Εμφανίζονται 1 - 20 Αποτελέσματα από 20 για την αναζήτηση '"пероральные сахароснижающие препараты"', χρόνος αναζήτησης: 0,61δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; № 2 (2009); 9-14 ; Трансплантология; № 2 (2009); 9-14 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2009-0-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/250/312; Hathaway D.K., Tolley E.A., Blakely M.L. et al. Development of an index to predict post-transplant diabetes mellitus. Clin Transplant 1994;7:330—8.; Friedman E.A., Shyh T., Beyer M.M. et al. Posttransplant diabetes in kidney transplant recipients. Am J Nephrol 1985;5: 196—202.; Vincenti F., Friman S., Scheuermann E. et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transp 2007;7:1506—14.; Howard A. Management of new-onset diabetes mellitus in the kidney transplant recipient. Medscape Transplant 2004; 14 Jul.; Thomas M.C, Moran J., Mathew T.H. et al. Early peri-operative hyperglycaemia and renal allograft rejection in patients without diabetes. BMC Nephrology 2000;1:1.; Pourmand G., Ebrahimi M.R., Mehrsai A.R., Taheri M. Patient blood glucose levels before and after kidney transplantation. Transplant Proc 2000;32(3):566—8.; Min C., Kang E., Yu S.H. et al. Advanced glycation end products induce apoptosis and pro-coagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res Clin Pract 1999;46(3): 197—202.; Pavlovic D., Van de Winkel M., Van der Auwera B. et al. Effect of interferongamma and glucose on major histo-compatibility complex class I and class II expression by pancreatic beta- and non-beta-cells. J Clin Endocrinol Metab 1997;82(7):2329—36.; Foster K.J., Alberti K.G., Binder C. et al. Lipid metabolites and nitrogen balance after abdominal surgery in man. Br J Surg 1979;66(4):242—5.; Spencer C.M., Goa K.L., Gillis J.C. Tacrolimus: an update of its pharmacology and clinical efficacy in the management of organ transplantation. Drugs 1997;54: 925—75.; Jindal R.M., Sidner R.A., Milgrom M.L. Post-transplant diabetes mellitus. The role of immunosuppression. Drug Saf 1997;16: 242—57.; Pirsch J.D., Miller J., Deierhoi M.H. et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. Transplantation 1997;63:977—83.; Cavaille-Coll M.W., Elashoff M.R. Commentary on a comparison of tacrolimus and cyclosporine for immunosuppression after cadaveric renal transplantation. Transplantation 1998;65:142—3.; Marchetti P., Navalesi R. The metabolic effects of cyclosporine and tacrolimus. J Endocrinol Invest 2000;23:482—90.; Heisel O., Heisel R., Balshaw R., Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant 2004;4;583—95.; Jain A., Khanna A., Molmenti E.P. et al. Immunosuppressive therapy. Surg Clin North Am 1999;79:59—76.; Johnson C., Ahsan N., Gonwa T. et al. Randomized trial of tacrolimus in combination with azathioprine or mycophenolate mofetil after cadaveric kidney transplantation. Transplantation 2000;63;834—41.; Lazzaro C., McKechnie T., McKenna M. Tacrolimus versus cyclosporin in renal transplantation in Italy: cost-minimisation and cost-effectiveness analyses. J Nephrol 2002;15:580—8.; Vincenti F., Jensik S.C., Filo R.S. et al. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation 2002;73:775—82.; Weir M.R., Fink J.C. Risk for post-transplant diabetes mellitus with current immunosuppressive medications. Am J Kidney Dis 1999;34:1—13.; Hirano Y., Fujihira S., Ohara K. et al. Morphological and functional changes of islets of Langherans in FK506-treated rats. Transplantation 1992;53:889—94.; Martin F., Bedoya F.J. Mechanisms of action of cyclosporine A on islet alfa-and beta cells. Effects on cAMP and calcium dependent pathways. Life Sci 1991;49:1915—21.; Redmond J.B., Olson L.K., Armstrong M.B. et al. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J Clin Invest 1996;98: 2786—93.; Ishizuka J., Guiuzza K.K., Wassmuth Z. et al. Effects of FK506 and cyclosporine on dynamic insulin secretion from isolated dog pancreatic islet. Transplantation 1993;56:1486—90.; Noguchi N., Takasawa S., Nata K. et al. Cyclic ADP-ribose binds to FK506 binding protein 12.6 to release calcium++ from islet microsome. J Biol Chem 1997;272:3133—6.; Lanerolle R.D., de Abrew K., Fernando D.J., Sheriff M.H. Posttransplant diabetes in Sri Lanka. Transplant Proc 1996;28:1945—7.; Berwerck S., Kahl A., Bechstein W. et al. Clinical use of the euglicemic hyperinsulinemic clamp for diagnosis of tacrolimusinduced insulin resistance after combined pancreas-kidney transplantation. Transplant Proc 1998;30:1944—5.; Basadonna G., Montorsi F., Dakizaki K., Merrell R.C. Cyclosporine A and islet function. Am J Surg 1988;156:191—3.; Bani Sacchi T., Bani D., Filipponi F. et al. Immunocytochemical and ultra structural changes of islet cells in rats treated longterm with cyclosporine at immunotherapeutic doses. Transplantation 1990;49:982—7.; Van Hoff J.P., Christiaans M.H., Ven Duijnhoven E.M. et al. Glucose metabolic disorder after transplantation. Am J Transplant 2007;7:1435—6.; Ciancio G., Burke G., Gaynor J. