Showing 1 - 20 results of 42 for search '"перфузионная компьютерная томография"', query time: 0.72s Refine Results
  1. 1
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 14, No 4 (2022); 44-50 ; Неврология, нейропсихиатрия, психосоматика; Vol 14, No 4 (2022); 44-50 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2022-4

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1860/1437; Adams HP, Brott TG, Furlan AJ, et al. Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. Stroke. 1996 Sep;27(9):1711-8.; Ding D. Endovascular Mechanical Thrombectomy for Acute Ischemic Stroke: A New Standard of Care. J Stroke. 2015 May;17(2):123-6. doi:10.5853/jos.2015.17.2.123. Epub 2015 May 29.; Kidwell CS, Jahan R, Gornbein J, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013 Mar 7;368(10):914-23. doi:10.1056/NEJMoa1212793. Epub 2013 Feb 8.; Сергеев ДВ, Лаврентьева АН, Кротенкова МВ. Методика перфузионной компьютерной томографии в диагностике острого ишемического инсульта. Анналы клинической и экспериментальной неврологии. 2008;2(3):30-7. doi:10.17816/psaic397; Albers GW, Goyal M, Jahan R, et al. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann Neurol. 2016 Jan;79(1):76-89. doi:10.1002/ana.24543. Epub 2015 Dec 12.; Laible M, Möhlenbruch M, Hacke W, et al. Repeated Intra-Arterial Thrombectomy within 72 Hours in a Patient with a Clear Contraindication for Intravenous Thrombolysis. Case Rep Vasc Med. 2015;2015:872817. doi:10.1155/2015/872817. Epub 2015 Jan 27.; Pirson FAV, van Oostenbrugge RJ, van Zwam WH, et al. Repeated Endovascular Thrombectomy in Patients With Acute Ischemic Stroke: Results From a Nationwide Multicenter Database. Stroke. 2020 Feb;51(2):526-32. doi:10.1161/STROKEAHA.119.027525. Epub 2019 Dec 23.; Thomalla G, Simonsen CZ, Boutitie F, et al; WAKE-UP Investigators. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N Engl J Med. 2018 Aug 16;379(7):611-22. doi:10.1056/NEJMoa1804355. Epub 2018 May 16.; Albers GW, Marks MP, Kemp S, et al; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018 Feb 22;378(8):708-18. doi:10.1056/NEJMoa1713973. Epub 2018 Jan 24.; Higashida RT, Furlan AJ, Roberts H, et al; Technology Assessment Committee of the American Society of Interventional and Therapeutic Neuroradiology; Technology Assessment Committee of the Society of Interventional Radiology. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003 Aug;34(8):e109-37. doi:10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17. Erratum in: Stroke. 2003 Nov;34(11):2774.; Frenkel MB, Renfrow JJ, Singh J, et al. Combined interventional and surgical treatment of tandem middle cerebral artery embolus and internal carotid artery occlusion: case report. J Neurosurg. 2018 Sep;129(3):718-22. doi:10.3171/2017.6.JNS162368. Epub 2017 Nov 17.; Rangel-Castilla L, Rajah GB, Shakir HR, et al. Management of acute ischemic stroke due to tandem occlusion: should endovascular recanalization of the extracranial or intracranial occlusive lesion be done first? Neurosurg Focus. 