin V. et al. The choice of oral cavity reconstruction method in patients with advanced orofacial sqamous cell carcinoma. In: 16th Annual meeting of the Korean Society of Medical Oncology 2023 International Conference – Grand Walkerhill Seoul, Korea, 2023. P. 564. Available at: https://www.sciencedirect.com/journal/esmo-open/vol/8/issue/1/suppl/S6.; Сашенков С.Л., Тишевская Н.В., Головнева Е.С. и др. Физиология органов челюстно-лицевой области: учеб. пособие. Челябинск: Тета, 2023. 96 с.; Strauch B., Vasconez L., Herman C.K. et al. Grabb’s encyclopedia of flaps: head and neck. 4th edn. Baltimore, USA: Lippincott Williams and Wilkins, 2015. 1676 p.; Erba P., Orgill D.P. Discussion. The new reconstructive ladder: modifications to the traditional model. Plast Reconstr Surg 2011;127(1):213–4. DOI:10.1097/PRS.0b013e318201271c; Neligan P.C., Wei F.-C. Microsurgical reconstruction of the head and neck. QMP: St. Louis, 2010. Pp. 591–613.; Song R., Gao Y. The forearm flap. Clin Plast Surg 1982;9(1):21–6.; Gender E.M. Reconstruction of the Head and Neck. New York: Thieme, 2012. Pp. 1–26.; Uglesić V., Virag M. Musculomucosal nasolabial island faps for foor of mouth reconstruction. Br J Plast Surg 1995;48(1):8–10. DOI:10.1016/0007-1226(95)90022-5; Massarelli O., Gobbi R., Biglio A. et al. Facial artery myomucosal free flap for cheek mucosa reconstruction: a case report. Microsurgery 2013;33(5):401–5. DOI:10.1002/micr.22113; Саприна О.А., Бацев А.Ф., Оганян Е.Р. и др. Использование слизисто-мышечного лоскута на лицевой артерии в реконструктивной хирургии у пациентов со злокачественными опухолями полости рта. Сибирский онкологический журнал 2022;21(2):88–95. DOI:10.21294/1814-4861-2022-21-2-88-95; O’Leary P., Bundgaard T. Good results in patients with defects after intraoral tumour excision using facial artery musculo-mucosal fap. Dan Med Bull 2011;58(5):A4264.; Massarelli O., Baj A., Gobbi R. et al. Cheek mucosa: a versatile donor site of myomucosal faps. Technical and functional considerations. Head Neck 2013;35(1):109–17. DOI:10.1002/hed.22933; Dieffenbach J.F. Surgical observations on restoration of the nose. London: S. Highley, 1833.; Cohen I.K., Edgerton M.T. Transbuccal flaps for reconstruction of the floor of the mouth. Plast Reconstr Surg 1971;48(1):8–1. DOI:10.1097/00006534-197107000-00003; McGregor I.A. Reconstruction following excision of in· treoral and mandibular tumors. In: Reconstructive plastic surgery. Ed. by J.M. Converse. Philadelphia: W.B. Saunders Co, 1977. 2683 p.; Mebeed A.H., Hussein H.A., Saber T.Kh. Critical appraisal of nasolabial flap for reconstruction of oral cavity defects in cancer patients. J Egypt Natl Canc Inst 2009;21(1):33–42.; El-Marakby H.H., Fouad F.A., Ali A.H. One stage reconstruction of the floor of the mouth with a subcutaneous pedicled nasolabial flap. J Egypt Natl Canc Inst 2012;24(2):71–6. DOI:10.1016/j.jnci.2012.02.002; Singh S., Singh R.K., Pandey M. Nasolabial flap reconstruction in oral cancer. World J Surg Oncol 2012;10:227. DOI:10.1186/1477-7819-10-227; Karanjai S., Barman D., Sengupta A. The islanded nasolabial flap for tongue reconstruction – experience in our institute. Ann Med Sci Res 2023;2(1):26–9. DOI:10.4103/amsr.amsr_59_22; Рагимов Ч.Р., Ахундов А.А., Фарзалиев И.