Εμφανίζονται 1 - 20 Αποτελέσματα από 228 για την αναζήτηση '"перинатальная патология"', χρόνος αναζήτησης: 0,84δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Πηγή: Mother and Baby in Kuzbass; № 1 (2025): март; 52-58 ; Мать и Дитя в Кузбассе; № 1 (2025): март; 52-58 ; 2542-0968 ; 1991-010X

    Περιγραφή αρχείου: text/html; application/pdf

  8. 8
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 1 (2025); 26-31 ; Российский вестник перинатологии и педиатрии; Том 70, № 1 (2025); 26-31 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2136/1563; Киреев С.С. Боль и стресс у новорожденных. Вестник новых медицинских технологий. 2016; 23(4): 328–342.; Brewer C.L., Baccei M.L. The development of pain circuits and unique effects of neonatal injury. J Neural Transm (Vienna). 2020; 127(4): 467–479. DOI:10.1007/s00702–019–02059-z; Акарачкова Е.С., Байдаулетова А.И., Беляев А.А., Блинов Д.В., Громова О.А., Дулаева М.С., и др. Стресс: причины и последствия, лечение и профилактика. Клинические рекомендации. СПб.: Скифия-принт; М.: Профмедпресс, 2020; 138.; Курзанов А.Н., Заболотских Н.В., Ковалев Д.В. Функциональные резервы организма, монография. М.: Издательский дом Академии Естествознания, 2016; 96.; Ranger M., Synnes A.R., Grunau R.E. Interanalizing behaviours in scool-age children born very preterm are predicted by neonatal pain and morphine exposure. Eur J Pain (London, England) 2014; 18(6): 844–852. DOI:10.1002/j.1532–2149.2013.00431.x; Victoria Nicole C., Murphy Anne Z. The long-term impact of early life pain on adult responses to anxiety and stress: Historical perspectives and empirical evidence. Exper Neurol 2016; 275Pt(Pt2): 261–273. DOI:10.1016/j.expneurol.2015.07.017; Williams Morika D., Lascelles B., Duncan X. Early Neonatal Pain — A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Front Pediatr 2020; 8(30): 1–18. DOI:10.3389/fped.2020.00030; Александрович Ю.С., Гордеев В.И. Оценочные и диагностические шкалы в медицине критических состояний. СПб.: ЭЛБИ-СПБ, 2021; 320.; Андреев А.В., Харламова Н.В., Межинский С.С., Шилова Н.А., Карпова А.Л., Мостовой А.В. и др. Проблемы клинической оценки боли у новорожденных детей. Российский вестник перинатологии и педиатрии 2020; 65(4): 5–15.; Llerene A., Tran K., Choudnary D., Hausmann Y., Goldgof D., Sun Y., Prescott S.M. Neonatal pain assessment: Do we have the right tools? Front Pediatr. 2023; 10: 1022751. DOI:10.3389/fped.2022.1–22751; D’Agata A.L., Roberts M.B., Ashmeade T., Ozorio Dutra S.V., Kane B., Groer M.W. Novel method of measuring chronic stress for preterm infants: skin cortisol. Psychoneuroendocrinology 2019; 102: 204–211. DOI: 10/1016/j. psyneuen.2018.12.223; Вейн А.М., Голубев В.Л. Вегетативные расстройства: клиника, диагностика, лечение. Руководство для врачей. М: Медицинское информационное агентство, 2010; 640.; Visnovcova Z., Kozar M., Kuderava Z., Zibolen M., Ferencova N., Tonhayzerova I. Entropy Analysis of Neonatal Electrodermal Activity during the First Three Days after Birth. Entropy (Basel). 2022; 24(3): 422. DOI:10.3390/e24030422; Cook K.M., De Asis-Cruz J., Kim J.H., Basu S.K., Andescavage N., Murnick J., et al. Experience of early-life pain in premature infants is associated with atypical cerebellar development and later neurodevelopmental deficits. BMC Med 2023; 21(1): 435. DOI:10.1186/s12916–023–03141-w

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: The article was funded by Nutricia Advance, Статья опубликована при финансовой поддержке компании «Нутриция Эдванс»

    Πηγή: Current Pediatrics; Том 21, № 6 (2022); 467-478 ; Вопросы современной педиатрии; Том 21, № 6 (2022); 467-478 ; 1682-5535 ; 1682-5527

    Περιγραφή αρχείου: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3078/1261; Rodríguez-Cano AM, Mier-Cabrera J, Muñoz-Manrique C, et al. Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age. BMC Pediatr. 2019;19(1):60. doi: https://doi.org/10.1186/s12887-019-1430-x; Barstow C, Rerucha C. Evaluation of Short and Tall Stature in Children. Am Fam Physician. 2015;92(1):43–50.; Singhal A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann Nutr Metab. 2017;70(3):236–240. doi: https://doi.org/10.1159/000464302; de Onís M, Monteiro C, Akré J, Glugston G. The worldwide magnitude of protein-energy malnutrition: an overview from the WHO Global Database on Child Growth. Bull World Health Organ. 1993;71(6):703–712.; Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–451. doi: https://doi.org/10.1016/S0140-6736(13)60937-X; Guerrant RL, DeBoer MD, Moore SR, et al. The impoverished gut — a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol. 2013;10(4):220–229. doi: https://doi.org/10.1038/nrgastro.2012.239; Mayneris-Perxachs J, Swann JR. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr. 2019; 58(3):909–930. doi: https://doi.org/10.1007/s00394-018-1679-0; Dipasquale V, Cucinotta U, Romano C. Acute Malnutrition in Children: Pathophysiology, Clinical Effects and Treatment. Nutrients. 2020;12(8):2413. doi: https://doi.org/10.3390/nu12082413; Patterson GT, Manthi D, Osuna F, et al. Environmental, Metabolic, and Inflammatory Factors Converge in the Pathogenesis of Moderate Acute Malnutrition in Children: An Observational Cohort Study. Am J Trop Med Hyg. 2021;104(5):1877–1888. doi: https://doi.org/10.4269/ajtmh.20-0963; World Health Organization: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. 217. Geneva: World Health Organization; 2006.; World Health Organization: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 336. Geneva: World Health Organization; 2006.; Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80(1): 193–198. doi: https://doi.org/10.1093/ajcn/80.1.193; Bartz S, Mody A, Hornik C, et al. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab. 2014;99(6):2128–2137. doi: https://doi.org/10.1210/jc.2013-4018; Chisti MJ, Graham SM, Duke T, et al. Post-discharge mortality in children with severe malnutrition and pneumonia in Bangladesh. PLoS One. 2014;9(9):e107663. doi: https://doi.org/10.1371/journal.pone.0107663; Mayneris-Perxachs J, Lima AA, Guerrant RL, et al. Urinary N-methylnicotinamide and beta-aminoisobutyric acid predict catchup growth in undernourished Brazilian children. Sci Rep. 2016; 6:19780. doi: https://doi.org/10.1038/srep19780; Maes M, Leonard BE, Myint AM, et al. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indo leamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):702–721. doi: https://doi.org/10.1016/j.pnpbp.2010.12.017; Semba RD, Shardell M, Sakr Ashour FA, et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine. 2016;6:246–252. doi: https://doi.org/10.1016/j.ebiom.2016.02.030; Larson-Nath C, Goday P. Malnutrition in Children With Chronic Disease. Nutr Clin Pract. 2019;34(3):349–358. doi: https://doi.org/10.1002/ncp.10274; Kiely ME. Risks and benefits of vegan and vegetarian diets in children. Proc Nutr Soc. 2021;80(2):159–164. doi: https://doi.org/10.1017/S002966512100001X; Kostecka M, Kostecka-Jarecka J. Knowledge on the Complementary Feeding of Infants Older than Six Months among Mothers Following Vegetarian and Traditional Diets. Nutrients. 2021; 13(11):3973. doi: https://doi.org/10.3390/nu13113973; Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–2172. doi: https://doi.org/10.1016/S0140-6736(12)60820-4; Ruys CA, van de Lagemaat M, Rotteveel J, et al. Improving longterm health outcomes of preterm infants: how to implement the findings of nutritional intervention studies into daily clinical practice. Eur J Pediatr. 2021;180(6):1665–1673. doi: https://doi.org/10.1007/s00431-021-03950-2; Spittle AJ, Cameron K, Doyle LW, Cheong JL. Motor impair ment trends in extremely preterm children: 1991–2005. Pediatrics. 2018;141(4):e20173410. doi: https://doi.org/10.1542/peds.2017-3410; Twilhaar ES, Wade RM, de Kieviet JF, et al. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. JAMA Pediatr. 2018;172(4):361–367. doi: https://doi.org/10.1001/jamapediatrics.2017.5323; Sipola-Leppanen M, Kajantie E. Should we assess cardiovascular risk in young adults born preterm? Curr Opin Lipidol. 2015;26(4): 282–287. doi: https://doi.org/10.1097/MOL.0000000000000190; Fenton TR, Cormack B, Goldberg D, et al. “Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants. J Perinatol. 2020;40(5):704–714. doi: https://doi.org/10.1038/s41372-020-0658-5; Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev. 2020;150:105187. doi: https://doi.org/10.1016/j.earlhumdev.2020; Fenton TR, Kim JHA. Systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr. 2013;13:1–13. doi: https://doi.org/10.1186/1471-2431-13-59; Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–868. doi: https://doi.org/10.1016/S0140-6736(14)60932-6; Fenton TR, Chan HT, Madhu A, et al. Preterm infant growth velocity calculations: a systematic review. Pediatrics. 2017;139(3):e20162045. doi: https://doi.org/10.1542/peds.2016-2045; González-García L, García-López E, Fernández-Colomer B, et al. Extrauterine Growth Restriction in Very Low Birth Weight Infants: Concordance Between Fenton 2013 and INTERGROWTH-21st Growth Charts. Front Pediatr. 2021;9:690788. doi: https://doi.org/10.3389/fped.2021.690788; Yang YN. Current concepts of very low birth weight infants with extra-uterine growth restriction. Pediatr Neonatol. 2022;63(1):3–4. doi: https://doi.org/10.1016/j.pedneo.2021.12.001; Fenton TR, Nasser R, Creighton D, et al. Weight, length, and head circumference at 36 weeks are not predictive of later cognitive impairment in very preterm infants. J Perinatol. 2021;41(3): 606–614. doi: https://doi.org/10.1038/s41372-020-00855-0; Tozzi MG, Moscuzza F, Michelucci A, et al. Extra-Uterine Growth Restriction (EUGR) in Preterm Infants: Growth Patterns, Nutrition, and Epigenetic Markers. A Pilot Study. Front Pediatr. 2018;6:408. doi: https://doi.org/10.3389/fped.2018.00408; Maiocco G, Migliaretti G, Cresi F, et al. Evaluation of Extrauterine Head Growth From 14-21 days to Discharge With Longitudinal Intergrowth-21st Charts: A New Approach to Identify Very Preterm Infants at Risk of Long-Term Neurodevelopmental Impairment. Front Pediatr. 2020;8:572930. doi: https://doi.org/10.3389/fped.2020.572930; De Rose DU, Cota F, Gallini F, et al. Extra-uterine growth restriction in preterm infants: neurodevelopmental outcomes according to different definitions. Eur J Paediatr Neurol. 2021;33:135–145. doi: https://doi.org/10.1016/j.ejpn.2021.06.004; Figueras-Aloy J, Palet-Trujols C, Matas-Barceló I, et al. Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up. Eur J Pediatr. 2020;179(9):1469–79. doi: https://doi.org/10.1007/s00431-020-03628-1; Ehrenkranz RA, Dusick AM, Vohr BR, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4): 1253–1261. doi: https://doi.org/10.1542/peds.2005-1368; Greenbury SF, Angelini ED, Ougham K, et al. Birthweight and patterns of postnatal weight gain in very and extremely preterm babies in England and Wales, 2008-19: a cohort study. Lancet Child Adolesc Health. 2021;5(10):719–728. doi: https://doi.org/10.1016/S2352-4642(21)00232-7; Singh AS, Mulder C, Twisk JW, et al. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474–488. doi: https://doi.org/10.1111/j.1467-789X.2008.00475.x; Kerkhof GF, Willemsen RH, Leunissen RW, et al. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab. 2012;97(12):4498–4506. doi: https://doi.org/10.1210/jc.2012-1716; Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9(3):187. doi: https://doi.org/10.3390/nu9030187; Hay WW Jr. Strategies for feeding the preterm infant. Neonatology. 2008;94(4):245–254. doi: https://doi.org/10.1159/000151643; Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91. doi: https://doi.org/10.1097/MPG.0b013e3181adaee0; Lapillonne A, O’Connor DL, Wang D, Rigo J. Nutritional recommen dations for the late-preterm infant and the preterm infant after hospital discharge. J Pediatr. 2013;162(3 Suppl):S90–S100. doi: https://doi.org/10.1016/j.jpeds.2012.11.058; Senterre T, Rigo J. Optimizing early nutritional support based on recent recommendations in VLBW infants and postnatal growth restriction. J Pediatr Gastroenterol Nutr. 2011;53(5):536–542. doi: https://doi.org/10.1097/MPG.0b013e31822a009d; Сафронова Л.