2017 Apr;42(4):E16. doi:10.3171/2017.1.FOCUS16500; Хрипун АИ, Миронков АБ, Лихарев АЮ и др. Эндоваскулярное лечение тандемной острой окклюзии внутренней сонной и средней мозговой артерии при остром ишемическом инсульте. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(3-2):37-44. doi:10.17116/jnevro201911903237; Enomoto Y, Yoshimura S. Antiplatelet therapy for carotid artery stenting. Intervent Neurol. 2013 Sep;1(3-4):151-63. doi:10.1159/000351686; Johnston SC, Easton JD, Farrant M, et al; Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N Engl J Med. 2018 Jul 19;379(3):215-25. doi:10.1056/NEJMoa1800410. Epub 2018 May 16.; Khazaal O, Rothstein A, Husain MR, et al. Dual-Antiplatelet Therapy May Not Be Associated With an Increased Risk of In-hospital Bleeding in Patients With Moderate or Severe Ischemic Stroke. Front Neurol. 2021 Sep 20;12:728111. doi:10.3389/fneur.2021.728111; Thomas SE, Plumber N, Venkatapathappa P, Gorantla V. A Review of Risk Factors and Predictors for Hemorrhagic Transformation in Patients with Acute Ischemic Stroke. Int J Vasc Med. 2021 Dec 6;2021:4244267. doi:10.1155/2021/4244267; Hankey GJ. Dual antiplatelet therapy in acute transient ischemic attack andminor stroke. N Engl J Med. 2013 Jul 4;369(1):82-3. doi:10.1056/NEJMe1305127. Epub 2013 Jun 26.; Хасанова ДР, Калинин МН, Ибатуллин ММ, Рахимов ИШ. Геморрагическая трансформация инфаркта мозга: классификация, патогенез, предикторы и влияние на функциональный исход. Анналы клинической и экспериментальной неврологии. 2019;13(2):47-59.; Whiteley WN, Slot KB, Fernandes P, et al. Risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator: a systematic review and meta-analysis of 55 studies. Stroke. 2012 Nov;43(11):2904-9. doi:10.1161/STROKEAHA.112.665331. Epub 2012 Sep 20.; Петров МГ, Кучеренко СС, Топузова МП. Геморрагическая трансформация ишемического инсульта. Артериальная гипертензия. 2021;27(1):41-50. doi:10.18705/1607-419X2021-27-1-41-50; Hao Y., Zhang Z., Zhang H, et al. Risk of intracranial hemorrhage afterendovascular treatment for acute ischemic stroke: systematic review and meta-analysis. Interv Neurol. 2017 Mar;6(1-2):57-64. doi:10.1159/000454721. Epub 2017 Jan 19.; Tan S, Wang D, Liu M, et al. Frequency and predictors of spontaneous hemorrhagic transformation in ischemic stroke and its association with prognosis. J Neurol. 2014 May;261(5):905-12. doi:10.1007/s00415-014-7297-8. Epub 2014 Mar 4.; Thevathasan A, Naylor J, Churilov L, et al. Association between hemorrhagic transformation after endovascular therapy and poststroke seizures. Epilepsia. 2018 Feb;59(2):403-9. doi:10.1111/epi.13982. Epub 2017 Dec 30.; Kalinin MN, Khasanova DR, Ibatullin MM. The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke. BMC Neurol. 2017 Sep 7;17(1):177. doi:10.1186/s12883-017-0958-3; Sofi F, Marcucci R, Gori AM, et al. Residual platelet reactivity on aspirin therapy and recurrent cardiovascular events – a metaanalysis. Int J Cardiol. 2008 Aug 18;128(2):166-71. doi:10.1016/j.ijcard.2007.12.010. Epub 2008 Feb 1.