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. Transplantation 2004;77:252—8.; Maes B.D., Kuypers D., Messian T. et al. Post-transplan-tation diabetes mellitus in FK506-treated renal transplant recipients: analysis of incidence and risk factors. Transplantation 2001;72:1655—61.; Pagano G., Cavalco-Perin P., Cassader M. et al. An in vivo and in vitro study of the mechanism of prednisoneinduced insulin resistance in healthy subjects. J Clin Invest 1983;72:1814—20.; Shapiro R., Jordan M.L., Scantlebury V.P. et al. A prospective, randomized trial of FK506/prednisone vs FK506/azathioprine/prednisone in renal transplant patients. Transplant Proc 1995;27:814—7.; Christiansen E., Andersen H., Rasmusse K. et al. Pancreatic b-cell function and glucose metabolism in human segmental pancreas and kidney transplantation. Am Physiol Soc 1993;264(3):441—9.; Andrews R.C., Wolker B.R. Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci 1999;96:513—23.; Henriksen J.E., Alford F., Ward G.M., Beck-Nielsen H. Risk and mechanism for dexamethazone-induced deterioration of glucose tolerance in non-diabetic first degree relatives of NIDDM patients. Diabetologia 1997;40:1439—48.; Hjelmesaeth J., Hartmann A., Kosstad J. et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation 1997;64:979—83.; Jawad F., Rizvi S.A. Post-transplant diabetes mellitus in live-re-lated renal transplantation. Transplant Proc 2000;32:1888.; Boots J.M., Van Duijnhoven E.M., Christiaans M.H. et al. Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J Am Soc Nephrol 2002;13:221—7.; Vanrenterghem Y. Strategies to reduce or replace steroid dosing. Transplant Proc 1999;31 (Suppl 8A):7—10.; Christiansen E., Tibell A., Volund A.A. et al. Metabolism of oral glucose in pancreas transplant recipients with normal and impaired glucose tolerance. J Clin Endocrinol Metab 1997;82:2299—307.; Gruessner R.W. Tacrolimus in pancreas transplantation: a multi-center analysis. Tacrolimus Pancreas Study Group. Clin Transplant 1997;11:299—312.; Gruessner R.W., Burke G.W., Stratta R. et al. A multi-center analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. Transplantation 1996;61:261—73.; Sumrani N.B., Delaney V., Ding Z. et al. Diabetes mellitus after renal transplantation in the cyclosporine era: an analysis of risk factors. Transplantation 1991;51:343—7.; Rao M., Jacob C.K., Shastry J.C. Post-renal transplant diabetes mellitus: a retrospective study. Nephrol Dial Transplant 1992;7:1039—42.; Keen H., Jarret R.J., Mc Cartney P. The ten-year follow-up of the Bedford survey (1962—1972): glucose tolerance and diabetes. Diabetologia 1982;22:73—8.; Vesco L., Busson M., Bedrossian J. et al. Diabetes mellitus after renal transplantation. Transplantation 1996;61:1475—8.; Kasiske B.L., Sneyder J.J., Gilbertson D., Matas A.J. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 2002;2(Suppl 3):225.; Knoll G.A., Bell R.C. Tacrolimus versus cyclosporin for immunosuppression in renal transplantation: meta-analysis of randomised trials. Br Med J 1999;318:1104—7.; Parikh C., Klem P., Wong C., Chan L. Obesity as an independent predictor of posttransplant diabetes mellitus (PTDM). Am J Transplant 2002;2(Suppl 3):420.; De Mattos A.M., Prather J., Al-Uzri A. et al. Autosomal dominant polycystic kidney disease (ADPKD) as risk factor for the development of posttransplant diabetes mellitus (PTDM). Am J Transplant 2002;2:359.; Cosio F.G., Pesavento T.E., Kim S. et al. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int 2002;62:1440—6.; Revanur V.K., Jardine A.G., Kingsmore D.B. et al. Influence of diabetes mellitus on patients and graft survival in recipients of kidney transplantation. Clin Transplant 2001;15:89—94.; Thomas M.C., Mathew P.H., Russ G.R. et al. Early perioperative glycemic control and allograft rejection in patients with diabetes mellitus: a pilot study. Transplantation 2001;72:1321—4.; Klahr S., Levey A.S., Beck G.J. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in renal disease study group. N Engl J Med 1994;330:877—84.; Noble N.A., Border W.A. Angiotensin II in renal fibrosis. Should TGF-beta rather than blood pressure be the therapeutic target? Semin Nephrol 1997;17:455—66.; Miles A.M., Sumrani N., Horowitz R. et al. Diabetes mellitus after renal transplantation. Transplantation 1998;65:380—4.; Schneider D.J., Nordt T.K., Sobel B.E. Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes 1993;42:1—7.; Maser R.E., Wolfson S.K. Jr., Ellis D. et al. Cardiovascular disease and arterial calcification in insulin-dependent diabetes mellitus: interrelations and risk factor profiles. Arterioscler Thromb 1991;11:958—65 [Abstract].; Laakso M., Pyorala K., Scarlund H., Voutilainen E. Lipid and lipoprotein abnormalities associated with coronary heart disease in patients with insulin-dependent diabetes mellitus. Arteriosclerosis 1986;6:679— 84 [Abstract].; Raine A.E.G. Cardiovascular complications after renal transplantation. In: P.J. Morris (ed.). Kidney transplantation: principles and practice. Philadelphia: PA, Saunders; 1988. p. 575—601.; Hjelmeseth J., Hartmann A., Midvedt K. et al. Metabolic cardiovascular syndrome after renal Transplantation. Nephrol Dial Transplant 2001;16:1047—52.; Von Kiparsky A., Frei D., Uhlschmid G. et al. Post-transplant diabetes mellitus in renal allograft recipients: a matched pair control study. Nephrol Dial Transplant 1990;5:220—5.; Chiu M.Y., Sprague S.M., Bruce D.S. et al. Analysis of fracture prevalence in kidneypancreas allograft recipients. J Am Soc Nephrol 1998;9:677—83.; Marchetti P. Strategies for risk reduction and management of post-transplant diabetes mellitus. Transplant Proc 2001;33(Suppl 5A):27—31.; https://www.jtransplantologiya.ru/jour/article/view/250

  5. 5
    Academic Journal

    Πηγή: Pharmacogenetics and Pharmacogenomics; № 1 (2018); 9-14 ; Фармакогенетика и фармакогеномика; № 1 (2018); 9-14 ; 2686-8849 ; 2588-0527

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/41/41; International Diabetes Federation (IDF). IDF Diabetes Atlas. 2017;8th edition: 7-11.; Аметов А.С. Сахарный диабет 2 типа. Проблемы и решения. - М.: ГЭОТАР-Медиа; 2017.; DeFronzo RA. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009 Apr;58(4):773-795. DOI:10.2337/db09-9028; Дедов И.И., Шестакова М.В., Аметов А.С. и др. Консенсус совета экспертов Российской ассоциации эндокринологов по инициации и интенсификации сахароснижающей терапии у больных сахарным диабетом 2 типа // Сахарный диабет. - 2011. - Т. 14. - № 4. - С. 6-17.; Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. - 8-й выпуск. - М.: Уп ПРИНТ; 2017. Сахарный диабет. - 2017; - 20(1S). - С.1-112.; Российские клинические рекомендации. Эндокринология / Под ред. И.И. Дедова, Г.А. Мельниченко. - М.: ГЭОТАР-Медиа; 2016. - С. 531-556.; Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes care. 2008;31:1-11.; Inzucchi SE, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015 Aug;38(8):e128-129. DOI:10.2337/dc15-0812; Viollet B., Guigas B., Sanz Garcia N., et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012 Mar;122(6): 253-270. DOI:10.1042/CS20110386; Bailey C. J., Wilcock C., Scarpello J. H. Metformin and the intestine. Diabetologia. 2008 Aug;51(8):1552-1553. DOI:10.1007/s00125-008-1053-5; Madiraju AK, Erion DM, Rahimi Y., et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014 Jun 26;510(7506):542-546. DOI:10.1038/nature13270; Prager R., Shernthaner G., Graf H. Effect of metformin on peripheral insulin sensitivity innon insulin dependent diabetes mellitus. Diabetes Metab. 1986;12(6):346-350.; Bailey CJ. The current drug treatment landscape for diabetes and perspectives for the future. Clin Pharmacol Ther. 2015 Aug;98(2):170-184. DOI:10.1002/cpt.144; Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology Consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. EndocrPract. 2009 Sep-0ct;15(6):540-559. DOI:10.4158/EP.15.6.540; Дедов И.И., Шестакова М.В., Аметов А.С. и др. Консенсус совета экспертов Российской ассоциации эндокринологов (РАЭ) по инициации и интенсификации сахароснижающей терапии СД 2 типа // Сахарный диабет. - 2011. - №1. - С. 95-105.; Вaggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007 May;132(6):2131-2157. DOI:10.1053/j.gastro.2007.03.054; Kim W., Egan J. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008 Dec;60(4):470-512. DOI:10.1124/pr.108.000604; Perfetti R. The role of GLP-1 in the regulation of the islet cell mass. Medscape Diabet Endocrinol. 2004;6(2):134-138.; Gautier JF, Choukem SP, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in Type 2 diabetes. Diabetes Metab. 