М. и др. Реконструкция полнослойных дефектов щечной области, возникших после удаления опухолей с применением модифицированной методики взятия субментального лоскута. Опухоли головы и шеи 2018;8(2):27–33. DOI:10.17650/2222-1468-2018-8-2-27-33; Chow T.L., Chan T.T., Chow T.K. et al. Reconstruction with submental flap for aggressive orofacial cancer. Plast Reconstr Surg 2007;120(2):431–6. DOI:10.1097/01.prs.0000267343.10982.dc; Sebastian P., Thomas S., Varghese B.T. et al. The submental island flap for reconstruction of defects in oral cancer patients. Oral Oncol 2008;44(11):1014–8. DOI:10.1016/j.oraloncology.2008.02.013; Uppin S.B., Ahmad Q.G., Yadav P. et al. Use of the submental island flap in orofacial reconstruction – a review of 20 cases. J Plast Reconstr Aesthet Surg 2009;62(4):514–9. DOI:10.1016/j.bjps.2007.11.023; Бердыклычев М.Т., Задеренко И.А., Кропотов М.А. и др. Влияние лучевой терапии на успешность применения субментального лоскута при реконструкции дефектов полости рта. Онкологический журнал: лучевая диагностика, лучевая терапия 2022;5(3):63–9.; Abouchadi A., Capon-Degardin N., Patenôtre P. et al. The submental flap in facial reconstruction: advantages and limitations. J Oral Maxillofac Surg 2007;65(5):863–9. DOI:10.1016/j.joms.2006.05.063; Ayman A.A., Sakkary M.A., Khalil A.A. et al. The submental flap for oral cavity reconstruction: extended indication and technical refinements. Head Neck Oncol 2011;3:51. DOI:10.1186/1758-3284-3-51; Саприна О.А., Кропотов М.А., Ломая М.В. Применение подподбородочного лоскута в замещении дефектов у больных со злокачественными опухолями слизистой оболочки полости рта. Сибирский онкологический журнал 2016;15(2):56–62.; Карпенко А.В., Сибгатуллин Р.Р., Бойко А.А. и др. Функциональные результаты применения подподъязычного кожно-мышечного лоскута для пластики онкологических дефектов ротовой полости. Злокачественные опухоли 2016;17(1):36–43. DOI:10.18027/2224-5057-2016-1-36-43; Varma H., Yeshwanth R., Prakash B.V. et al. Infrahyoid myofasciocutaneous flap for reconstruction of tongue defects: our experience and perspective. Indian J Surg Oncol 2019;10(3):472–5. DOI:10.1007/s13193-019-00917-6; Pallua N., Machens H.G., Rennekampff O. et al. The fasciocutaneous supraclavicular artery island flap for releasing postburn mentosternal contractures. Plast Reconstr Surg 1997;99(7):1878–84. DOI:10.1097/00006534-199706000-00011; Sandu K., Monnier P., Pasche P. Supraclavicular flap in head and neck reconstruction: experience in 50 consecutive patients. Eur Arch Otorhinolaryngol 2012;269(4):1261–7. DOI:10.1007/s00405-011-1754-0; Granzow J.W., Suliman A., Roostaeian J. et al. The supraclavicular artery island flap (SCAIF) for head and neck reconstruction: surgical technique and refinements. Otolaryngol Head Neck Surg 2013;148(6):933–40. DOI:10.1177/0194599813484288; Kokot N., Mazhar K., Reder L.S. et al. The supraclavicular artery island flap in head and neck reconstruction: applications and limitations. JAMA Otolaryngol Head Neck Surg 2013;139(11):1247–55. DOI:10.1001/jamaoto.2013.5057; Chiu E.S., Liu P.H., Friedlander P.L. Supraclavicular artery island flap for head and neck oncologic reconstruction: indications, complications, and outcomes. Plast Reconstr Surg 2009;124(1):115–23. DOI:10.1097/PRS.0b013e3181aa0e5d; Sharma V., Pandey S., Gandhi A.K. et al. Island nasolabial flap for tongue reconstruction: locoregional flap of choice and an alternative to free flap for tongue cancer. Indian J Surg Oncol 2021;12(1):94–9. DOI:10.1007/s13193-020-01214-3; Wei F.-C., Mardini S. Flaps and reconstructive surgery. Elsevier Science, 2017. Pp. 387–395.; Саприна О.А., Азизян Р.И., Ломая М.