  2. 2
    Academic Journal

    Source: Aterotromboz = Atherothrombosis; № 1 (2021); 128-143 ; Атеротромбоз; № 1 (2021); 128-143 ; 2658-5952 ; 2307-1109 ; 10.21518/2307-1109-2021-1

    File Description: application/pdf

    Relation: https://www.aterotromboz.ru/jour/article/view/248/270; Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur Heart J. 2020;41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425.; Collet J.P., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D.L. et al. 2020 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation. Eur Heart J. 2021;42(14):1289–1367. https://doi.org/10.1093/eurheartj/ehaa575. 3. Douglas P.S., Hoffmann U., Patel M.R., Mark D.B., Al-Khalidi H.R., Cavanaugh B. Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease. N Engl J Med. 2015;372(14):1291–300. https://doi.org/10.1056/NEJMoa1415516.; Newby D.E., Adamson P.D., Berry C., Boon N.A., Dweck M.R., Flather M. et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018;379(10):924–933. https://doi.org/10.1056/NEJMoa1805971.; Seitun S., Castiglione Morelli M., Budaj I., Boccalini S., Galletto Pregliasco A., Valbusa A. et al. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology. Rev Esp Cardiol (Engl Ed). 2016;69(2):188–200. https://doi.org/10.1016/j.rec.2015.10.018.; Веселова Т.Н., Омаров Ю.А., Шахнович Р.М., Миронов В.М., Арутюнян Г.К., Терновой С.К. и др. Диагностическая эффективность перфузионной компьютерной томографии миокарда и неинвазивного измерения фракционного резерва кровотока по данным компьютерной томографической ангиографии. Russian Electronic Journal of Radiology. 2020;10(3):150–155. https://doi.org/10.21569/2222-7415-2020-10-3-150-155.; De Cecco C.N., Varga-Szemes A., Meinel F.G., Renker M., Schoepf U.J. Beyond Stenosis Detection: Computed Tomography Approaches for Determining the Functional Relevance of Coronary Artery Disease. Radiol Clin North Am. 2015;53(2):317–334. https://doi.org/10.1016/j.rcl.2014.11.009.; Омаров Ю.А., Веселова Т.Н., Шахнович Р.М., Сухинина Т.С., Жукова Н.С., Меркулова И.Н. и др. Перфузионная компьютерная томография миокарда с чреспищеводной электрокардиостимуляцией в качестве стресс-теста у больных с пограничными стенозами в коронарных артериях: сравнение с измерениями фракционного резерва кровотока. Кардиология. 2021;61(1):4–11. https://doi.org/10.18087/cardio.2021.1.n1343.; Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS Guidelines on Myocardial Revascularization. Eur Heart J. 2019;40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394.; Johnson N.P., Tóth G.G., Lai D., Zhu H., Açar G., Agostoni P. et al. Prognostic Value of Fractional Flow Reserve: Linking Physiologic Severity to Clinical Outcomes. J Am Coll Cardiol. 2014;64(16):1641–1654. https://doi.org/10.1016/j.jacc.2014.07.973.; Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. Fourth Universal Definition of Myocardial Infarction (2018). Eur Heart J. 2019;40(3):237–269. https://doi.org/10.1093/eurheartj/ehy462.; Cerqueira M.D., Weissman N.J., Dilsizian V., Jacobs A.K., Kaul S., Laskey W.K. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–542. https://doi.org/10.1161/hc0402.102975.; Balfour P.C. Jr, Gonzalez J.A., Kramer C.M. NonInvasive Assessment of Low- and Intermediate-Risk Patients with Chest Pain. Trends Cardiovasc Med. 2017;27(3):182–189. https://doi.org/10.1016/j.tcm.2016.08.006.; Seitun S., De Lorenzi C., Cademartiri F., Buscaglia A., Travaglio N., Balbi M., Bezante G.P. CT Myocardial Perfusion Imaging: A New Frontier in Cardiac Imaging. Biomed Res Int. 2018;7295460. https://doi.org/10.1155/2018/7295460.; Magalhães T.A., Kishi S., George R.T., Arbab-Zadeh A., Vavere A.L., Cox C. et al. Combined Coronary Angiography and Myocardial Perfusion by Computed Tomography in the Identification of Flow-Limiting Stenosis – The CORE320 Study: An Integrated Analysis of CT Coronary Angiography and Myocardial Perfusion. J Cardiovasc Comput Tomogr. 