2008 Feb;34 Suppl 2:S65-72. DOI:10.1016/S1262-3636(08)73397-4; Nauck M.A. Incretin-based therapies for Type 2 diabetes mellitus: properties, functions, and clinical implications. Am J. Med. 2011 Jan;124 (1 Suppl):S3-18. DOI:10.1016/j.amjmed.2010.11.002; Weyer C., Bogardus C., Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin Invest. 1999 Sep;104(6):787-94. DOI:10.1172/JCI7231; Клиническая фармакология: национальное руководство / Под ред. Ю.Б. Белоусова, В.Г. Кукеса, В.К. Лепахина, В.И. Петрова. - М.: ГЭОТАР-Медиа; 2009.; Рациональная фармакотерапия заболеваний эндокринной системы и нарушений обмена веществ. 2-е изд. / Под общ. ред. И.И. Дедова, Г.А. Мельниченко. - М.: ГЭОТАР-Медиа; 2013.; Серединин С.Б. Лекции по фармакогенетике. - М.: Издательство МИА; 2004. - С. 12-48.; Сычев Д.А. Фармакогенетическое тестирование: клиническая интерпретация результатов. - М.: 2011. - С. 8-15.; Клиническая фармакогенетика: учебное пособие / Под ред. В.Г. Кукеса, Н.П. Бочкова. - М.: ГЭОТАР-Медиа; 2007.; Aguilar-Bryan L., Bryan J. Molecular biology of adenosine triphosphate - sensitive potassium channels. Endocr Rev. 1999 Apr;20(2):101-135. DOI:10.1210/edrv.20.2.0361; Seino S., Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. ProgBiophys Mol Biol. 2003 Feb;81(2):133-176.; Flanagan SE, Clauin S., Bellanne-Chantelot C., et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009 Feb;30(2):170-180. DOI:10.1002/humu.20838; James C., Kapoor RR, Ismail D., et al. The genetic basis of congenital hyperinsulinism. J. Med Genet. 2009 May;46(5):289-299. DOI:10.1136/jmg.2008.064337; Thomas P., Ye Y., Lightner E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet. 1996 Nov;5(11):1809-1812.; Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl J. Med. 2004 Apr 29;350(18):1838-1849. DOI:10.1056/NEJMoa032922; Florez JC, Jablonski KA, Kahn SE, et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes. 2007 Feb;56(2):531-536. DOI:10.2337/db06-0966; Lang VY, Fatehi M., Light PE. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A. Pharmacogenet Genomics. 2012 Mar;22(3):206- 214. DOI:10.1097/FPC.0b013e32835001e7; Fatehi M., Raja M., Carter C., et al. The ATP-sensitive K. (+) channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity. Diabetes. 2012 Jan;61(1):241-249. DOI:10.2337/db11-0371; Florez JC, Hirschhorn J., Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet. 2003;4:257-291. DOI:10.1146/annurev.genom.4.070802.110436; Gloyn AL, Hashim Y., Ashcroft SJ, et al. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet Med. 2001 Mar;18(3):206-212.; Nikolac N., Simundic AM, Katalinic D., et al. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch Med Res. 2009 Jul;40(5):387-392. DOI:10.1016/j.arcmed.2009.06.006; Ragia G., Tavridou A., Petridis I., et al. Association of KCNJ11E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract. 2012 Oct;98(1):119-124. DOI:10.1016/j.diabres.2012.04.017; Sato R., Watanabe H., Genma R., et al. ABCC8 polymorphism (Ser1369Ala): influence on severe hypoglycemia due to sulfonylureas. Pharmacogenomics. 2010 Dec;11(12):1743-1750. DOI:10.2217/pgs.10.135; Li Q., Chen M., Zhang R., et al. KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol. 2014 Oct;41(10):748-754. DOI:10.1111/1440-1681; Sesti G., Laratta E., Cardellini M., et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5’-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J. Clin Endocrinol Metab. 2006 Jun;91(6):2334-2339. DOI:10.1210/jc.2005-2323; Holstein A., Hahn M., Stumvoll M., et al. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm Metab Res. 2009 May;41(5):387-390. DOI:10.1055/s-0029-1192019; El-Sisi AE, Hegazy sK, Metwally SS, et. al. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2011 Aug;2(4):155-164. DOI:10.1177/2042018811415985; Feng Y., Mao G., Ren X., et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care. 2008 Oct;31(10):1939-1944. DOI:10.2337/dc07-2248; Zhang H., Liu X., Kuang H., et al. Association of sulfonylurea receptor 1genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res Clin Pract. 2007 Jul;77(1):58-61. DOI:10.1016/j.diabres.2006.10.021; Jamaluddin JL, Huri HZ, Vethakkan SR. Clinical and genetic predictors of dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes mellitus. Pharmacogenomics. 2016 Jun;17(8):867-881. DOI:10.2217/pgs-2016-0010; Chiang YT, Ip W., Jin T. The role of the Wnt signaling pathway in incretin hormone production and function. Front Physiol. 2012 Jul 12;3:273. DOI:10.3389/fphys.2012.00273; Xiong X., Shao W., Jin T. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic ß-cells: the involvement of the Wnt signaling pathway effector ß-catenin. Islets. 