Н., Федорова Л.А. Недоношенный ребенок: справочник. М.: Status Praesens; 2020. 312 c.; Fenton TR, Al-Wassia H, Premji SS, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2020;6(6):CD003959. doi: https://doi.org/10.1002/14651858.CD003959.pub4; Olsen IE, Harris CL, Lawson ML, Berseth CL. Higher protein intake improves length, not weight, z scores in preterm infants. J Pediatr Gastroenterol Nutr. 2014;58(4):409–416. doi: https://doi.org/10.1097/MPG.0000000000000237; Atchley CB, Cloud A, Thompson D, et al. Enhanced protein diet for preterm infants: a prospective, randomized, double-blind, controlled trial. J Pediatr Gastroenterol Nutr. 2019;69(2):218–223. doi: https://doi.org/10.1097/MPG.0000000000002376; Hay WW Jr, Brown LD, Denne SC. Energy requirements, proteinenergy metabolism and balance, and carbohydrates in preterm infants. World Rev Nutr Diet. 2014;110:64–81. doi: https://doi.org/10.1159/000358459; Amissah EA, Brown J, Harding JE. Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst Rev. 2020;9(9):Cd000433. doi: https://doi.org/10.1002/14651858.CD000433.pub3; Teller IC, Embleton ND, Griffin IJ, van Elburg RM. Post-discharge formula feeding in preterm infants: a systematic review mapping evidence about the role of macronutrient enrichment. Clin Nutr. 2016;35(4):791–801. doi: https://doi.org/10.1016/j.clnu.2015.08.006; Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12(12):CD004696. doi: https://doi.org/10.1002/14651858.CD004696.pub5; Amesz EM, Schaafsma A, Cranendonk A, Lafeber HN. Opti mal growth and lower fat mass in preterm infants fed a protein-enriched postdischarge formula. J Pediatr Gastroenterol Nutr. 2010;50(2):200–207. doi: https://doi.org/10.1097/MPG.0b013e3181a8150d; Ruys CA, van de Lagemaat M, Finken MJ, Lafeber HN. Follow-up of a randomized trial on postdischarge nutrition in preterm-born children at age 8 y. Am J Clin Nutr. 2017;106(2):549–558. doi: https://doi.org/10.3945/ajcn.116.145375; Ruys CA, Broring T, van Schie PEM, et al. Neurodevelopment of children born very preterm and/or with a very low birth weight: 8-Year follow-up of a nutritional RCT. Clinical Nutrition ESPEN. 2019;30: 190–198. doi: https://doi.org/10.1016/j.clnesp.2018.12.083; Cooke RJ, Embleton ND, Griffin IJ, et al. Feeding preterm infants after hospital discharge: growth and development at 18 months of age. Pediatr Res. 2001;49(5):719–722. doi: https://doi.org/10.1203/00006450-200105000-00018; Villar J, Giuliani F, Barros F, et al. Monitoring the postnatal growth of preterm infants: a paradigm change. Pediatrics. 2018;141(2):e20172467. doi: https://doi.org/10.1542/peds.2017-2467; Karnati S, Kollikonda S, Abu-Shaweesh J. Late preterm in fants — Changing trends and continuing challenges. Int J Pediatr Adolesc Med. 2020;7(1):36–44. doi: https://doi.org/10.1016/j.ijpam.2020.02.006; Quan MY, Li ZH, Wang DH, et al. Multi-center Study of Enteral Feeding Practices in Hospitalized Late Preterm Infants in China. Biomed Environ Sci. 2018;31(7):489–498. doi: https://doi.org/10.3967/bes2018.066; Santos IS, Matijasevich A, Domingues MR, et al. Late preterm birth is a risk factor for growth faltering in early childhood: a cohort study. BMC Pediatr. 2009;9:71. doi: https://doi.org/10.1186/1471-2431-9-71; Приходько Е.А., Беляева И.А., Кругляков А.Ю. и др. Факторы, ассоциированные с исключительно грудным вскармливанием поздних недоношенных детей в неонатальном стационаре: одномоментное исследование // Вопросы современной педиатрии. — 2022. — Т. 21. — № 1. — С. 29–35. — doi: https://doi.org/10.15690/vsp.v21i1.2384; Zhang L, Li Y, Liang S, et al. Postnatal length and weight growth velocities according to Fenton reference and their associated perinatal factors in healthy late preterm infants during birth to termcorrected age: an observational study. Ital J Pediatr. 2019;45(1):1. doi: https://doi.org/10.1186/s13052-018-0596-4; Lapillonne A, Bronsky J, Campoy C, et al. Feeding the late and moderately preterm infant: a position paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2019;69(2):259–270. doi: https://doi.org/10.1097/MPG.0000000000002397; Johnson MJ, King C, Boddy B, et al. The nutritional needs of moderate-late preterm infants. Br J Hosp Med (Lond). 2022;83(4):1–9. doi: https://doi.org/10.12968/hmed.2022.0148; Намазова-Баранова Л.С., Турти Т.В., Лукоянова О.Л. и др. Лечебное питание с применением специализированного детского молочного продукта для энтерального питания с повышенным содержанием белка и энергии у детей первого года жизни с белково-энергетической недостаточностью // Педиатрическая фармакология. — 2016. — Т. 13. — № 1. — С. 27–32. — doi: https://doi.org/10.15690/pf.v13i1.1511; Bancalari E, Jain D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology. 2019;115(4):384–391. doi: https://doi.org/10.1159/000497422; Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Cell Mol Physiol. 2019;317(6):L832–L887. doi: https://doi.org/10.1152/ajplung.00369.2019; Poindexter BB, Martin CR. Impact of Nutrition on Bronchopulmonary Dysplasia. Clin Perinatol. 2015;42(4):797–806. doi: https://doi.org/10.1016/j.clp.2015.08.007; Milanesi BG, Lima PA, Villela LD, et al. Assessment of early nutritional intake in preterm infants with bronchopulmonary dys plasia: Eur J Pediatr. 2021;180(5):1423–1430. doi: https://doi.org/10.1007/s00431-020-03912-0; Al-Jebawi Y, Agarwal N, Wargo SG, et al. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J Neonatal Perinatal Med. 2020;13(2):207–214. doi: https://doi.org/10.3233/NPM-190267; Rocha G, Guimarães H, Pereira-da-Silva L. The Role of Nutrition in the Prevention and Management of Bronchopulmonary Dysplasia: A Literature Review and Clinical Approach. Int J Environ Res Public Health. 2021;18(12):6245. doi: https://doi.org/10.3390/ijerph18126245; Zhang R, Lin XZ, Chang YM, et al. Nutritional Committee of Neonatology Branch of Chinese Medical Doctor Association; Editorial Committee of Chinese Journal of Contemporary Pediatrics. Expert consensus on nutritional management of preterm infants with bronchopulmonary dysplasia. Chin J Contemp Paediatr. 