2015;9(5):438–445. https://doi.org/10.1016/j.jcct.2015.03.004.; Cury R.C., Kitt T.M., Feaheny K., Blankstein R., Ghoshhajra B.B., Budoff M.J. et al. A Randomized, Multicenter, Multivendor Study of Myocardial Perfusion Imaging with Regadenoson CT Perfusion vs Single Photon Emission CT. J Cardiovasc Comput Tomogr. 2015;9(2):103–112.e1-2. https://doi.org/10.1016/j.jcct.2015.01.002.; Pellikka P.A., Arruda-Olson A., Chaudhry F.A., Chen M.H., Marshall J.E., Porter T.R., Sawada S.G. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(1):1.e8-41.e8. https://doi.org/10.1016/j.echo.2019.07.001.; Gaibazzi N., Rigo F., Reverberi C. Detection of Coronary Artery Disease by Combined Assessment of Wall Motion, Myocardial Perfusion and Coronary Flow Reserve: A Multiparametric Contrast StressEchocardiography Study. J Am Soc Echocardiogr. 2010;23(12):1242–1250. https://doi.org/10.1016/j.echo.2010.09.003.; Mordi I., Stanton T., Carrick D., McClure J., Oldroyd K., Berry C., Tzemos N. Comprehensive Dobutamine Stress CMR versus Echocardiography in LBBB and Suspected Coronary Artery Disease. JACC Cardiovasc Imaging. 2014;7(5):490–498. https://doi.org/10.1016/j.jcmg.2014.01.012.; Shaikh K., Wang D.D., Saad H., Alam M., Khandelwal A., Brooks K. et al. Feasibility, Safety and Accuracy of Regadenoson-Atropine (REGAT) Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Angiographic Correlative Study. Int J Cardiovasc Imaging. 2014;30(3):515–522. https://doi.org/10.1007/s10554-014-0363-6.; Celutkiene J., Zakarkaite D., Skorniakov V., Zvironaite V., Grabauskiene V., Burca J. et al. Quantitative Approach Using Multiple Single Parameters versus Visual Assessment in Dobutamine Stress Echocardiography. Cardiovasc Ultrasound. 2012;10:31. https://doi.org/10.1186/1476-7120-10-31.; Rieber J., Jung P., Erhard I., Koenig A., Hacker M., Schiele T.M. et al. Comparison of Pressure Measurement, Dobutamine Contrast Stress Echocardiography and SPECT for the Evaluation of Intermediate Coronary Stenoses. The COMPRESS Trial. Int J Cardiovasc Intervent. 2004;6(3-4):142–147. https://doi.org/10.1080/14628840410030504.; Атабаева Л.С., Саидова М.А., Шитов В.Н., Староверов И.И. Возможности контрастной стрессэхокардиографии в выявлении ишемии миокарда у больных с различным поражением коронарного русла. Терапевтический архив. 2020;92(4):45–50. https://doi.org/10.26442/00403660.2020.04.000506.; Wu J., Barton D., Xie F., O’Leary E., Steuter J., Pavlides G., Porter T.R. Comparison of Fractional Flow Reserve Assessment with Demand Stress Myocardial Contrast Echocardiography in Angiographically Intermediate Coronary Stenoses. Circ Cardiovasc Imaging. 2016;9(8):e004129. https://doi.org/10.1161/CIRCIMAGING.116.004129.; Wei K., Ragosta M., Thorpe J., Coggins M., Moos S., Kaul S. Noninvasive Quantification of Coronary Blood Flow Reserve in Humans Using Myocardial Contrast Echocardiography. Circulation. 2001;103(21):2560– 2565. https://doi.org/10.1161/01.cir.103.21.2560.; Caruso D., Eid M., Schoepf U.J., Jin K.N., VargaSzemes A., Tesche C. et al. Dynamic CT Myocardial Perfusion Imaging. Eur J Radiol. 2016;85(10):1893– 1899. https://doi.org/10.1016/j.ejrad.2016.07.017.; Danad I., Szymonifka J., Schulman-Marcus J., Min J.K. Static and Dynamic Assessment of Myocardial Perfusion by Computed Tomography. Eur Heart J Cardiovasc Imaging. 2016;17(8):836–844. https://doi.org/10.1093/ehjci/jew044.; Giesler T., Lamprecht S., Voigt J.U., Ropers D., Pohle K., Ludwig J. et al. Long Term Follow Up after Deferral of Revascularisation in Patients with Intermediate Coronary Stenoses and Negative Dobutamine Stress Echocardiography. Heart. 2002;88(6):645–646. https://doi.org/10.1136/heart.88.6.645.; Siontis G.C., Mavridis D., Greenwood J.P., Coles B., Nikolakopoulou A., Jüni P. et al. Outcomes of nonInvasive Diagnostic Modalities for the Detection of Coronary Artery Disease: Network Meta-Analysis of Diagnostic Randomised Controlled Trials. BMJ. 2018;360:k504. https://doi.org/10.1136/bmj.k504.; Tanabe Y., Kurata A., Matsuda T., Yoshida K., Baruah D., Kido T. et al. Computed Tomographic Evaluation of Myocardial Ischemia. Jpn J Radiol. 2020;38(5):411– 433. https://doi.org/10.1007/s11604-020-00922-8.; https://www.aterotromboz.ru/jour/article/view/248

