Showing 1 - 20 results of 20 for search '"персонализированное лечение"', query time: 0.58s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    Contributors: Исследование не имело спонсорской поддержки

    Source: Pharmacogenetics and Pharmacogenomics; № 2 (2025); 23-29 ; Фармакогенетика и фармакогеномика; № 2 (2025); 23-29 ; 2686-8849 ; 2588-0527

    File Description: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/330/287; WHO. Global Tuberculosis Report 2024. – Geneva: World Health Organization, 2024. – P. 1-68. URL: https://worldhealthorg.shinyapps.io/tb_profiles/; Guglielmetti L, Panda S, Abubakirov A, et al. Equitable, personalised medicine for tuberculosis: treating patients, not diseases. Lancet Respir Med. 2025 May;13(5):382-385. doi:10.1016/S2213-2600(25)00080-3.; Thu VTA, Dat LD, Jayanti RP, et al. Advancing personalized medicine for tuberculosis through the application of immune profiling. Front Cell Infect Microbiol. 2023 Feb 10;13:1108155. doi:10.3389/fcimb.2023.1108155.; Клиническая фармакогенетика: учебное. пособие для студентов медицинских вузов / Д. А. Сычев [и др.]; под. ред. В. Г. Кукеса, Н. П. Бочкова. Москва: ГЭОТАР-Медиа, 2007. 245 с. ISBN 978-5-9704-0458-4.; Можокина Г.Н., Казаков А.В., Елистратова Н.А., Попов С.А. Ферменты биотрансформации ксенобиотиков и персонификация режимов лечения больных туберкулезом. Туберкулёз и болезни лёгких. 2016;94(4):6-12. doi:10.21292/2075-1230-2016-94-4-6-12.; Verma R, da Silva KE, Rockwood N, Wasmann RE, Yende N, Song T, Kim E, Denti P, Wilkinson RJ, Andrews JR. A Nanopore sequencing-based pharmacogenomic panel to personalize tuberculosis drug dosing. medRxiv. Am J Respir Crit Care Med. 2024 Jun 15;209(12):1486-1496. doi:10.1164/rccm.202309-1583OC.; Кантемирова Б.И., Галимзянов Х.М., Степанова Н.А., и др. Перспективы фармакогенетического тестирования для разработки алгоритмов персонализированного лечения тубекулёза органов дыхания в Астраханском регионе. Антибиотики и Химиотерапия. 2015;60(910):29-32.; Azuma J, Ohno M, Kubota R, et al; Pharmacogenetics-based tuberculosis therapy research group. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013 May;69(5):1091-101. doi:10.1007/s00228-012-1429-9.; Краснова Н.М., Евдокимова Н.Е., Егорова А.А., и др. Влияние типа ацетилирования на частоту гепатотоксичности изониазида у пациентов с впервые выявленным туберкулезом органов дыхания. Антибиотики и Химиотерапия. 2020;65(7-8):31-36. doi:10.37489/02352990-2020-65-7-8-31-36.; Yang S, Hwang SJ, Park JY, et al. Association of genetic polymorphisms of CYP2E1, NAT2, GST and SLCO1B1 with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis. BMJ Open. 2019;9(8):e027940. doi:10.1136/bmjopen-2018-027940.; Иванова Д.А., Галкина К.Ю., Борисов С.Е., и др. Фармакогенетические методы в оценке риска гепатотоксических реакций при лечении впервые выявленных больных туберкулезом. Туберкулез и социально значимые заболевания. 2018;(3):43-48.; Проблемы лекарственной устойчивости микобактерий / под ред. Е.М. Богородской, Д.А. Кудлая, В.И. Литвинова. М.: МНПЦБТ. 2021. 504 с. ISBN 978-5-89180-134-9.; Haas DW, Abdelwahab MT, van Beek SW, et al. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J Infect Dis. 2022 Aug 12;226(1):147-156. doi:10.1093/infdis/jiac024.; Annisa N, Afifah NN, Santoso P, et al. Pharmacogenetics and Pharmacokinetics of Moxifloxacin in MDR-TB Patients in Indonesia: Analysis for ABCB1 and SLCO1B1. Antibiotics (Basel). 2025 Feb 16;14(2):204. doi:10.3390/antibiotics14020204.; Клинические рекомендации. Туберкулез у взрослых. 