2012 Nov-Dec;4(6):359-365. DOI:10.4161/isl.23345; Peng S., Zhu Y., L. B., et al. TCF7L2 gene polymorphisms and type 2 diabetes risk: a comprehensive and updated metaanalysis involving 121174 subjects. Mutagenesis. 2013 Jan;28(1):25-37. DOI:10.1093/mutage/ges048; Kirchhoff K., Machicao F., Haupt A., et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 2008; 51: 597-601.; Srinivasan S., Kaur V., Chamarthi B., et al. TCF7L2 Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care. 2018 Mar;41(3):554-561. DOI:10.2337/dc17-1386; Махрова И.А., Глотов О.С., Глебова М.А. и др. Эффективность применения метформина при ожирении и метаболическом синдроме у детей и подростков в зависимости от полиморфизма гена TCF7L2 // Медицинская генетика. - 2012. - 4(118). - С. 29-35.; Pearson ER, Donnelly LA, Kimber C., et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007 Aug;56(8):2178-2182. DOI:10.2337/db07-0440; Zimdahl H., Ittrich C., Graefe-Mody U., et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia. 2014 Sep;57(9):1869-1875. DOI:10.1007/s00125-014-3276-y

  6. 6
    Academic Journal

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 9, № 4 (2017); 335-349 ; Трансплантология; Том 9, № 4 (2017); 335-349 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2017-9-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/201/249; Хубутия М.Ш., Ржевская О.Н., Лазарева К.Е. Нарушение метаболизма глюкозы после трансплантации органов. Трансплантология 2009.(2):9–14.; Davidson J., Wilkinson A., Dantal J., et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation. 2003;75(10 Suppl):SS3–SS24. PMID:12775942 DOI:10.1097/01.TP.0000069952.49242.3E; Wilkinson A., Davidson J., Dotta F., et al. Guidelines for the treatment and management of new-onset diabetes after transplantation. Clin. Transplant. 2005;19(3):291–298. PMID:15877787 DOI:10.1111/j.1399-0012.2005.00359.x; Sharif A. Hecking M., de Vries AP., et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am. J. Transplant. 2014;14(9):1992–2000. PMID:25307034 DOI:10.1111/ajt.12850; Cosio F.G., Kudva Y., van der Velde M., et al. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 2005;67(6):2415–2421. PMID:15882287 DOI:10.1111/j.1523-1755.2005.00349.x; Hecking M., Kainz A., Werzowa J., et al. Glucose metabolism after renal transplantation. Diabetes Care. 2013;36(9):2763–2771. PMID:23656979 DOI:10.2337/dc12-2441; Vincenti F., Friman S., Scheuermann E., et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am. J. Transplant. 2007;7(6):1506–1514. PMID:17359512 DOI:10.1111/j.1600-6143.2007.01749.x; Chakkera H.A., Weil E.J., Pham P.T., et al. Can new-onset diabetes after kidney transplant be prevented? Diabetes Care. 2013;36(10):1406–1412. PMID:24065856; Hornum M., Jørgensen K.A., Hansen J.M., et al. New-onset diabetes mellitus after kidney transplantation in Denmark. Clin. J. Am. Soc. Nephrol. 2010;5(4):709–716. PMID:20167685 DOI:10.2215/CJN.05360709; Voytovich M.H., Simonsen C., Jenssen T., et al. Short-term treatment with rosiglitazone improves glucose tolerance, insulin sensitivity and endothelial function in renal transplant recipients. Nephrol. Dial. Transplant. 2005;20(2):413–418. PMID:15615809, DOI:10.1093/ndt/gfh641; Werzowa J., Hecking M., Haidinger M., et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebocontrolled clinical trial. Transplantation. 2013;95(3):456–462. PMID:23380864 DOI:10.1097/TP.0b013e318276a20e; Delaunay F., Khan A., Cintra A., et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J. Clin. Invest. 1997;1009(8):2094–2098. PMID:9329975 DOI:10.1172/JCI119743; Andrews R.C., Walker B.R. Glucocorticoids and insulin resistance: old hormones, new targets. Clin. Sci. (Lond.). 1999;96(5):513–523. PMID:10209084; Hjelmesaeth J., Hagen L.T., Asberg A., et al. The impact of short-term ciclosporin A treatment on insulin secretion and insulin sensitivity in man. Nephrol. Dial. Transplant. 2007;22(6):1743–1749. PMID:17299003 DOI:10.1093/ndt/gfl820; Gunnarsson R., Lundgren G., Magnusson G., et al. Steroid diabetes-A sign of overtreatment with steroids in the renal graft recipient? Scand. J. Urol. Nephrol. Suppl. 1980;54:135–138. PMID:7013032; Hjelmesaeth J., Hartmann A., Kofstad J., et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation. 1997;64(7):979–983. PMID:9381545; Yang W.C., Chen Y.S, Hsieh W.C., et al. Post-transplant Diabetes Mellitus in Renal Transplant Recipients – Experience in Buddhist Tzu Chi General Hospital. Tzu. Chi. Med. J. 2006;18(3):185–191.; Sumrani N.B., Delaney V., Ding Z.K., et al. Diabetes mellitus after renal transplantation in the cyclosporin era: an analysis of risk factors. Transplantation. 