  3. 3
  4. 4
    Academic Journal

    Source: Siberian journal of oncology; Том 19, № 4 (2020); 24-32 ; Сибирский онкологический журнал; Том 19, № 4 (2020); 24-32 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-4

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1526/764; Золотницкая В.П., Тишков А.В., Агафонов А.О., Страх Л.В., Амосова О.В. Новые возможности обработки результатов радиологического исследования легких. Российский электронный журнал лучевой диагностики. 2019; 9(2): 98–106.; Котляров П.М., Сергеев Н.И. Лучевые методы исследования в дифференциальной диагностике паразитарных и опухолевых поражений легких. Сибирский онкологический журнал. 2016; 15(4): 33–39. . doi:10.21294/1814-4861-2016-15-4-33-39.; Sim Y.T., Poon F.W. Imaging of solitary pulmonary nodule-a clinical review. Quant Imaging Med Surg. 2013 Dec; 3(6): 316–26. doi:10.3978/j. issn.2223-4292.2013.12.08.; Юдин А.Л., Афанасьева Н.И., Блажко В.Д, Мясников Д.А., Юматова Е.А. Одновременное выявление туберкулеза и ВИЧ-инфекции. Российский медицинский журнал. 2017; 23(1): 11–17.; Mazzei M.A., Cioffi Squitieri N., Guerrini S., Di Crescenzo V., Rossi M., Fonio P., Mazzei F.G., Volterrani L. Quantitative CT perfusion measurements in characterization of solitary pulmonary nodules: new insights and limitations. Recenti Prog Med. 2013 Jul-Aug; 104(78): 430–7.; Котляров П.М., Лагкуева И.Д., Сергеев Н.И., Солодкий В.А. Магнитно-резонансная томография в диагностике заболеваний легких. Пульмонология. 2018; 28(2): 217–223.; Wang Q., Zhang Z., Shan F., Shi Y., Xing W., Shi L., Zhang X. Intraobserver and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion in patients with lung cancer: Influences of the size and inner-air density of tumors. Thorac Cancer. 2017 Sep; 8(5): 427–435. doi:10.1111/1759-7714.12458.; Lv Y., Jin Y., Xu D., Yan Q., Liu G., Zhang H., Yuan D., Bao J. Assessment of 64-slice spiral computed tomography with perfusion weighted imaging in the early diagnosis of ground-glass opacity lung cancer. J BUON. 2016 Jul-Aug; 21(4): 954–957.; Ma E., Ren A., Gao B., Yang M., Zhao Q., Wang W., Li K. ROI for outlining an entire tumor is a reliable approach for quantification of lung cancer tumor vascular parameters using CT perfusion. Onco Targets Ther. 2016 Apr 27; 9: 2377–84. doi:10.2147/OTT.S98060.; Petralia G., Bonello L., Viotti S., Preda L., d’Andrea G., Bellomi M. CT perfusion in oncology: how to do it. Cancer Imaging. 2010 Feb 11; 10(1): 8–19. doi:10.1102/1470-7330.2010.0001.; Лагкуева И.Д., Сергеев Н.И., Котляров П.М., Измайлов Т.Р., Падалко В.В., Солодкий В.A. Перфузионная компьютерная томография в уточнении природы очаговой патологии легких. Лучевая диагностика и терапия. 2019; 1(10): 62–68. doi:10.22328/2079-5343-2019-10-1-62-68.; Силантьева Н.К., Петросян А.П., Каприн А.Д., Иванов С.А., Усачева А.Ю., Мозеров С.А., Куприянова Е.И. Дифференциальная диагностика одиночных очагов легких: что дает перфузионная компьютерная томография? Russian Electronic Journal of Radiology. 2018; 8(4): 83–94. doi:10.21569/2222-7415-2018-8-4-83-94.; https://www.siboncoj.ru/jour/article/view/1526