В. Надключичный лоскут в реконструкции дефектов головы и шеи (обзор литературы). Опухоли головы и шеи 2017;7(1):46–9. DOI:10.17650/2222-1468-2017-7-1-46-49; Ariyan S. The pectoralis major myocutaneous flap: a versatile flap for reconstruction in head and neck. Plast Reconstr Surg 1979;63(1):73–81. DOI:10.1097/00006534-197901000-00012; Aničin A., Šifrer R., Strojan P. Pectoralis major myocutaneous flap in primary and salvage head and neck cancer surgery. J Oral Maxillofac Surg 2015;73(10):2057–64. DOI:10.1016/j.joms.2015.05.016; Zhang X., Li M.-J., Fang Q.-G. et al. A comparison between the pectoralis major myocutaneous flap and the free anterolateral thigh perforator flap for reconstruction in head and neck cancer patients. J Craniofac Surg 2014;25(3):868–71. DOI:10.1097/scs.0000000000000443; https://ogsh.abvpress.ru/jour/article/view/1005

  19. 19
    Academic Journal

    Συνεισφορές: The work was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 48-57 ; Опухоли головы и шеи; Том 13, № 4 (2023); 48-57 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/936/606; Abdou R., Baredes S. Population-based results in the management of sinonasal and ventral skull base malignancies. Otolaryngol Clin North Am 2017;50(2):481–97. DOI:10.1016/j.otc.2016.12.019; Sanghvi S., Khan M.N., Patel N.R. et al. Epidemiology of sinonasal squamous cell carcinoma: a comprehensive analysis of 4994 patients. Laryngoscope 2014;124(1):76–83. DOI:10.1002/lary.24264; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022.; Dooley L., Shah J. Management of the neck in maxillary sinus carcinomas. Curr Opin Otolaryngol Head Neck Surg 2015;23(2):107–14. DOI:10.1097/MOO.0000000000000138; Thompson L.D.R., Bishop J.A. Update from the 5 th edition of the World Health Organization Classification of head and neck tumors: nasal cavity, paranasal sinuses and skull base. Head Neck Pathol 2022;16(1):1–18. DOI:10.1007/s12105-021-01406-5; Thawani R., Kim M.S., Arastu A. et al. The contemporary management of cancers of the sinonasal tract in adults. CA Cancer J Clin 2023;73(1):72–112. DOI:10.3322/caac.21752; Makino T., Tachibana T., Kariya S. et al. Pathological evaluation of radiotherapy and concomitant intraarterial cisplatin for maxillary sinus cancer. Auris Nasys Larynx 2020;47(5):881–6. DOI:10.1016/j.anl.2020.04.004; Dubal P.M., Bhojwani A., Patel T.D. et al. Squamous cell carcinoma of the maxillary sinus: a population-based analysis. Laryngoscope 2016;126(2):399–404. DOI:10.1002/lary.25601; Llorente J.L., Lopez F., Suarez C., Hermsen M.A. Sinonasal carcinoma: clinical, pathological, genetic and therapeutic advances. Nat Rev Clin Oncol 2014;11(8):460–72. DOI:10.1038/nrclinonc.2014.97; Unsal A.A., Dubal P.M., Patel T.D. et al. Squamous cell carcinoma of the nasal cavity: a population-based analysis. Laryngoscope 2016;126(3):560–5. DOI:10.1002/lary.25531; Homma A., Hayashi R., Matsuura K. et al. Lymph node metastasis in T4 maxillary sinus squamous cell carcinoma: incidence and treatment outcome. Ann Surg Oncol 2014;21(5):1706–10. DOI:10.1245/s10434-014-3544-6; Endo H., Takayama K., Mitsudo K. et al. Proton beam therapy in combination with intra-arterial infusion chemotherapy for T4 squamous cell carcinoma of the maxillary gingiva. Cancers (Basel) 2018;10(9):333. DOI:10.3390/cancers10090333; Jafari A., Shen S.A., Qualliotine J.R. et al. Impact of margin status on survival after surgery for sinonasal squamous cell carcinoma. Int Forum Allergy Rhinol 2019;9(10):1205–11. DOI:10.1002/alr.22415; Guntinas-Lichius O. et al. Single modality and multimodality treatment of nasal and paranasal sinuses cancer: a single institution experience of 229 patients. Eur J Surg Oncol 