1991;51(2):343–347. PMID:1994525; Boudreaux J.P., McHugh L., Canafax D.M., et al. The impact of cyclosporine and combination immunosuppression on the incidence of posttransplant diabetes in renal allograft recipients. Transplantation. 1987;44(3):376–381. PMID:3307061; Von Kiparski A., Fred D., Uhlschmid G., et al. Post-transplant diabetes mellitus in renal allograft recipients: A matchedpair control study. Nephrol. Dial. Transplant. 1990;5(3):220–225. PMID:2113651; Wahlstrom H.E., Akimoto R., Endres D., et al. Recovery and hypersecretion of insulin and reversal of insulin resistance after withdrawal of shortterm cyclosporine treatment. Transplantation. 1992;53(6):1190–1195. PMID:1604471; Gillison S.L., Bartlett S.T., Curry D.L. Inhibition by cyclosporine of insulin secretion – a beta cell-specific alteration of islet tissue function. Transplantation. 1991;52(5):890–895. PMID:1683035; Cosio F.G., Hickson L.J., Griffin M.D., et al. Patient survival and cardiovascular risk after kidney transplantation: the challenge of diabetes. Am. J. Transplant. 2008;8(3):593–599. PMID:18294155 DOI:10.1111/j.1600-6143.2007.02101.x; Hricik D.E., Bartucci M.R., Moir E.J., et al. Effects of steroid withdrawal on posttransplant diabetes mellitus in cyclosporine-treated renal transplant recipients. Transplantation. 1991;51(2):374–377. PMID:1994531; Cosio F.G., Pesavento T.E., Kim S., et al. Patient survival after renal transplantation: IV. Impact of posttransplant diabetes. Kidney Int. 2002;62(4):1440–1446. PMID:12234317 DOI:10.1111/j.1523-1755.2002.kid582.x; Revanur V.K., Jardine A.G., Kingsmore D.B., et al. Influence of diabetes mellitus on patients and graft survival in recipients of kidney transplantation. Clin. Transplant. 2001;15(2):89–94. PMID:11264633; Thomas M.C., Mathew P.H., Russ G.R., et al. Early perioperative glycemic control and allograft rejection in patients with diabetes mellitus: a pilot study. Transplantation. 2001;72(7):1321–1324. PMID:11602863; Klahr S., Levey A.S., Beck G.J., et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in renal disease study group. N. Engl. J. Med. 1994;330(13):877–884. PMID:8114857 DOI:10.1056/NEJM199403313301301; Noble N.A., Border W.A. Angiotensin II in renal fibrosis. Should TGFbeta rather than blood pressure be the therapeutic target? Semin Nephrol. 1997;17(5):455–466. PMID:9316214; Sumrani N.B., Delaney V., Ding Z., et al. Diabetes mellitus after renal transplantation in the cyclosporine era : an analysis of risk factors. Transplantation. 1991;51(2):343–347. PMID:1994525; Miles A.M., Sumrani N., Horowitz R., et al. Diabetes mellitus after renal transplantation. Transplantation. 1998;65(3):380–384. PMID:9484755; Lanerolle R.D., de Abrew K., Fernando D.J., Sheriff M.H. Post-renal transplant diabetes in Sri Lanka. Transplant. Proc. 1996;28(10):1945–1947. PMID:8658956; Vesco L., Busson M., Bedrossian J., et al. Diabetes mellitus after renal transplantation. Transplantation. 1996;61(10):1475–1478. PMID:8633374; Raine A.E.G. Cardiovascular complications after renal transplantation. In: ed. Morris P.J. Kidney Transplantation: Principles and Practice. Philadelphia, PA, Saunders, 1988: 575–601.; Schneider D.J., Nordt T.K., Sobel B.E. Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes. 1993;42(1):1–7. PMID:8420806; Gruessner R.W. Tacrolimus in pancreas transplantation: A multi-center analysis. Tacrolimus Pancreas Study Group. Clin. Transplant. 1997;11(4):299–312. PMID:16298658 DOI:10.1016/j.transproceed.2005.09.020; Von Kiparsky A., Frei D., Uhlschmid G., et al. Post-transplant diabetes mellitus in renal allograft recipients: a matched pair control study. Nephrol. Dial. Transplant. 1990;5(3):220–225. PMID:2113651; Chiu M.Y., Sprague S.M., Bruce D.S., et al. Analysis of fracture prevalence in kidney pancreas allograft recipients. J. Am. Soc. Nephrol. 1998;9(4):677–683. PMID:9555671; Marchetti P. Strategies for risk reduction and management of posttransplant diabetes mellitus. Transplant. Proc. 2001;33(5A Suppl):S27–31. PMID:11498202; Roumie C.L., Hung A.M., Greevy R.A., et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann. Intern. Med. 2012;157(9):601–610. PMID:2312885; Thule P.M., Umpierrez G. Sulfonylureas: a new look at old therapy. Curr. Diab. Rep. 2014;14(4):473. PMID:24563333 DOI:10.1007/s11892-014-0473-5; Mocanu M.M., Maddock H.L., Baxter G.F., et al. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation. 2001;103(25):3111–3116. PMID:11425777; Inzucchi S.E. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 2002;287(3):360–372. PMID:11790216; Turk T., Pietruck F., Dolff S., et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am. J. Transplant. 2006;6(4):842–846. PMID:16539642 DOI:10.1111/j.1600-6143.2006.01250.x; Voytovich M.H., Haukereid C., Hjelmesaeth J., et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin. Transplant. 2007;21(2):246–251. PMID:17425753 DOI:10.1111/j.1399-0012.2006.00634.x; Cusi K., Consoli A., DeFronzo R.A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1996;81(11):4059–4067. PMID:8923861 DOI:10.1210/jcem.81.11.8923861; Kolata G.B. The phenformin ban: is the drug an imminent hazard? Science. 1979;203(4385):1094–1096. PMID:424735; Shaw J.S., Wilmot R.L., Kilpatrick E.S. Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet. Med. 2007;24(10):1160–1163. PMID:17672860 DOI:10.1111/j.1464-5491.2007.02221.x; Kurian B., Joshi, R., Helmuth A. Effectiveness and long-term safety of thiazolidinediones and metformin in renal transplant recipients. Endocr Pract. 2008;14(8):979–984. PMID:19095596, DOI:10.4158/EP.14.8.979; Hecking M., Werzowa J., Haidinger M., et al. Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol. Dial. Transplant. 2013;28(3):550–566. PMID:23328712 DOI:10.1093/ndt/gfs583; Sharif A. Should metformin be our antiglycemic agent of choice posttransplantation? Am. J. Transplant. 2011;11(7):1376–1381. PMID:21564529 DOI:10.1111/j.1600-6143.2011.03550.x; Jenssen T., Hartmann A. Emer ging treatments for post-transplantation diabetes mellitus. Nat. Rev. Nephrol. 2015;11(8):465-477. PMID:25917553 DOI:10.1038/nrneph.2015.59; Bajaj M., Suraamornkul S., Pratipanawatr T., et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes. 2003;52(6):1364–1370. PMID:12765945; Watkins P.B. Idiosyncratic liver injury: challenges and approaches. Toxicol. Pathol. 2005;33(1):1–5. PMID:15805049 DOI:10.1080/01926230590888306; Nissen S.E., Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007;356(24):2457–2471. PMID:17517853 DOI:10.1056/NEJMoa072761; Luther P., Baldwin D.Jr. Pioglitazone in the management of diabetes mellitus after transplantation. Am. J. Transplant. 2004;49(12):2135–2138. PMID:15575920 DOI:10.1111/j.1600-6143.2004.00613.x; Drucker D.J., Nauck M.A. The incretin system: glucagon-like peptide 1 receptor agonists and dipeptidyl peptidase 4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–1705. PMID:17098089 DOI:10.1016/S0140-6736(06)69705-5; Haidinger M., Werzowa J., Hecking M., et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation- a randomized, double-blind, placebo-controlled trial. Am. J. Transplant. 2014;14(1):115–123. PMID:24279801; Lane J.T., Odegaard D.E., Haire C.E., et al. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation. 2011;92(10):e56–e57. PMID:22067216 DOI:10.1097/TP.0b013e3182347ea4; Strom Halden T.A., Asberg A., Vik K., et al. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol. Dial. Transplant. 2014;29(4):926–933. PMID:24452849 DOI:10.1093/ndt/gft536; Kaakeh Y., Kanjee S., Boone K., Sutton J. Liraglutide-induced acute kidney injury. Pharmacotherapy. 2012;32(1):e7–e11. PMID:22392833 DOI:10.1002/PHAR.1014; Weise W.J., Sivanandy M.S., Block C.A., Comi R.J. Exenatide-associated ischemic renal failure. Diabetes Care. 2009;32(2):e22–e23. PMID:19171732 DOI:10.2337/dc08-1309; Nauck M.A., Del Prato S., DuránGarcía S. et al. Durability of glycaemic efficacy over 2 years with dapagliflozin versus glipizide as add-on therapies in patients whose type 2 diabetes mellitus is inadequately controlled with metformin. Diabetes Obes. Metab. 2014;16(11):1111–1120. PMID:24919526 DOI:10.1111/dom.12327; Yale J.F. Bakris G., Cariou B., et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes. Metab. 2014;16(10):1016–1027. PMID:24965700 DOI:10.1111/dom.12348; Kohan D.E., Fioretto P., Tang W., List J.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962–971. PMID:24067431 DOI:10.1038/ki.2013.356; Hornum M., Lindahl J.P., von ZurMuhlen B., et al. Diagnosis, management and treatment of glucometabolic disorders emerging after kidney transplantation: a position statement from the Nordic Transplantation Societies. Transpl. Int. 2013;26(11):1049–1060. PMID:23634804 DOI:10.1111/tri.12112; Yates C. J., Fourlanos S., Hjelmesaeth J., et al. New-onset diabetes after kidney transplantation-changes and challenges. Am. J. Transplant. 2012;12(4):820–828. PMID:22123607 DOI:10.1111/j.1600-6143.2011.03855.x; https://www.jtransplantologiya.ru/jour/article/view/201

  7. 7
  8. 8
    Academic Journal

    Συγγραφείς: Yakovleva, L. V., Bilyk, A. L.