2020;22(8):805–814. doi: https://doi.org/10.7499/j.issn.1008-8830.2005080; Guo MMH, Chung CH, Chen FS, et al. Severe Bronchopulmonary Dysplasia is Associated with Higher Fluid Intake in Very Low-Birth- Weight Infants: A Retrospective Study. Am J Perinatol. 2014;30: 155–162. doi: https://doi.org/10.1055/s-0034-1376393; Gianni ML, Roggero P, Colnaghi MR, et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: A prospective non-randomised interventional cohort study. BMC Pediatr. 2014;14:235. doi: https://doi.org/10.1186/1471-2431-14-235; Kashyap S, Towers HM, Sahni R, et al. Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants. Am J Clin Nutr. 2001;74(3):374–380. doi: https://doi.org/10.1093/ajcn/74.3.374; Fenton TR, Anderson D, Groh-Wargo S, et al. An Attempt to Standardize the Calculation of Growth Velocity of Preterm Infants — Evaluation of Practical Bedside Methods. J Pediatr. 2018;196: 77–83. doi: https://doi.org/10.1016/j.jpeds.2017.10.005; Manley BJ, Makrides M, Collins CT, et al. For the DINO Steering Committee High-Dose Docosahexaenoic Acid Supplementation of Preterm Infants: Respiratory and Allergy Outcomes. Am Acad Pediatr. 2011;128(1):e71–e77. doi: https://doi.org/10.1542/peds.2010-2405; Wang Q, Zhou B, Cui Q, Chen C. Omega-3 Long-chain Polyunsaturated Fatty Acids for Bronchopulmonary Dysplasia: A Metaanalysis. J Pediatr. 2019;144(1):e20190181. doi: https://doi.org/10.1542/peds.2019-0181; Tanaka K, Tanaka S, Shah N, et al. Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. J Matern Neonatal Med. 2022;35(9):1730–1738. doi: https://doi.org/10.1080/14767058.2020.1769590; Mank E, Naninck EFG, Limpens J, et al. Enteral Bioactive Factor Supplementation in Preterm Infants: A Systematic Review. Nutrients. 2020;12(10):2916. doi: https://doi.org/10.3390/nu12102916; Vázquez-Gomis R, Bosch-Gimenez V, Juste-Ruiz M, et al. Zinc concentration in preterm newborns at term age, a prospective observational study. BMJ Paediatr Open. 2019;3(1):e000527. doi: https://doi.org/10.1136/bmjpo-2019-000527; Dani C, Poggi C. Nutrition and bronchopulmonary dysplasia. J Matern Neonatal Med. 2012;25(Suppl 3):37–40. doi: https://doi.org/10.3109/14767058.2012.712314; Denne SC. Energy Expenditure in Infants with Pulmonary Insufficiency: Is There Evidence for Increased Energy Needs? J Nutr. 2001;131(3):935S–937S. doi: https://doi.org/10.1093/jn/131.3.935S; White AM, Liu P, Yee K, et al. Determinants of Severe Metabolic Bone Disease in Very Low-Birth-Weight Infants with Severe Bronchopulmonary Dysplasia Admitted to a Tertiary Referral Center. Am J Perinatol. 2015;33(1):107–113. doi: https://doi.org/10.1055/s-0035-1560043; Park JS, Jeong SA, Cho JY, et al. Risk Factors and Effects of Severe Late-Onset Hyponatremia on Long-Term Growth of Prematurely Born Infants. Pediatr Gastroenterol Hepatol Nutr. 2020;23(5):472–483. doi: https://doi.org/10.5223/pghn.2020.23.5.472; Arslanoglu S, Boquien CY, King C, et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front Pediatr. 2019;7:76. doi: https://doi.org/10.3389/fped.2019.00076; Villamor-Martínez E, Pierro M, Cavallaro G, et al. Donor Human Milk Protects against Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(2):238. doi: https://doi.org/10.3390/nu10020238; Arslanoglu S, Moro GE, Ziegler EE. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J Perinatol. 2006;26(10):614–621. doi: https://doi.org/10.1038/sj.jp.7211571; McLeod G, Sherriff J, Hartmann PE, et al. Comparing different methods of human breast milk fortification using measured v. assumed macronutrient composition to target reference growth: A randomised controlled trial. Br J Nutr. 2015;115(3):431–439. doi: https://doi.org/10.1017/S0007114515004614; Bott L, Béghin L, Devos P, et al. Nutritional Status at 2 Years in Former Infants with Bronchopulmonary Dysplasia Influen - ces Nutrition and Pulmonary Outcomes During Childhood. Pediatr Res. 2006;60(3):340–344. doi: https://doi.org/10.1203/01.pdr.0000232793.90186.ca; Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: A randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr. 1998;133(3):340–345. doi: https://doi.org/10.1016/s0022-3476(98)70266-5; Pereira-Da-Silva L, Dias MPG, Virella D, et al. Osmolality of pre term formulas supplemented with nonprotein energy supplements. Eur J Clin Nutr. 2007;62:274–278. doi: https://doi.org/10.1038/sj.ejcn.1602736; Konnikova Y, Zaman MM, Makda M, et al. Late Enteral Feedings Are Associated with Intestinal Inflammation and Adverse Neonatal Outcomes. PLoS One. 2015;10(7):e0132924. doi: https://doi.org/10.1371/journal.pone.0132924; Moltu SJ, Bronsky J, Embleton N, et al. ESPGHAN Committee on Nutrition. Nutritional management of the critically ill neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2021;73(2):274–289. doi: https://doi.org/10.1097/MPG.0000000000003076; Malcolm WF, Smith PB, Mears S, et al. Transpyloric tube feeding in very low birthweight infants with suspected gastroesophageal reflux: Impact on apnea and bradycardia. J Perinatol. 2009;29(5): 372–375. doi: https://doi.org/10.1038/jp.2008.234; Guimarães H, Rocha G, Guedes MB, et al. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge — Part I. J Pediatr Neonatal Individ Med. 2014;3(1):e030116. doi: https://doi.org/10.7363/030116; Guimarães H, Rocha G, Guedes MB, et al. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge — Part II. J Pediatr Neonatal Individ Med. 2014;3:e030117. doi: https://doi.org/10.7363/030117; Villa E, Barachetti R, Barbarini M. Nutritional management of preterm newborn after hospital discharge: Energy and nutrients. Pediatr Medica Chir. 2017;39(4):170. doi: https://doi.org/10.4081/pmc.2017.170; Pereira-da-Silva L, Virella D, Frutuoso S, et al. Recommendation of charts and reference values for assessing growth of preterm infants: Update by the Portuguese Neonatal Society. Port J Pediatr. 2020;51:73–78. doi: https://doi.org/10.25754/pjp.2020.18888; Pereira-Da-Silva L, Virella D, Fusch C. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients. 