2007;33(2):222–8. DOI:10.1016/j.ejso.2006.10.033; Santos M.R., Servato J.P., Cardoso S.V. et al. Squamous cell carcinoma at maxillary sinus: clinicopathologic data in a single Brazilian institution with review of literature. Int J Clin Exp Pathol 2014;7(12):8823–32.; Farrell N.F., Mace J.C., Detwiller K.Y. et al. Predictors of survival outcomes in sinonasal squamous cell carcinoma: an analysis of the National Cancer Database. Int Forum Allergy Rhinol 2021;11(6):1001–11. DOI:10.1002/alr.22737; Kuo P., Manes R.P., Schwam Z.G., Judson B.L. Survival outcomes for combined modality therapy for sinonasal undifferentiated carcinoma. Otolaryngol Head Neck Surg 2017;156(1):132–6. DOI:10.1177/0194599816670146; Robbins K.T., Storniolo A.M., Kerber C. et al. Phase I study of highly selective supradose cisplatin infusions for advanced head and neck cancer. J Clin Oncol 1994;12(10):2113–20. DOI:10.1200/JCO.1994.12.10.2113; Mukai Y., Hayashi Y., Koike I. et al. Impact of superselective intra-arterial and systemic chemoradiotherapy for gingival carcinoma; analysis of treatment outcomes and prognostic factors. BMC Cancer 2020;20(1):1154. DOI:10.1186/s12885-020-07638-y; Homma A., Nakamaru Y., Sakashita T. et al. Management for squamous cell carcinoma of the nasal cavity and ethmoid sinus: a single institution experience. Auris Nasus Larynx 2015;42(5): 377–81. DOI:10.1016/j.anl.2015.02.005; Chatelet F., Simon F., Bedarida V. et al. Surgical Management of Sinonasal Cancers : A Comprehensive Review. Cancers (Basel) 2021;13(16):3995. DOI:10.3390/cancers13163995; Hye Sung Won, Sang Hoon Chun et al. Treatment outcome of maxillary sinus cancer. Rare Tumors 2009;1(2):e36. DOI:10.4081/rt.2009.e36; Noronha V., Patil V.M., Joshi A. et al. Induction chemotherapy in technically unresectable locally advanced carcinoma of maxillary sinus. Chemother Res Pract 2014;2014:487872. DOI:10.1155/2014/487872; Hirakawa H., Hanai N., Ozawa T. et al. Prognostic impact of pathological response to neoadjuvant chemotherapy followed by definitive surgery in sinonasal squamous cell carcinoma. Head Neck 2016;38(Suppl. 1):E1305–11. DOI:10.1002/hed.24217; Ock C.Y., Keam B., Kim T.M. et al. Induction chemotherapy in head and neck squamous cell carcinoma of the paranasal sinus and nasal cavity: a role in organ preservation. Korean J Intern Med 2016;31(3):570–8. DOI:10.3904/kjim.2015.020; Дешкина Т.И., Болотина Л.В., Геворков А.Р. и др. Результаты комплексного лечения больных местно-распространенным плоскоклеточным раком придаточных пазух и полости носа с использованием индукционной химиотерапии. Опухоли головы и шеи 2022;12(4):10–6. DOI:10.17650/2222-1468-2022-12-4-10-16; Abdelmeguid A.S., Teeramatwanich W., Roberts D.B. et al. Neoadjuvant chemotherapy for locoregionally advanced squamous cell carcinoma of the paranasal sinuses. Cancer 2021;127(11):1788–95. DOI:10.1002/cncr.33452; Ashida Н., Igarashi T., Nozawa Y. et al. Imaging predictor of ophthalmic involvement in maxillary sinus cancer during super selective intra-arterial cisplatin infusion and concomitant radiotherapy (RADPLAT). Head Face Med 2021;17(1):34. DOI:10.1186/s13005-021-00285-z; Kaneko T., Tada Y., Maruya S. et al. Intra-arterial chemoradiation therapy with weekly low-dose cisplatin for squamous cell carcinoma of the maxillary sinus. Int J Oral Maxillofac Surg 2015;44(6):697–704. DOI:10.1016/j.ijom.2015.03.009; Won H.S., Chun S.H., Kim B.S. et al. Multidisciplinary treatment algorithm for the management of sinonasal cancers with orbital invasion: a retrospective