    Πηγή: Management, economy and quality assurance in pharmacy; No. 3(47) (2016); 75-80 ; Управление, экономика и обеспечение качества в фармации; № 3(47) (2016); 75-80 ; Управління, економіка та забезпечення якості в фармації; № 3(47) (2016); 75-80 ; 2519-8807 ; 2311-1127

    Περιγραφή αρχείου: application/pdf

  9. 9
  10. 10
    Academic Journal

    Πηγή: Acta Biomedica Scientifica; № 6 (2015); 11-16 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/131/132; Гибельгаус М.А., Кремнева Л.В., Нелаев B.C., Крючев Н.В., Абатурова О.В. Оценка взаимосвязи уровня тропонина Т после коронарного шунтирования с клинико-ангиографическими характеристиками и показателями оперативного вмешательства у больных ИБС // Матер. V съезда кардиологов Уральского федерального округа. - Екатеринбург, 2011. - С. 94; Дедов И.И., Шестакова М.В. Алгоритмы специализированной медицинской помощи больным сахарным диабетом», 7 выпуск // Сахарный диабет. -2015. - № 18 (1S). - С. 1-112; Дедов И.И., Шестакова М.В., Максимова М.А. Федеральная целевая программа «Сахарный диабет»: Метод. рекомендации. - М., 2002; Комиссарова Е.С., Беляева Н.Г., Тезяева С.А., Стронгин Л.Г. Интенсивная инсулинотерапия у больных хирургического профиля с сахарным диабетом 2-го типа // Современные технологии в медицине. - 2013. - T. 5, № 1. - С. 64-69; Рекомендации по лечению стабильной ишемической болезни сердца. ESC 2013 // Российский кардиологический журнал. - 2014. - № 7 (111). - С. 7-79; ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart]., 34, 3035-3087.; ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart]., 35 (37), 2541-2619.; Bansilal S., Farkouh M.E., Hueb W. (2012). The future revascularization evaluation in patients with diabetes mellitus: optimal management of multivessel disease (FREEDOM) trial: clinical and angiographic profile at study entry. Am. Heart]., 164 (4), 591-599.; Deedwania P., Kosiborod M., Barrett E. et al. (2008) Hyperglycemia and acute coronary syndrome. A scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity and Metabolism. Circulation, 117, 1610-1619.; Duckworth W., Abraira C., Moritz T. et al. (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl.]. Med., 360 (2), 129-139.; Jacobi J., Bircher N., Krinsley J. et al. (2012). Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit. Care Med., 40, 3251-3276.; Marik P.E., Preiser J.C. (2010). Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis. Chest, 137, 544-551.; Nashef S.A., Roques F., Sharples L.D. et al. (2012.) EuroSCORE II. Eur.]. Cardiothorac. Surg., 41 (4), 734-744.; Saisho Y. (2014). Glycemic variability and oxidative stress: A link between diabetes and cardiovascular disease? Int.]. Mol. Sci., 15, 18381-18406.; Skyler J.S., Bergenstal R., Bonow B.O. et al. (2009). Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care, 32, 187-192.; Subramaniam B., Lerner A., Novack V. et al. (2014). Increased glycemic variability in patients with elevated preoperative HbA1c predicts adverse outcomes following coronary artery bypass grafting surgery. Anesth. Analg, 118 (2), 277-287.; The BARI 2D Study Group: A randomized trial of therapies for type 2 diabetes and coronary artery disease (2009) N. Engl.]. Med., 360, 2503-2515.; Thygesen K., Alpert J.S., Jaffe A.S. et al. (2012). Third universal definition of myocardial infarction. Eur. Heart]., 33 (20), 2551-2567.; U.K. Hypoglycaemia Study Group (2007). Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia, 50, 1140-1147.; https://www.actabiomedica.ru/jour/article/view/131

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Electronic Resource

    Additional Titles: Фармакотерапия сахарного диабета 2 типа: оценка потребления пероральных сахароснижающих препаратов на украинском фармацевтическом рынке
    Фармакотерапія цукрового діабету 2 типу: оцінка споживання пероральних цукрознижувальних препаратів на українському фармацевтичному ринку

    Πηγή: Klìnìčna farmacìâ; Том 19, № 2 (2015): Клінічна фармація; 14-18; Клиническая фармация; Клінічна фармація; 2518-1572; 1562-725X