  5. 5
  6. 6
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 34, № 1 (2019); 92-97 ; Сибирский журнал клинической и экспериментальной медицины; Том 34, № 1 (2019); 92-97 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2019-34-1

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/686/431; Захарова Е.М. Роль лейкоареоза в развитии цереброваскулярных заболеваний. Современные технологии в медицине. 2010;1:81–83.; Левин О.С. Патология белого вещества при дисциркуляторной энцефалопатии: диагностические и терапевтические аспекты. Трудный пациент. 2011;12:134–136.; Schmidt R., Fazekas F., Offenbacher H., Machler H., Freidl W., Payer F., et al. Brain magnetic resonance imaging in coronary artery bypass grafts A pre-and postoperative assessment. Neurology. 1993;43(4):775–778.; Michałowska I., Furmanek M.I., Walecki J.M. Evaluation of brain lesions in patients after coronary artery bypass grafting using MRI with the emphasis on susceptibility-weighted imaging. Polish Journal of CardioThoracic Surgery. 2015;12(1):1–7.; Wahlund L.O., Barkhof F., Fazekas F., Bronge L., Augustin M., Sjögren M., et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–1322.; Pantoni L. Cerebral small vessel disease. The Lancet Neurology. 2010;7:689–701.; Zupan M. Pathogenesis of Leukoaraiosis: A Review. In: Ed. Lenasi H. Microcirculation Revisited. IntechOpen;2016:155–173. eISBN 978-953- 51-2731-4.; Huang W-Q., Yi K-H., Li Z., Wang H., Li M-L., Cai L-L., et al. DNA Methylation Profiling Reveals the Change of Inflammation-Associated ZC3H12D in Leukoaraiosis. Front. Aging Neurosci. 2018;10:143. DOI:10.3389/fnagi.2018.00143.; Young V.G., Halliday G.M., Kril J.J. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71(11):804–811.; Kim K.W., MacFall J.R., Payne M.E. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol. Psychiatry. 2008;64(4):273–280.; Xiong Y.Y., Mok V. Age-related white matter changes. J. Aging Res. 2011;2011:617927. DOI:10.4061/2011/617927.; Lin R., Svensson L., Gupta R., Lytle B., Krieger D. Chronic ischemic cerebral white matter disease is a risk factor for nonfocal neurologic injury after total aortic arch replacement. Thorac. Cardiovasc. Surg. 2007;133:1059–1065.; Morimoto N., Okada K., Uotani K., Kanda F., Okita Y. Leukoaraiosis and hippocampal atrophy predict neurologic outcome in patients who undergo total aortic arch replacement. Ann. Thorac. Surg. 2009;88:476–481.; Семенов С.Е., Портнов Ю.М., Хромов А.А., Нестеровский А.В., Хромова А.Н., Семенов А.С. Исследования перфузии при нарушениях церебрального кровообращения. Часть II (Частная КТи МР-семиотика, паттерны патологических изменений). Обзор. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;6(1):102–111. DOI:10.17802/2306-1278-2017-1-102-111.; Портнов Ю.М., Семенов С.Е., Короткевич А.А., Милиневский Н.И. Морфологические и функциональные изменения головного мозга в отдаленном периоде после операции коронарного шунтирования в условиях искусственного кровообращения. Медицинская визуализация. 2017;21(4):41–46. DOI:10.24835/1607-0763-2017-4-41-46.; https://www.sibjcem.ru/jour/article/view/686

  7. 7
  8. 8
    Academic Journal

    Source: Siberian journal of oncology; Том 17, № 5 (2018); 21-26 ; Сибирский онкологический журнал; Том 17, № 5 (2018); 21-26 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2018-17-5