2024. Министерство здравоохранения Российской Федерации: официальный сайт. Доступно по: https://cr.minzdrav.gov.ru/recomend/16_3. Ссылка активна на 15.06.2025; Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Доступно по: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm. Дата обращения: Ссылка активна на 15.06.2025; Захаров А.В., Еремеев В.В., Чумоватов Н.В., и др. Клиникогенетические ассоциации полиморфных аллелей гена CYP3A4 у больных туберкулезом легких с лекарственной устойчивостью возбудителя. Вестник ЦНИИТ. 2024;8(4):17-30. doi:10.57014/2587-6678-2024-8-4-17-30.; Юнусбаева М.М., Бородина Л.Я., Билалов Ф.С. и др. Исследование влияния полиморфизма генов CYP3A5, CYP2B6 и NAT2 на эффективность лечения туберкулёза с множественной лекарственной устойчивостью. Фармакогенетика и фармакогеномика. 2020;(2):26-27. doi:10.37489/2588-0527-2020-2-26-27.; Wang N, Chen X, Hao Z, et al. Association of ABCG2 polymorphisms with susceptibility to anti-tuberculosis drug-induced hepatotoxicity in the Chinese population. Xenobiotica. 2022 May;52(5):527-533. doi:10.1080/00498254.2022.2093685.

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 4, № 3 (2019); 127-137 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2095/1896; Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Med. 2016; 13(10): e1002152. doi:10.1371/journal.pmed.1002152; Васильева И.А., Белиловский Е.М., Борисов С.Е., Стерликов С.А. Заболеваемость, смертность и распространенность как показатели бремени туберкулёза в регионах ВОЗ, странах мира и в Российской Федерации. Часть 1. Заболеваемость и распространенность туберкулёза. Туберкулёз и болезни лёгких. 2017; 95(6): 9-21. doi:10.21292/2075-1230-2017-95-6-9-21; Хромова П.А., Огарков О.Б., Жданова С.Н., Синьков В.В., Моисеева Е.Я., Цыренова Т.А., и др. Выявление высокотрансмиссивных генотипов возбудителя в клиническом материале для прогноза неблагоприятного течения туберкулёза. Клиническая лабораторная диагностика.2017; 10(62): 622-627. doi:10.18821/0869-2084-2017-62-10-622-627; Жданова С.Н., Огарков О.Б., Винокурова М.К., Алексеева Г.И., Кравченко А.Ф., Савилов Е.Д. Моделирование эпидемического распространения генотипа Beijing Mycobacterium tuberculosisв Республике Саха (Якутия). Туберкулёз и болезни лёгких.2017; 7(95): 40-47. doi:10.21292/2075-1230-2017-95-7-40-47; Савилов Е.Д., Синьков В.В., Огарков О.Б. Эпидемиология туберкулёза на Евро-Азиатском континенте: оценка глобального движения штаммов генотипа «Пекин».Иркутск: РИО ГБОУ ДПО ИГМАПО; 2013.; Schulte PA, Perera FP. Molecular Epidemiology: Principles and Practices. Orlando, FL: Academic Press; 1993.; van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol.1995; 33(12): 3234-3238.; Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol2002; 10(1): 45-52.; Sinkov VV, Savilov ED, Ogarkov OB. Reconstruction of the epidemic history of the Beijing genotype of Mycobacterium tuberculosis in Russia and former Soviet countries using spoligotyping. Mol Genet Microbiol Virol. 2011; 26(3): 120-125. doi:10.3103/S0891416811030050; Огарков О.Б., Савилов Е.Д., Синьков В.В. К истории заноса и распространения «Пекинского» генотипа Mycobacterium tuberculosis на территории России и постсоветском пространстве. Туберкулёз и болезни лёгких. 2011; 5(88): 84-85.; Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G, Tagliazucchi S, et al. Genomic characterization of nontuberculous mycobacteria. Sci Rep. 2017; 7: 45258. doi:10.1038/srep45258; Rogall T, Wolters J, Flohr T, Böttger E.C. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol.1990; 40(4): 323-330. doi:10.1099/00207713-40-4-323; Brites D, Gagneux S. Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol.2012; 12(4): 678-685. doi:10.1016/j.meegid.2011.08.010; Jang J, Becq J, Gicquel B, Deschavanne P, Neyrolles O. Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol. 2008; 16(7): 303-308. doi:10.1016/j.tim.2008.04.005; VanderVen BC, Huang L, Rohde KH, Russell DG. The minimal unit of infection: Mycobacterium tuberculosis in the macrophage. In: Jacobs Jr W, McShane H, Mizrahi V, Orme I (ed.). Tuberculosis and the Tubercle Bacillus. Second Edition. ASM Press, Washington, DC; 2017: 635-652. doi:10.1128/microbiolspec.TBTB2-0025-2016; Dheda K, Barry CE, Maartens G. Tuberculosis. Lancet (London, England). 2016; 387(10024): 1211-1226. doi:10.1016/S0140-6736(15)00151-8; Brites D, Gagneux S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev. 2015; 264(1): 6-24. doi:10.1111/imr.12264; Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013; 45(10): 1176-1182. doi:10.1038/ng.2744; Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2012; 367(1590): 850-859. doi:10.1098/rstb.2011.0316; Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S, et al. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol. 2009; 47(4): 1119-1128. doi:10.1128/JCM.02142-08; Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet. 2002; 32(4): 569-577.; Meena LS, Rajni. Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 2010; 277(11): 2416-2427. doi:10.1111/j.1742-4658.2010.07666.x; Stamm CE, Collins AC, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev. 2015; 264(1): 204-219. doi:10.1111/imr.12263; O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in tuberculosis. Annu Rev Immunol. 2013; 31: 475-527. doi:10.1146/annurev-immunol-032712-095939; Azad AK, Sadee W, Schlesinger LS. Innate immune gene polymorphisms in tuberculosis. Infect Immun. 2012; 80(10): 3343-3359. doi:10.1128/IAI.00443-12; Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol. 2011; 2011: 405310. doi:10.1155/2011/405310; Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med. 2003; 197(1): 121-127.; Yi L, Zhang K, Mo Y, Zhen G, Zhao J. The association between CD209 gene polymorphisms and pulmonary tuberculosis susceptibility: a meta-analysis. Int J Clin Exp Pathol. 2015; 8(10): 12437-12445.; Chang K, Deng S, Lu W, Wang F, Jia S, Li F, et al. Association between CD209 -336A/G and -871A/G polymorphisms and susceptibility of tuberculosis: a meta-analysis. PloS One. 2012; 7(7): e41519. doi:10.1371/journal.pone.0041519; Ogarkov O, Mokrousov I, Sinkov V, Zhdanova S, Antipina S, Savilov E. ‘Lethal’ combination of Mycobacterium tuberculosis Beijing genotype and human CD209 -336G allele in Russian male population. Infect Genet Evol. 2012; 12(4): 732-736. doi:10.1016/j.meegid.2011.10.005; Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A. Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med.2000; 192(12): 1797-808.; Bonar A, Chmiela M, Rudnicka W, Rózalska B. Mannose-binding lectin enhances the attachment and phagocytosis of mycobacteria in vitro. Arch Immunol Ther Exp (Warsz). 2005; 53(5): 437-441.; Ahmadi F, Ghadiri A, NashibI R, Roozbeh F, Alizadeh-Navaei R. Serum mannan-binding lectin in patients with pulmonary tuberculosis: Its lack of a relationship to the disease and response to treatment. Med J Islam Repub Iran. 2017; 31: 66. doi:10.14196/mjiri.31.66; Liu C, He T, Rong Y, Du F, Ma D, Wei Y, et al. Association of mannose-binding lectin polymorphisms with tuberculosis susceptibility among Chinese. Sci Rep. 2016; 6: 36488. doi:10.1038/srep36488; Chen M, Liang Y, Li W, Wang M, Hu L, Abuaku B.K, et al. Impact of MBL and MASP-2 gene polymorphism and its interaction on susceptibility to tuberculosis. BMC Infect Dis. 2015; 15: 151. doi:10.1186/s12879-015-0879-y; Amiri A, Sabooteh T, Shahsavar F, Anbari K, Pouremadi F. Mannose-binding Lectin gene polymorphisms in susceptibility to pulmonary tuberculosis among the Lur population of Lorestan Province of Iran. Genom Data. 2017; 12: 146-150. doi:10.1016/j.gdata.2017.05.005; Guo YL, Liu Y, Ban WJ, Sun Q, Shi GL. Association of mannose-binding lectin gene polymorphisms with the development of pulmonary tuberculosis in China. BMC Infect Dis. 2017; 17(1): 210. doi:10.1186/s12879-017-2310-3; Chalmers JD, Matsushita M, Kilpatrick DC, Hill AT. No strong relationship between components of the lectin pathway of complement and susceptibility to pulmonary tuberculosis. Inflammation. 