2019;11(9):1999. doi: https://doi.org/10.3390/nu11091999; Johnson MJ, Wiskin AE, Pearson F, et al. How to use: Nutritional assessment in neonates. Arch Dis Child Educ Pract Ed. 2014;100(3):147–154. doi: https://doi.org/10.1136/archdischild-2014-306448; Visser F, Sprij AJ, Brus F. The validity of biochemical markers in metabolic bone disease in preterm infants: A systematic review. Acta Paediatr. 2012;101(6):562–568. doi: https://doi.org/10.1111/j.1651-2227.2012.02626.x; Беляева И.А., Бомбардирова Е.П., Турти Т.В., Приходько Е.А. Использование специализированного лечебного продукта у не доношенного ребенка с постнатальной недостаточностью питания: клинический случай // Вопросы современной педиатрии. — 2021. — Т. 20. — № 6. — С. 521–529. — doi: https://doi.org/10.15690/vsp.v20i6.2359; Marino LV, Johnson MJ, Hall NJ, et al. The development of a consensus-based nutritional pathway for infants with CHD before surgery using a modified Delphi process. Cardiol Young, 2018;28(7):938–948. doi: https://doi.org/10.1017/S1047951118000549; Marino LV, Johnson MJ, Davies NJ, et al. Improving growth of infants with congenital heart disease using a consensus-based nutritional pathway. Clin Nutr. 2020;39(8):2455–2462. doi: https://doi.org/10.1016/j.clnu.2019.10.031; Argent AC, Balachandran R, Vaidyanathan B, et al. Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries. Cardiol Young. 2017;27(S6):S22–S30. doi: https://doi.org/10.1017/S104795111700258X; Schwalbe-Terilli CR, Hartman DH, Nagle ML, et al. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care. 2009;18(1):52–57. doi: https://doi.org/10.4037/ajcc2009405; Hehir DA, Cooper DS, Walters EM, Ghanayem NS. Feeding, growth, nutrition, and optimal interstage surveillance for infants with hypoplastic left heart syndrome. Cardiol Young. 2011;21(Suppl 2): 59–64. doi: https://doi.org/10.1017/S1047951111001600; Norman M, Hakansson S, Kusuda S, et al. Neonatal outcomes in very preterm infants with severe congenital heart defects: An international cohort study. J Am Heart Assoc. 2020;9(5):e015369. doi: https://doi.org/10.1161/JAHA.119.015369; Salvatori G, De Rose DU, Massolo AC, et al. Current Strategies to Optimize Nutrition and Growth in Newborns and Infants with Congenital Heart Disease: A Narrative Review. J Clin Med. 2022;11(7):1841. doi: https://doi.org/10.3390/jcm11071841.; Karpen HE. Nutrition in the Cardiac Newborns. Evidence-based Nutrition Guidelines for Cardiac Newborns. Clin Perinatol. 2016;43(1):131–145. doi: https://doi.org/10.1016/j.clp.2015.11.009; Steltzer M, Rudd N, Pick B. Nutrition care for newborns with congenital heart disease. Clin Perinatol. 2005;32(4):1017–1030, xi. doi: https://doi.org/10.1016/j.clp.2005.09.010; Wong JJM, Cheifetz IM, Ong C, et al. Nutrition Support for Children Undergoing Congenital Heart Surgeries: A Narrative Review. World J Pediatr Congenit Heart Surg. 2015;6(3):443–454. doi: https://doi.org/10.1177/2150135115576929; Jones CE, Desai H, Fogel JL, et al. Disruptions in the development of feeding for infants with congenital heart disease. Cardiol Young. 2021;31(4):589–596. doi: https://doi.org/10.1017/S1047951120004382; Cognata A, Kataria-Hale J, Griffiths P, et al. Human Milk Use in the Preoperative Period Is Associated with a Lower Risk for Necrotizing Enterocolitis in Neonates with Complex Congenital Heart Disease. J Pediatr. 2019;215:11–16.e2. doi: https://doi.org/10.1016/j.jpeds.2019.08.009; Martini S, Aceti A, Galletti S, et al. To feed or not to feed: A critical overview of enteral eeding management and gastrointestinal complications in preterm neonates with a patent ductus arteriosus. Nutrients. 2020;12(1):83. doi: https://doi.org/10.3390/nu12010083; Malhotra A, Veldman A, Menahem S. Does milk fortification increase the risk of necrotising enterocolitis in preterm infants with congenital heart disease? Cardiol Young. 2013;23(30:450–453. doi: https://doi.org/10.1017/S1047951112000947; Tume LN, Balmaks R, Da Cruz E, et al. Enteral Feeding Practices in Infants with Congenital Heart Disease Across European PICUs: A European Society of Pediatric and Neonatal Intensive Care Survey. Pediatr Crit Care Med. 2018;19(2):137–144. doi: https://doi.org/10.1097/PCC.0000000000001412; Furlong-Dillard J, Neary A, Marietta J, et al. Evaluating the Impact of a Feeding Protocol in Neonates before and after Biventricular Cardiac Surgery. Pediatr Qual Saf. 2018;3(3):e080. doi: https://doi.org/10.1097/pq9.0000000000000080; Newcombe J, Fry-Bowers E. A Post-operative Feeding Protocol to Improve Outcomes for Neonates with Critical Congenital Heart Disease. J Pediatr Nurs. 2017;35:139–143. doi: https://doi.org/10.1016/j.pedn.2016.12.010; O’Neal Maynord P, Johnson M, Xu M, et al. A Multi-Interventional Nutrition Program for Newborns with Congenital Heart Disease. J Pediatr. 2021;228:66–73.e2. https://doi.org/10.1016/j.jpeds.2020.08.039; Hansson L, Lind T, Wiklund U, et al. Fluid restriction negatively affects energy intake and growth in very low birthweight infants with haemodynamically significant patent ductus arteriosus. Acta Paediatr. 2019;108(11):1985–1992. doi: https://doi.org/10.1111/apa.14815; McCammond AN, Axelrod DM, Bailly DK, et al. Pediatric cardiac intensive care society 2014 consensus statement: Pharmacotherapies in cardiac critical care fluid management. Pediatr Crit Care Med. 2016;17(3 Suppl 1):S35–S48. doi: https://doi.org/10.1097/PCC.0000000000000633; Hanot J, Dingankar AR, Sivarajan VB, et al. Fluid management practices after surgery for congenital heart disease: A worldwide survey. Pediatr Crit Care Med. 2019;20(4):357–364. doi: https://doi.org/10.1097/PCC.0000000000001818; Zhang J, Cui YQ, Luo Y, et al. Assessment of Energy and Protein Requirements in Relation to Nitrogen Kinetics, Nutrition, and Clinical Outcomes in Infants Receiving Early Enteral Nutrition Following Cardiopulmonary Bypass. JPEN J Parenter Enter Nutr. 2021;45(3):553–566. doi: https://doi.org/10.1002/jpen.1863; Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med. 2017;18(7):675–715. doi: https://doi.org/10.1097/PCC.0000000000001134; Terrin G, De Nardo MC, Boscarino G, et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front Neurol. 