study. Head Neck 2019;41(8):2777–88. DOI:10.1002/hed.25759; Liao S.D., Erickson B.P., Kapila N. et al. Histopathologic observations of eyes in exenterated orbits after neoadjuvant intra-arterial cytoreductive chemotherapy for adenoid cystic carcinoma of the lacrimal gland. Ophthalmic Plast Reconstr Surg 2021;37(3):274–9. DOI:10.1097/IOP.0000000000001808; Sanders I.W. et al. Sequential TPF chemotherapy followed by concurrent chemoradiotherapy in locally advanced head and neck cancer a retrospective analysis of toxicity and outcomes. Scott Medi J 2014;59(1):50–5. DOI:10.1177/0036933013518153; Abe T., Saito S., Iino M. et al. Results of definitive radiotherapy with concurrent chemotherapy for maxillary sinus carcinomas with neck lymph node metastasis. J Radiat Res 2021;62(1):104–9. DOI:10.1093/jrr/rraa120; Homma A., Sakashita T., Yoshida D.R. et al. Superselective intra-arterial cisplatin infusion and concomitant radiotherapy for maxillary sinus cancer. Br J Cancer 2013;109(12):2980–6. DOI:10.1038/bjc.2013.663; https://ogsh.abvpress.ru/jour/article/view/936

  20. 20
    Academic Journal

    Συνεισφορές: The study was performed without external funding, Исследование проведено без спонсорской поддержки

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 3 (2024); 78-86 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 3 (2024); 78-86 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1075/936; Swinney C.C., Han D.P., Karth P.A. Incontinentia Pigmenti: A Comprehensive Review and Update. Ophthalmic Surg Lasers Imaging Retina. 2015;46(6):650–7. doi:10.3928/23258160-20150610-09.; Nirmalasari D.A., Tabri F., Waspodo N., Rimayani S., Adriani A. Incontinentia pigmenti/Bloch-Sulzberger syndrome: a case report. Acta Dermatovenerol Alp Pannonica Adriat. 2022;31(1):39–41. PMID: 35339131.; Chambelland A., Aubert H., Bourrat E., Morice-Picard F., Puzenat E., Lacour J.P., Chiaverini C.; Société Française de Dermatologie Pédiatrique Research Group. Incontinentia pigmenti in boys: Causes and consequences. Ann Dermatol Venereol. 2020;147(3):188–93. doi:10.1016/j.annder.2019.07.007.; Kenwrick S., Woffendin H., Jakins T., Shuttleworth S.G., Mayer E., Greenhalgh L., Whittaker J., Rugolotto S., Bardaro T., Esposito T., D’Urso M., Soli F., Turco A., Smahi A., Hamel-Teillac D., Lyonnet S., Bonnefont J.P., Munnich A., Aradhya S., Kashork C.D., Shaffer L.G., Nelson D.L., Levy M., Lewis R.A.; International IP Consortium. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am J Hum Genet. 2001;69(6):1210–7. doi:10.1086/324591.; Niki M., Hirose K., Matsudate Y. Hypomorphic mutation of IKBKG in a male patient with incontinentia pigmenti. J Dermatol. 2020;47(4):e113–4. doi:10.1111/1346-8138.15242.; Garrod A.E. Peculiar pigmentation of the skin of an infant. Transactions of the Clinical Society of London. 1906;39:216.; Bardach M. Systematisierte Nävusbildung bei einem eineiigen Zwillingspaar. Zeitschrift für Kinderheilkunde (Berlin). 1925;39:542–50.; Lechleuthner. About a rare systematized dermatosis. Inaugural-Dissertation. München, 1925.; Bloch B. Peculiar, previously undescribed pigment affection (Incontinentia pigmenti). Switzerland Med Wschr. 1926;56:404–5.; Sulzberger M.B. About a congenital pigment anomaly (Incontinentia pigmenti) not described so far. Arch Derm Syph. 1927;154:19–32.; Kajii T., Tsukahara M., Fukushima Y., Hata A., Matsuo K., Kuroki Y. Translocation (X;13)(p11.21;q12.3) in a girl with incontinentia pigmenti and bilateral retinoblastoma. Ann Genet. 