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/854/565; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). М., 2017. 250.; Алексеев Б.Я., Каприн А.Д., Матвеев В.Б., Нюшко К.М. Клини‑ ческие рекомендации по диагностике и лечению рака предстательной железы. М., 2014. 43.; Сосновский Н.В., Розенгауз Е.В., Школьник М.И., Нестеров Д.В., Арзуманов А.А. Использование 320-срезовой перфузионной ком‑ пьютерной томографии в визуализации рака предстательной железы. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2016; 23 (4): 76–80.; Pelzer A., Bektic J., Berger A.P., Pallwein L., Halpern E.J., Horninger W., Bartsch G., Frauscher F. Prostate cancer detection in men with prostate specific antigen 4 to 10 ng/ml using a combined approach of contrast enhanced color Doppler targeted and systematic biopsy. J Urol. 2005; 173 (6): 1926–9. doi:10.1097/01.ju.0000158444.56199.03.; Eichler K., Hempel S., Wilby J., Myers L., Bachmann L.M., Kleijnen J. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol. 2006; 175 (5): 1605–12. doi:10.1016/S0022-5347(05)00957-2; Bjurlin M., Rosenkrantz A., Taneja S. Role of MRI prebiopsy in men at risk for prostate cancer: taking off the blindfold. Curr Opin Urol. 2017 May; 27 (3): 246–253. doi:10.1097/MOU.0000000000000389.; Pokorny M., Van de Ven W., Barentsz J., Thompson L. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol. 2015 Mar; 67 (3): e54–5. doi:10.1016/j.eururo.2014.08.066.; Tonttila P.P., Lantto J., Pääkkö E., Piippo U., Kauppila S., Lammentausta E., Ohtonen P., Vaarala M.H. Prebiopsy Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis in Biopsynaive Men with Suspected Prostate Cancer Based on Elevated Prostatespecific Antigen Values: Results from a Randomized Prospective Blinded Controlled Trial. Eur Urol. 2016 Mar; 69 (3): 419–25. doi:10.1016/j.eururo.2015.05.024.; Winther M.D., Balslev I., Boesen L., Logager V., Noergaard N., Thestrup K.D., Thomsen H.S. Magnetic resonance imaging-guided biopsies may improve diagnosis in biopsy-naive men with suspicion of prostate cancer. Dan Med J. 2017 May; 64 (5). pii: A5355.; Prando A., Wallace S. Helical CT of prostate cancer: early clinical experience. AJR Am J Roentgenol. 2000 Aug; 175 (2): 343–6.; Ives E.P., Burke M.A., Edmonds P.R., Gomella L.G., Halpern E.J. Perfusion of Prostate Cancer: Correlation with Whole-Mount Pathology. Clin Prostate Cancer. 2005 Sep; 4 (2): 109–12.; Osimani M., Bellini D., Di Cristofano C., Palleschi G., Petrozza V., Carbone A., Laghi A. Perfusion MDCT of Prostate Cancer: Correlation of Perfusion CT Parameters and Immunohistochemical Markers of Angiogenesis. AJR Am J Roentgenol. 2012 Nov; 199 (5): 1042–8. doi:10.2214/AJR.11.8267.; Łuczyńska E., Heinze-Paluchowska S., Blecharz P., JereczekFossa B., Petralia G., Bellomi M., Stelmach A. Correlation between CT Perfusion and Clinico-Pathological Features in Prostate Cancer: A Prospective Study. Med Sci Monit. 2015 Jan 13; 21: 153–62. doi:10.12659/MSM.891401.; Ferrari M., Huellner M., Pauli C., Seifert B., Danuser H., VeitHaibach P., Mattei A. Assessment of prostate cancer with integrated CTperfusion using a sector-wise approach. Turk J Urol. 2017 Jun; 43 (2): 152–157. doi:10.5152/tud.2017.11455.; Weinreb J.C., Barentsz J.O., Choyke P.L., Cornud F., Haider M.A., Macura K.J., Thoeny H.C. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. European Urology. 2016; 69 (1): 16–40.; Humphrey P.A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol. 2004 Mar; 17 (3): 292–306.; https://www.siboncoj.ru/jour/article/view/854

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20