2020;11:885. doi: https://doi.org/10.3389/fneur.2020.00885; Gu Y, Hu Y, Zhang H, et al. Implementation of an Evidence- Based Guideline of Enteral Nutrition for Infants with Congenital Heart Disease: A Controlled Before-And-After Study. Pediatr Crit Care Med. 2020;21(6):e369–e377. doi: https://doi.org/10.1097/PCC.0000000000002296; Singal A, Sahu MK, Trilok Kumar G, Kumar A. Effect of energyand/ or protein-dense enteral feeding on postoperative outcomes of infant surgical patients with congenital cardiac disease: A systematic review and meta-analysis. Nutr Clin Pract. 2022;37(3):555–566. doi: https://doi.org/10.1002/ncp.10799; Zhang J, Cui YQ, Ma Md ZM, et al. Energy and Protein Requirements in Children Undergoing Cardiopulmonary Bypass Surgery: Current Problems and Future Direction. JPEN J Parenter Enter Nutr. 2019;43(1):54–62. doi: https://doi.org/10.1002/jpen.1314; Ni P, Chen X, Zhang Y, et al. High-Energy Enteral Nutrition in Infants After Complex Congenital Heart Surgery. Front Pediatr. 2022;10:869415. doi: https://doi.org/10.3389/fped.2022.869415

  17. 17
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 3 (2022); 47-53 ; Российский вестник перинатологии и педиатрии; Том 67, № 3 (2022); 47-53 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1651/1243; Жученко Л.А., Тамазян Г.В. Диагностика врожденных пороков развития в системе комплексных мероприятий, направленных на охрану здоровья детской популяции. Российский вестник акушера-гинеколога 2010; 10(2): 7–9.; Международная статистическая классификация болезней и проблем, связанных со здоровьем (акушерство, гинекология и перинатология). Десятый пересмотр. Женева: Всемирная организация здравоохранения, 2005. 268.; Sokal R.R., Rohlf F.J. Biometry: the principles and practice of statistics in biological research. N-Y: Freeman & Co, 1995; 850.; Ulm K. A simple method to calculate the confidence interval of a standardized mortality ratio (SMR). Am J Epidemiol 1990; 131(2): 373–375. DOI:10.1093/oxfordjournals.aje.a115507; Yoshioka K. KyPlot — a user-oriented tool for statistical data analysis and visualization. Computional Statistics 2002; 17(3): 425–437.; Hammer Ø., Harper D.А.Т., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001; 1: 1–9.; TpX — A drawing tool for Windows. https://ctan.org/tex-archive/graphics/tpx / Ссылка активна на 18.08.2021; Thiese M.S., Ronna B., Ott U. P value interpretations and considerations. J Thoracic Dis 2016; 8(9): 928–931. DOI:10.21037/jtd.2016.08.16; Алпатова М.А., Маклакова О.А., Устинова О.Ю., Евсеева Т.Н. Региональная программа мониторинга врожденных пороков развития у детей в Пермском крае. Вестник Пермского университета, Серия Биология 2018; 2: 217–222.; Демикова Н. С., Лапина А. С., Подольная М. А., Кобринский Б.А. Динамика частоты врожденных пороков развития в РФ (по данным федеральной базы мониторинга ВПР за 2006–2012 гг.). Российский вестник перинатологии и педиатрии 2015; 60(2): 72–77.; EUROCAT. Prevalence charts and tables. https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en / Ссылка активна на 18.08.2021; Демикова Н.С., Подольная М.А., Лапина А.С., Володин Н.Н., Асанов А.Ю. Динамика частоты трисомии 21 (синдрома Дауна) в регионах Российской Федерации за 2011–2017 гг. Педиатрия 2019; 98(2): 43–48.; Рязанова Л.А., Нохрин Д.Ю., Алферова И.П. Частота синдрома Дауна в городе Челябинске за 2012–2018 гг. Экология XXI века: синтез образования и науки: материалы VI Международной научно-практической конференции (18–21 мая 2020 г., Челябинск). Челябинск: Изд-во ЮУрГГПУ, 2020; 255–258.

  18. 18
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 16, No 4 (2022); 438-449 ; Акушерство, Гинекология и Репродукция; Vol 16, No 4 (2022); 438-449 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1422/1044; Квинан Д.Т., Спонг К.И., Локвуд Ч.Дж. Беременность высокого риска: протоколы, основанные на доказательной медицине. Пер. с англ. под ред. А.Д. Макацария, В.О. Бицадзе. М.: ГЭОТАР-Медиа, 2018. 560 с.; Беженарь В.Ф., Иванова Л.А., Коршунов М.Ю. Анализ причин перинатальных потерь в Санкт-Петербурге и Ленинградской области в 2006– 2018 годах. Журнал акушерства и женских болезней. 2020;69(2):93–102. https://doi.org/10.17816/JOWD69293-102.; Беженарь В.Ф., Иванова Л.А., Григорьев С.Г. Беременность «высокого риска» и перинатальные потери. Акушерство и гинекология. 2020;(3):42–7. https://doi.org/10.18565/aig.2020.3.42-47.; Hey E.N., Lloyd D.J., Wigglesworth J.S. Classifying perinatal death: fetal and neonatal factors. Br J Obstet Gynaecol. 1986;93(12):1213–23. https://doi.org/10.1111/j.1471-0528.1986.tb07854.x.; Радзинский В.Е., Костин И.Н., Златовратская Т.В. и др. Доношенные дети, подвергшиеся реанимации. Анализ акушерской тактики. Акушерство и гинекология. 2007;(3):42–7.; Мухамадиева СМ., Мирзабекова Б.Т., Пулатова А.П. Причины перинатальной смертности и пути их снижения в современных условиях. Вестник Академии медицинских наук Таджикистана. 2020;10(2):202–9. https://doi.org/10.31712/2221-7355-2020-10-2-202-210.; Предиктивное акушерство. Под ред. В.Е. Радзинского, С.А. Князева, И.Н. Костина. М.: Медиабюро Статус Презенс, 2021, 520 с.; Приказ Минздрава России от 20.10.2020 № 1130н «Об утверждении Порядка оказания медицинской помощи по профилю "акушерство и гинекология"». М.: Министерство здравоохранения Российской Федерации, 2020. 688 с. Режим доступа: https://base.garant.ru/74840123/. [Дата доступа: 10.01.2022].; Радзинский В.Е., Князев С.А., Костин И.Н. Акушерский риск: максимум информации – минимум опасности для матери и младенца. М.: Эксмо, 2016. 167 c.; Курцер М.А., Кутакова Ю.Ю., Сонголова Е.Н. и др. Синдром внезапной смерти плода. Акушерство и гинекология. 2011;(7):79–83.; Воеводин С.М., Шеманаева Т.В., Щеголев А.И. Эхографические предикторы критического состояния у плода. Акушерство и гинекология. 2016;(6):62–6.; Камилова М.Я., Джонмахмадова П.А., Ишан-Ходжаева Ф.Р. Оценка факторов риска и определение уровня предотвратимости гибели плодов у женщин с проблемной беременностью. Вестник Авиценны. 