1985;28(4):219–23. PMID: 3879432.; Sefiani A., Sinnett D., Abel L., Szpiro-Tapia S., Heuertz S., Craig I., Fraser N., Kruse T.A., Frydman M., Peter M.O. Linkage studies do not confirm the cytogenetic location of incontinentia pigmenti on Xp11. Hum Genet. 1988;80(3):282–6. doi:10.1007/BF01790098.; Sefiani A., Abel L., Heuertz S., Sinnett D., Lavergne L., Labuda D., Hors-Cayla M.C. The gene for incontinentia pigmenti is assigned to Xq28. Genomics. 1989;4(3):427–9. doi:10.1016/0888-7543(89)90350-9.; Smahi A., Courtois G., Vabres P., Yamaoka S., Heuertz S., Munnich A., Israël A., Heiss N.S., Klauck S.M., Kioschis P., Wiemann S., Poustka A., Esposito T., Bardaro T., Gianfrancesco F., Ciccodicola A., D’Urso M., Woffendin H., Jakins T., Donnai D., Stewart H., Kenwrick S.J., Aradhya S., Yamagata T., Levy M., Lewis R.A., Nelson D.L. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–72. doi:10.1038/35013114.; Aradhya S., Courtois G., Rajkovic A., Lewis R.A., Levy M., Israël A., Nelson D.L. Atypical forms of incontinentia pigmenti in male individuals result from mutations of a cytosine tract in exon 10 of NEMO (IKK-gamma). Am J Hum Genet. 2001;68(3):765–71. doi:10.1086/318806.; Mou W., Zhao Z., Gao L., Fu L., Li J., Jiao A., Peng Y., Yu T., Guo Y., Chen L., Wang H., Liu J., Qin Q., Xu B., Liu X., He J., Gui J. An Atypical Incontinentia Pigmenti Female with Persistent Mucocutaneous Hyperinflammation and Immunodeficiency Caused by a Novel Germline IKBKG Missense Mutation. J Clin Immunol. 2023;43(8):2165–80. doi:10.1007/s10875-023-01564-x.; Chen H., Ji X., Lai Y., Xie L., Wan C., Li L. Novel IKBKG gene mutations in incontinentia pigmenti: report of two cases. Front Med (Lausanne). 2023;10:1303590. doi:10.3389/fmed.2023.1303590.; Steffann J., De Oliveira Santos J., Zelbin A.L., Hadj-Rabia S., Charbit-Henrion F., Petit F. Familial recurrence of incontinentia pigmenti due to de novo pathogenic variants in the IKBKG gene. Am J Med Genet A. 2024;194(8):e63591. doi:10.1002/ajmg.a.63591.; Li M., Higashi N., Nakano H., Saeki H. Incontinentia pigmenti in a Japanese female infant with a novel frame-shift mutation in the IKBKG gene. J Dermatol. 2019;46(1):e26–8. doi:10.1111/1346-8138.14519.; Minić S., Trpinac D., Obradović M. A Novel Frameshift Mutation of the IKBKG Gene Causing Typical Incontinentia Pigmenti. Srp Arh Celok Lek. 2015;143(11–12):752–4. doi:10.2298/sarh1512752m.; Landy S.J., Donnai D. Incontinentia pigmenti (Bloch–Sulzberger syndrome). J Med Genet. 1993;30(1):53–9. doi:10.1136/jmg.30.1.53.; Minić S., Trpinac D., Obradović M. Incontinentia pigmenti diagnostic criteria update. Clin Genet. 2014;85(6):536–42. doi:10.1111/cge.12223.; Roberts W.M., Jenkins J.J., Moorhead E.L. 2nd, Douglass E.C. Incontinentia pigmenti, a chromosomal instability syndrome, is associated with childhood malignancy. Cancer. 1988;62(11):2370–2. doi:10.1002/1097-0142(19881201)62:113.0.co;2-h.; Jamnadas B., Agarwal R., Caddy C.M. A rare case of SCC in a young patient with incontinentia pigmenti. J Plast Reconstr Aesthet Surg. 2008;61:973–4. doi:10.1016/j.bjps.2007.09.050.; Brodsky M.A., Axibal E., Brown M. Aggressive cutaneous squamous cell carcinoma as an adult manifestation of Incontinentia Pigmenti. Dermatologic Surg. 2021;47:824–6. doi:10.1097/DSS.0000000000002780.; Pena Z.G., Brewer J.D. Multiple subungual squamous cell carcinomas in a patient with incontinentia pigmenti. Dermatologic Surg. 2014;40:1159–61. doi:10.1097/01.DSS.0000452663.46669.26.; Bhoyrul B., Lyon C., Stables G. Multiple Squamous Cell Carcinomas Arising in Hyperpigmented Patches: A Newly Recognized Feature of Incontinentia Pigmenti? Dermatol Surg. 2017;43(12):1501–3. doi:10.1097/DSS.0000000000001150.; Coppola R., Devirgiliis V., Carbotti M., Zanframundo S., Roberti V., Panasiti V. A case of basal cell carcinoma in a young patient with incontinentia pigmenti. G Ital Dermatol Venereol. 