2015; 38(4): 1731-1737. doi:10.1007/s10753-015-0150-0; Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, et al. Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PloS One. 2011; 6(6): e20908. doi:10.1371/journal.pone.0020908; Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT, et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 2008; 4(3): e1000034. doi:10.1371/journal.ppat.1000034; van Crevel R, Parwati I, Sahiratmadja E, Marzuki S, Ottenhoff TH, Netea MG, et al. Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis. 2009; 200(11): 1671-1674. doi:10.1086/648477; Takahashi K, Hasegawa Y, Abe T, Yamamoto T, Nakashima K, Imaizumi K, et al. SLC11A1 (formerly NRAMP1)polymorphisms associated with multidrug-resistant tuberculosis. Tuberculosis (Edinb). 2008; 88(1): 52-57. doi:10.1016/j.tube.2007.08.008; Dunlap MD, Howard N, Das S, Scott N, Ahmed M, Prince O, et al. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol. 2018; 11(6): 1727-1742. doi:10.1038/s41385-018-0071-y; Treerat P, Prince O, Cruz-Lagunas A, Muñoz-Torrico M, Salazar-Lezama MA, Selman M, et al. Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol. 2017; 10(4): 1069-1081. doi:10.1038/mi.2017.15; Behrends J, Renauld JC, Ehlers S, Hölscher C. IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection. PloS One. 2013; 8(2): e57379. doi:10.1371/journal.pone.0057379; Thuong NT, Tram TT, Dinh TD, Thai PV, Heemskerk D, Bang ND, et al. MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes Immun. 2016; 17(7): 419-425. doi:10.1038/gene.2016.43; Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol. 2016; 14(11): 677-691. doi:10.1038/nrmicro.2016.131; Ates LS, van der Woude AD, Bestebroer J, van Stempvoort G, Musters RJ, Garcia-Vallejo JJ, et al. The ESX-5 system of pathogenic mycobacteria is involved in capsule integrity and virulence through its substrate PPE10. PLoS Pathog. 2016; 12(6): e1005696. doi:10.1371/journal.ppat.1005696; Forrellad MA, Klepp LI, Gioffré A, Sabio García J, Morbidoni HR, de la Paz Santangelo M, et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013; 4(1): 3-66. doi:10.4161/viru.22329; Choi SY, Kwon KW, Kim H, Choi HH, Shin SJ. Vaccine potential of ESAT-6 protein fused with consensus CD4+ T-cell epitopes of PE/PPE proteins against highly pathogenic Mycobacterium tuberculosis strain HN878. Biochem Biophys Res Commun. 2018; 503(4): 2195-2201. doi:10.1016/j.bbrc.2018.06.017; Ates LS, Dippenaar A, Ummels R, Piersma SR, van der Woude AD, van der Kuij K, et al. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol. 2018; 3(2): 181-188. doi:10.1038/s41564-017-0090-6; Mokrousov I, Narvskaya O, Vyazovaya A, Millet J, Otten T, Vishnevsky B, et al. Mycobacterium tuberculosis Beijing genotype in Russia: in search of informative variable-number tandem-repeat loci. J Clin Microbiol. 2008; 46(11): 3576-3584. doi:10.1128/JCM.00414-08; Drobniewski F, Balabanova Y, Nikolayevsky V, Ruddy M, Kuznetzov S, Zakharova S, et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA. 2005; 293(22): 2726-2731. doi:10.1001/jama.293.22.2726; Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015; 47(3): 242-249. doi:10.1038/ng.3195; Mokrousov I, Ly HM, Otten T, Lan NN, Vyshnevskyi B, Hoffner S, et al. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res. 2005; 15(10): 1357-1364. doi:10.1101/gr.384060; Синьков В.В., Савилов Е.Д., Огарков О.Б. Эпидемиология туберкулёза в России: эпидемиологические и исторические доказательства в пользу сценария распространения «Пекинского» генотипа M. tuberculosis в XX веке. Эпидемиология и вакцинопрофилактика. 2010; 6(55): 23-28.; Савилов Е.Д., Синьков В.В., Огарков О.Б. Пекинский генотип М. Tuberculosis. Эпидемиология и инфекционные болезни. 2010; 4: 50-53.; Mokrousov I. Genetic geography of Mycobacterium tuberculosis Beijing genotype: a multifacet mirror of human history? Infect Genet Evol. 2008; 8(6): 777-785. doi:10.1016/j.meegid.2008.07.003; Mokrousov I, Narvskaya O, Limeschenko E, Vyazovaya A, Otten T, Vyshnevskiy B. Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol. 2004; 42(6): 2438-2444. doi:10.1128/JCM.42.6.2438-2444.2004; Mokrousov I, Narvskaya O, Vyazovaya A, Otten T, Jiao WW, Gomes LL, et al. Russian “successful” clone B0/W148 of Mycobacterium tuberculosis Beijing genotype: a multiplex PCR assay for rapid detection and global screening. J Clin Microbiol. 2012; 50(11): 3757-3759. doi:10.1128/JCM.02001-12; Bespyatykh J, Smolyakov A, Guliaev A, Shitikov E, Arapidi G, Butenko I, et al. Proteogenomic analysis of Mycobacterium tuberculosis Beijing B0/W148 cluster strains. J Proteomics. 2019; 192: 18-26. doi:10.1016/j.jprot.2018.07.002; Narvskaya O, Otten T, Limeschenko E, Sapozhnikova N, Graschenkova O, Steklova L, et al. Nosocomial outbreak of multidrug-resistant tuberculosis caused by a strain of Mycobacterium tuberculosis W-Beijing family in St. Petersburg, Russia. Eur J Clin Microbiol Infect Dis. 2002; 21(8): 596-602. doi:10.1007/s10096-002-0775-4; Borrell S, Gagneux S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2009; 13(12): 1456-1466.; Billington OJ, McHugh TD, Gillespie SH. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother.1999; 43(8): 1866-1869.; Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun. 2002; 70(9): 4955-4960.; Lasunskaia E, Ribeiro SC, Manicheva O, Gomes LL, Suffys PN, Mokrousov I, et al. Emerging multidrug resistant Mycobacterium tuberculosis strains of the Beijing genotype circulating in Russia express a pattern of biological properties associated with enhanced virulence. Microbes Infect. 2010; 12(6): 467-475. doi:10.1016/j.micinf.2010.02.008; Ritter C, Lucke K, Sirgel FA, Warren RW, van Helden PD, Böttger EC, et al. Evaluation of the AID TB resistance line probe assay for rapid detection of genetic alterations associated with drug resistance in Mycobacterium tuberculosis strains. J Clin Microbiol. 2014; 52(3): 940-946. doi:10.1128/JCM.02597-13; Nathavitharana RR, Hillemann D, Schumacher SG, Schlueter B, Ismail N, Omar SV, et al. Multicenter noninferiority evaluation of hain genotype MTBDRplus version 2 and Nipro NTM+MDRTB line probe assays for detection of rifampin and isoniazid resistance. J Clin Microbiol. 2016; 54(6): 1624-1630. doi:10.1128/JCM.00251-16; Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol. 2010; 48(1): 229-237. doi:10.1128/JCM.01463-09; García-Basteiro A.L, DiNardo A, Saavedra B, Silva D.R, Palmero D, Gegia M, et al. Point of care diagnostics for tuberculosis. Pulmonology. 2018; 24(2): 73-85. doi:10.1016/j.rppnen.2017.12.002; Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015; 53(1): 1-5. doi:10.1007/s12275-015-4656-9; Kostera J, Leckie G, Tang N, Lampinen J, Szostak M, Abravaya K, et al. Analytical and clinical performance characteristics of the Abbott RealTime MTB RIF/INH Resistance, an assay for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis in pulmonary specimens. Tuberculosis (Edinb).2016; 101: 137-143. doi:10.1016/j.tube.2016.09.006; Scott L, David A, Noble L, Nduna M, Silva PD, Black A, et al. Performance of the Abbott Real Time MTB and MTB RIF/INH Assays in a Setting of High Tuberculosis and HIV co-infection in South Africa. J Clin Microbiol. 