2020;22(1):14–21. https://doi.org/10.25005/2074-0581-2020-22-1-14-21.; Cartlidge P.H., Dawson A.T., Stewart J.H., Vujanic G.M. Value and quality of perinatal and infant postmortem examinations: cohort analysis of 400 consecutive deaths. BMJ. 1995;310(6973):155–8. https://doi.org/10.1136/bmj.310.6973.155.; Савельева Г.М., Шалина Р.И., Сичинава Л.Г. и др. Акушерство: учебник. М.: ГЭОТАР-Медиа, 2020. 576 с.; Сувернева А.А. Оптимизация прогнозирования перинатальных осложнений и пути их снижения: Автореф. дис… канд. мед. наук. Волгоград, 2018. 23 с.; Терентьев А.А., Молдогазиева Н.Т., Комаров О.С. Изучение трофобластического бета-глобулина человека – некоторые итоги и перспективы. Международный журнал прикладных и фундаментальных исследований. 2009;(6):30–3.; Сасина В.И., Варламова А.И. Беременность, роды и послеродовый период у женщин, перенесших аборты в прошлом. Молодой ученый. 2017;(3–3):55–8.; Колесникова О.М., Оразмурадов А.А., Кибардина Н.В. и др. Перинатальные исходы у первородящих после хирургического и медикаментозного абортов. Вестник РУДН. Серия: Медицина. 2012;(6):90–4.; Беженарь В.Ф., Добровольская И.А., Левина Т.А. Исследование тяжелых материнских исходов по материалам судебно-медицинских экспертиз. РМЖ. Мать и дитя. 2018;1(1):18–25.; Амельхина И.В. Длительная угроза прерывания беременности. Ближайшие и отдаленные результаты развития детей: Автореф. дис… канд. мед. наук. М., 2007. 32 с.; Морозова Е.А., Шаймарданова Г.А. Длительная угроза прерывания беременности как предиктор перинатальной патологии мозга. Неврологический вестник. 2014;46(1):74–9.; Джабиева А.А., Джабиев А.В., Ордиянц И.М. Ближайшие и отдаленные исходы угрозы прерывания беременности в первом триместре. Вестник РУДН. Серия: Медицина. 2010;(6):211–9.; Серов В.Н., Тютюнник В.Л., Зубков В.В., Зайдиева З.С. Перинатальные исходы у беременных с инфекционными заболеваниями и плацентарной недостаточностью. Акушерство и гинекология. 2002;(3):16–21.; Газиева И.А., Чистякова Г.Н. Современный взгляд на проблему нарушения иммунологической регуляции плодово-материнских взаимодействий с ранних сроков беременности (обзор литературы). Уральский медицинский журнал. 2010;(3):5–14.; Филиппов О.С., Казанцева А.А. Прогностическая значимость различных методов диагностики фетоплацентарной недостаточности. Проблемы репродукции. 2003;(3):60–3.; Hill D.J., Petrik J., Arany E. Growth factors and the regulation of fetal growth. Diabetes Care. 1998;21 Suppl 2:B60–9.; Тезиков Ю.В., Липатов И.С., Гогель Л.Ю. и др. Перинатальный подход к клинической классификации хронической плацентарной недостаточности: стандартизация диагностики и акушерской тактики. Наука и инновации в медицине. 2019;4(1):8–15.; https://www.gynecology.su/jour/article/view/1422

  19. 19
    Academic Journal

    Συνεισφορές: The article was funded by Nutricia Advance., Статья опубликована при финансовой поддержке компании «Нутриция Эдванс».

    Πηγή: Current Pediatrics; Том 20, № 6 (2021); 521-529 ; Вопросы современной педиатрии; Том 20, № 6 (2021); 521-529 ; 1682-5535 ; 1682-5527

    Περιγραφή αρχείου: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/2802/1134; Schwatzenberg SJ, Georgieff MK. Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics. 2018;141(2):e20173716. doi:10.1542/peds.2017-3716; WHO. Global Nutrition Targets 2025: Policy Brief Series (WHO/NMH/NHD/14.2). Geneva, Switzerland: World Health Organization; 2014.; Zhang Z, Li F, Hannon BA, et al. Effect of Oral Nutritional Supplementation on Growth in Children with Undernutrition: A Systematic Review and Meta-Analysis. Nutrients. 2021;13(9):3036. doi:10.3390/nu13093036; Perkins JM, Kim R, Krishna A, et al. Understanding the association between stunting and child development in low- and middle-income countries: Next steps for research and intervention. Soc Sci Med. 2017;193:101–109. doi:10.1016/j.socscimed.2017.09.039; Ong KK, Kennedy K, Castaneda-Gutierrez E, et al. Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr. 2015;104(10):974–986. doi:10.1111/apa.13128; Figueras-Aloy J, Palet-Trujols C, Matas-Barceló I, et al. Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up. Eur J Pediatr. 2020;179(9):1469–1479. doi:10.1007/s00431-020-03628-1; Makker K, Ji Y, Hong X, Wang X. Antenatal and neonatal factors contributing to extra uterine growth failure (EUGR) among preterm infants in Boston Birth Cohort (BBC). J Perinatol. 2021;41(5): 1025–1032. doi:10.1038/s41372-021-00948-4; Martinez-Jimenez MD, Gomez-Garcia FJ, Gil-Campos M, et al. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: a scoping review. Eur J Pediatr. 2020; 179(8):1255–1265. doi:10.1007/s00431-020-03613-8; Hiltunen H, Loyttyniemi E, Isolauri E, Rautava S. Early nutrition and growth until the corrected age of 2 years in extremely preterm infants. Neonatology. 2018;113(2):100–107. doi:10.1159/000480633; Raaijmakers A, Jacobs L, Rayyan M, et al. Catch-up growth in the first two years of life in Extremely Low Birth Weight (ELBW) infants is associated with lower body fat in young adolescence. PLoS One. 2017;12(3):e0173349. doi:10.1371/journal.pone.0173349; Embleton N, Korada M, Wood CL, et al. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis Child. 2016;101(11):1026–1031. doi:10.1136/archdischild-2015-310190; Teller IC, Embleton ND, Griffin IJ, et al. Post-discharge formula feeding in preterm infants: A systematic review mapping evidence about the role of macronutrient enrichment. Clin Nutr. 2016;35(4):791–801. doi:10.1016/j.clnu.2015.08.006; Peila C, Spada E, Giuliani F, et al. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients. 2020 Apr 26; 12(5):1224. doi:10.3390/nu12051224.; Wiechers C; Bernhard W, Goelz R, et al. Optimizing Early Neonatal Nutrition and Dietary Pattern in Premature Infants. Int J Environ Res Public Health. 