2020;155:526–7. doi:10.23736/S0392-0488.18.06081-9.; Chen A.Y., Chen K. Dental treatment considerations for a pediatric patient with incontinentia pigmenti (Bloch–Sulzberger syndrome). Eur J Dent. 2017;11(2):264–7. doi:10.4103/ejd.ejd_95_17.; Рзаева Т.А., Ковылина О.С., Кисельникова Л.П., Ненадова О.Б., Тутуева Т.А. Стоматологическая реабилитация детей при различных синдромокомплексах эктодермальной дисплазии. Клиническая стоматология. 2013;4(68):8–12.; Коголева Л.В., Белова М.В., Демченко Е.Н., Тарасенков А.О. Глазные проявления синдрома Блоха–Сульцбергера у детей. Российская педиатрическая офтальмология. 2014;9(2):9–13. doi:10.17816/rpoj37537.; Belysheva T., Nasedkina T., Kletskaya I., Volchek D., Barinova I., Semenova V., Gadzhigoroeva A., Zelenova E., Valiev T., Sharapova E., Michenko A., Allenova A., Ponomareva D. Case report: Variability in clinical manifestations within a family with incontinentia pigmenti. Front Med (Lausanne). 2024;11:1402577. doi:10.3389/fmed.2024.1402577.; Kawai M., Sugimoto A., Ishihara Y., Kato T., Kurahashi H. Incontinentia pigmenti inherited from a father with a low level atypical IKBKG deletion mosaicism: a case report. BMC Pediatr. 2022;22(1):378. doi:10.1186/s12887-022-03444-6.; Hadj-Rabia S., Froidevaux D., Bodak N., Hamel-Teillac D., Smahi A., Touil Y., Fraitag S., de Prost Y., Bodemer C. Clinical study of 40 cases of incontinentia pigmenti. Arch Dermatol. 2003;139(9):1163–70. doi:10.1001/archderm.139.9.1163.; Popli U., Yesudian P.D. Whorled scarring alopecia – The only adult marker of incontinentia pigmenti. Int J Trochology. 2018;10(1):24–5. doi:10.4103/ijt.ijt_73_17.; Wang C., Chen Q., Hamajima Y., Sun W., Zheng Y.Q., Hu X.H. Id2 regulates the proliferation of squamous cell carcinoma in vitro via the NF-κB/cyclin D1 pathway. Chin J Cancer. 2012;31:430–9. doi:10.5732/cjc.011.10454.; Cilloni D., Martinelli G., Messa F., Baccarani M., Saglio G. Nuclear factor kB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92:1224–9. doi:10.3324/haematol.11199.; Blake J., Mullaney J. Retinoblastoma in Bloch–Sulzberger syndrome. Ophthalmologica. 1976;172(6):457–65. doi:10.1159/000307748.; Tandon S., Prasad M., Vora T., Chinnaswamy G., Shetye N. A rare association of retinoblastoma with incontinentia pigmenti. J Pediatr Hematol Oncol. 2020;42(5):372–4. doi:10.1097/MPH.0000000000001797.; Weiss S.J., Srinivasan A., Klufas M.A., Shields C.L. Incontinentia pigmenti in a child with suspected retinoblastoma. Int J Retina Vitreous. 2017;3:34. doi:10.1186/s40942-017-0088-5.; Poziomczyk C.S., Bonamigo R.R., Zen P.R., Kiszewski A.E. Is there an increased prevalence of Wilms’ tumor in incontinentia pigmenti syndrome? Int J Dermatol. 2014;53(12):e578–9. doi:10.1111/ijd.12541.; Kadotani T., Watanabe J., Shimoda H. A chromosome study of a patient with Wilms’ tumor. Proc Jpn Acad. (B) 1984;60:191–4.; Rivera R., Vangir A., Strong L. Incontinentia pigmenti (Bloch– Sulzberger syndrome) associated with acute granulocytic leukemia. South Med J. 1975;68:1391–4.; Shashikumar V.L., Somers L.A., Pilling G.P. 4th, Cresson S.L. Wilms’ tumor in the horseshoe kidney. J Pediatr Surg. 1974;9(2):185–9. doi:10.1016/s0022-3468(74)80119-3.; https://journal.nodgo.org/jour/article/view/1075