2017; 55(8): 2491-2501. doi:10.1128/JCM.00289-17; Horita N, Yamamoto M, Sato T, Tsukahara T, Nagakura H, Tashiro K, et al. Sensitivity and specificity of Cobas TaqMan MTB real-time polymerase chain reaction for culture-proven Mycobacterium tuberculosis: meta-analysis of 26999 specimens from 17 Studies. Sci Rep. 2015; 5: 18113, doi:10.1038/srep18113; Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015; 7(1): 51. doi:10.1186/s13073-015-0164-0; Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks A.M, Emerson C, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J. 2017; 50(6): 1701354. doi:10.1183/13993003.01354-2017; McNerney R, Zignol M, Clark TG. Use of whole genome sequencing in surveillance of drug resistant tuberculosis. Expert Rev Anti Infect Ther. 2018; 16(5): 433-442. doi:10.1080/14787210.2018.1472577; Satta G, Atzeni A, McHugh TD. Mycobacterium tuberculosis and whole genome sequencing: a practical guide and online tools available for the clinical microbiologist. Clin Microbiol Infect. 2017; 23(2): 69-72. doi:10.1016/j.cmi.2016.09.005; Walker TM, Merker M, Kohl TA, Crook DW, Niemann S, Peto TE. Whole genome sequencing for M/XDR tuberculosis surveillance and for resistance testing. Clin Microbiol Infect. 2017; 23(3): 161-166. doi:10.1016/j.cmi.2016.10.014; Pankhurst LJ, Del Ojo Elias C, Votintseva AA, Walker TM, Cole K, Davies J, et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med. 2016; (1): 49-58. doi:10.1016/S2213-2600(15)00466-X; Phelan J, O’Sullivan DM, Machado D, Ramos J, Whale AS, O’Grady J, et al. The variability and reproducibility of whole genome sequencing technology for detecting resistance to anti-tuberculous drugs. Genome Med. 2016; 8(1): 132. doi:10.1186/s13073-016-0385-x; Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo D.M, Nikolayevskyy V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect. 2017; 23(2): 61-68. doi:10.1016/j.cmi.2016.09.008; https://www.actabiomedica.ru/jour/article/view/2095

  16. 16
  17. 17
    Academic Journal

    Source: Siberian journal of oncology; Том 15, № 3 (2016); 97-101 ; Сибирский онкологический журнал; Том 15, № 3 (2016); 97-101 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-3

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/357/352; Трахтенберг А.Х., Колбанов К.И. Рак легкого. М., 2012. 176 с.; Шатохина С.Н., Захарова Н.М., Дедова М.Г., Самбулов В.И., Шабалин В.Н. Морфологический маркер прогрессии новообразования при раке гортани // Вопросы онкологи. 2013. Т. 59, № 2. С. 66–70.; Юмов Е.Л., Цыганов М.М., Литвяков Н.В., Полищук Т.В., Миллер С.В., Родионов Е.О., Тузиков С.А. Экспрессия генов множественной лекарственной устойчивости и монорезистентности при немелкоклеточном раке легкого // Сибирский онкологический журнал. 2014. № 1. С. 16–22.; Goldstraw P., Crowley J., Chansky K., Giroux D.J., Groome P.A., Rami-Porta R., Postmus P.E., Rusch V., Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours // J. Thorac. Oncol. 2007. Vol. 2. P. 706–714.; Lan J., Huang H.Y., Lee S.W., Chen T.J., Tai H.C., Hsu H.P., Chang K.Y., Li C.F. TOP2A overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma // Tumor Biol. 2014. Vol. 35 (1). P. 179–187. doi:10.1007/s13277-013-1022-6.; Wei C.H., Gorgan T.R., Elashoff D.A., Hines O.J., Farrell J.J., Donahue T.R. A meta-analysis of gemcitabine biomarkers in patients with pancreatico-biliary cancers // Pancreas. 2013. 42 (8). P. 1303–1310. doi:10.1097/MPA.0b013e3182a23ae4.; https://www.siboncoj.ru/jour/article/view/357

  18. 18
  19. 19
  20. 20