2021;18(14):7544. doi:10.3390/ijerph18147544; Stocker JT, Dehner LP, Husain AN. Means and standard deviations of weights and measurements of lifeborn infants by body weight (Appendix 28–29). In: Stocker & Dehner’s Pediatric Pathology. Stocker JT, Dehner LP, eds. 2nd ed. Philadelphia, PA, USA: Lippinkott Williams &Wilkins; 2002.; Fabrizio V, Trzaski JM, Brownell EA, et al. Individualized versus standard diet fortification for growth and development in preterm infants receiving human milk. Cochrane Database Syst Rev. 2020; 11(11):CD013465. doi:10.1002/14651858.CD013465.pub2; Ruys CA, van de Lagemaat M, Rotteveel J, et al. Improving long-term health outcomes of preterm infants: how to implement the findings of nutritional intervention studies into daily clinical practice. Eur J Pediatr. 2021;180(6):1665–1673. doi:10.1007/s00431-021-03950-2; Ahnfeldt AM, Stanchev H, Jørgensen HL, et al. Age and weight at final discharge from an early discharge programme for stable but tube-fed preterm infants. Acta Paediatr. 2015;104(4):377–383. doi:10.1111/apa.12917; Wilson E, Bonamy A-KE, Bonet M, et al. The EPICE Research Group. Room for improvement in breast milk feeding after very preterm birth in Europe: Results from the EPICE cohort. Matern Child Nutr. 2017;14(1):e12485. doi:10.1111/mcn.12485; Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91. doi:10.1097/MPG.0b013e3181adaee0; Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12(12):CD004696. doi:10.1002/14651858.CD004696; Guimarães H, Rocha G, Vasconcellos G, et al. Risk factors for bronchopulmonary dysplasia in five Portuguese neonatal intensive care units. Rev Port Pneumol. 2010;16(3):419–430. doi:10.1016/s0873-2159(15)30039-8; Bancalari E, Jain D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology. 2019;115(4):384–391. doi:10.1159/000497422; Milanesi BG, Lima PA, Villela LD, et al. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: A cohort study. Eur J Pediatr. 2021;180(5):1423–1430. doi:10.1007/s00431-020-03912-0; Uberos J, Lardón-Fernández M, Machado-Casas I, et al. Nutrition in extremely low birth weight infants: Impact on bronchopulmonary dysplasia. Minerva Paediatr. 2016;68(6):419–426.; Bott L, Béghin L, Devos P, et al. Nutritional Status at 2 Years in Former Infants with Bronchopulmonary Dysplasia Influences Nutrition and Pulmonary Outcomes During Childhood. Pediatr Res. 2006;60(3):340–344. doi:10.1203/01.pdr.0000232793.90186.ca; Gianni ML, Roggero P, Colnaghi MR, et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: A prospective non-randomised interventional cohort study. BMC Pediatr. 2014;14:235. doi:10.1186/1471-2431-14-235; Barrington KJ, Fortin-Pellerin E, Pennaforte T. Fluid restriction for treatment of preterm infants with chronic lung disease. Cochrane Database Syst Rev. 2017;2(2):CD005389. doi:10.1002/14651858.CD005389.pub2; Mangili G, Garzoli E, Sadou Y. Feeding dysfunctions and failure to thrive in neonates with congenital heart diseases. Pediatr Med Chir. 2018;40(1). doi:10.4081/pmc.2018.196; Jadcherla S. Dysphagia in the high-risk infant: potential factors and mechanisms. Am J Clin Nutr. 2016;103(2):622S–628S. doi:10.3945/ajcn.115.110106; Baillat M, Pauly V, Dagau G, et al. Association of First-Week Nutrient Intake and Extrauterine Growth Restriction in Moderately Preterm Infants: A Regional Population-Based Study. Nutrients. 2021;13(1):227. doi:10.3390/nu13010227; Roggero P, Liotto N, Menis C, Mosca F. New Insights in Preterm Nutrition. Nutrients. 2020;12(6):1857. doi:10.3390/nu12061857; EFSA Panel on Dietetic Products, N.a.A.N. Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014;12(7):3760. doi:10.2903/j.efsa.2014.3760; Roggero P, Gianni ML, Amato O, et al. Growth and fat-free mass gain in preterm infants after discharge: a randomized controlled trial. Pediatrics. 2012;130(5):e1215–e1221. doi:10.1542/peds.2012-1193; Roggero P, Gianni ML, Liotto N, et al. Small for gestational age preterm infants: nutritional strategies and quality of growth after discharge. J Matern Fetal Neonatal Med. 2011;24(Suppl. 1):144e6. doi:10.3109/14767058.2011.607657; Lin L, Amissah E, Gamble GD, et al. Impact of macronutrient supplements on later growth of children born preterm or small for gestational age: A systematic review and meta-analysis of randomized and quasirandomised controlled trials. PLoS Med. 2020;17(5):e1003122. doi:10.1371/journal.pmed.1003122; Moon K, Rao SC, Schulzke SM, et al. Long-chain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev. 2016;12:CD000375. doi:10.1002/14651858.CD000375.pub5; Ilardi L, Proto A, Ceroni F, et al. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life (Basel). 2021;11(4):331. doi:10.3390/life11040331; Fernández R, Urbano J, Carrillo A, et al. Comparison of the effect of three different protein content enteral diets on serum levels of proteins, nitrogen balance, and energy expenditure in critically ill infants: study protocol for a randomized controlled trial. Trials. 2019;20(1):585. doi:10.1186/s13063-019-3686-8; Cui Y, Li L, Hu C, et al. Effects and Tolerance of Protein and Energy-Enriched Formula in Infants Following Congenital Heart Surgery: A Randomized Controlled Trial. JPEN J Parenter Enteral Nutr. 2018;42(1):196–204. doi:10.1002/jpen.1031; Yu M-X, Zhuang S-Q, Gao X-Y, et al. Effects of a nutrient-dense formula compared with a post-discharge formula on post-discharge growth of preterm very low birth weight infants with extrauterine growth retardation: a multicentre randomised study in China. J Hum Nutr Diet. 2020;33(4):557–565. doi:10.1111/jhn.12733; Намазова-Баранова Л.С., Турти Т.В., Лукоянова О.Л. и др. Лечебное питание с применением специализированного детского молочного продукта для энтерального питания с повышенным содержанием белка и энергии у детей первого года жизни с белково-энергетической недостаточностью // Педиатрическая фармакология. — 2016. — Т. 13. — № 1. — С. 27–32. doi:10.15690/pf.v13i1.1511

  20. 20
    Academic Journal

    Πηγή: Neonatology, Surgery and Perinatal Medicine; Vol. 11 No. 4(42) (2021): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 21-27 ; Неонатология, хирургия и перинатальная медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГИЯ, ХИРУРГИЯ И ПЕРИНАТАЛЬНАЯ МЕДИЦИНА; 21-27 ; Неонатологія, хірургія та перинатальна медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 21-27 ; 2413-4260 ; 2226-1230

    Περιγραφή αρχείου: application/pdf