-
1Academic Journal
Authors: M. M. Bikbov, I. R. Kabirov, A. R. Khalimov, A. D. Neryakhin, P. N. Shmelkova, D. Kh. Gainullina, L. S. Gumerova, A. A. Tukhbatullin, A. A. Akhunzyanov, E. A. Nadezhdina, М. М. Бикбов, И. Р. Кабиров, А. Р. Халимов, А. Д. Неряхин, П. Н. Шмелькова, Д. Х. Гайнуллина, Л. С. Гумерова, А. А. Тухбатуллин, А. А. Ахунзянов, Е. А. Надеждина
Source: Creative surgery and oncology; Том 15, № 1 (2025); 50-56 ; Креативная хирургия и онкология; Том 15, № 1 (2025); 50-56 ; 2307-0501 ; 2076-3093
Subject Terms: биосовместимые материалы, polymers, collagen, bioprinting, hydrogel, crosslinking reagents, biocompatible materials, полимеры, коллаген, биопечать, гидрогель, перекрестно-сшивающие реагенты
File Description: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/1052/641; Нащекина Ю.А., Луконина О.А., Михайлова Н.А. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология. 2020;62(7):459–72. DOI:10.31857/S0041377120070044; Raiskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74. DOI:10.1016/j.jtos.2013.01.002; Phillips H. Cross-linkage formation in keratins. Nature. 1936;138(327):121–2. DOI:10.1038/138327a0; Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI:10.3109/02713688809031808; Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994;59(3):343–9. DOI:10.1111/j.1751-1097.1994.tb05045.x; Spoerl E., Huhle M., Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103. DOI:10.1006/exer.1997.0410; Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003 135(5):620–7. DOI:10.1016/s0002-9394(02)02220-1; Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5. DOI:10.4103/0974-9233.159755; Бикбов М.М., Бикбова Г.М. Эктазии роговицы (патогенез, патоморфология, клиника, диагностика, лечение). М.; 2011.; Бикбов М.М., Шевчук Н.Е., Халимов А.Р. Влияние ультрафиолетового кросслинкинга на уровень цитокинов в слезной жидкости у пациентов с кератэктазиями. Цитокины и воспаление. 2015;14(2):54–7.; Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросслинкинг роговицы. Вестник РАМН. 2016;71(3):224–32. DOI:10.15690/vramn562; Бикбов М.М., Шевчук Н.Е., Халимов А.Р., Бикбова Г.М. Динамика уровня рибофлавина во влаге передней камеры глаза экспериментальных животных при стандартном насыщении стромы растворами для УФ-кросслинкинга роговицы. Вестник офтальмологии. 2016;132(6):29–35. DOI:10.17116/oftalma2016132629-35; Бикбов М.М., Суркова В.К., Халимов А.Р., Усубов Э.Л. Результаты лечения пеллюцидной маргинальной дегенерации роговицы методом роговичного кросслинкинга. Вестник офтальмологии. 2017;133(3):58–64. DOI:10.17116/oftalma2017133358-64; Dodda J.M., Azar M.G., Sadiku R. Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci. 2021;21(12):e2100232. DOI:10.1002/mabi.202100232; Gu H., He L., Liu L., Jin Y.C. Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation. Zhonghua Shao Shang Za Zhi. 2008;24(2):114–7. PMID: 18785411; Saito M., Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97(3):242–61. DOI:10.1007/s00223-015-9985-5; Cornette P., Jaabar I.L., Dupres V., Werthel J.D., Berenbaum F., Houard X., et al. Impact of collagen crosslinking on dislocated human shoulder capsules-effect on structural and mechanical properties. Int J Mol Sci. 2022;23(4):2297. DOI:10.3390/ijms23042297; Shweta A., Pahuja S. Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. International Research Journal of Pharmacy. 2013;4:45–51.; Ruixue L., Yang S., Zhengwei C., Yang L., Jian S., Wei B., et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem Engin J. 2021;415:129015. DOI:10.1016/j.cej.2021.129015; Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Carvalho I.C., Chagas P., de Oliveira L.C.A., et al. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym. 2018;195:401–12. DOI:10.1016/j.carbpol.2018.04.105; Zhao J., Zhu Y., Ye C., Chen Y., Wang Sh., Zou D., et al. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine. 2019;14:3893–909. DOI:10.2147/IJN.S202876; Ma H., Peng Y., Zhang S., Zhang Y., Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. DOI:10.3390/gels8100609; Zou C.Y., Lei X.X., Hu J.J., Jiang Y.L., Li Q.J., Song Y.T., et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402. DOI:10.1016/j.bioactmat.2022.02.034; Mao H., Zhao S., He Y., Feng M., Wu L., He Y., et al. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr Polym. 2022;285:119254. DOI:10.1016/j.carbpol.2022.119254; Wang J., Kong L., Gafur A., Peng X., Kristi N., Xu J., et al. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater. 2021;8(2):rbaa058. DOI:10.1093/rb/rbaa058. PMID: 33738112; Schneider K.H., Rohringer S., Kapeller B., Grasl C., Kiss H., Heber S., et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58. DOI:10.1016/j.actbio.2020.08.037. PMID: 32871281; Munger K.A., Downey T.M., Haberer B., Pohlson K., Marshall L.L., Utecht R.E. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater. 2016;104(2):375–84. DOI:10.1002/jbm.b.33373. PMID: 25823876; Wang X., Ma B., Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng. 2015;26(1–2):19–30. DOI:10.3233/BME-151548. PMID: 26484552; Brasselet C., Durand E., Addad F., Al Haj Zen A., Smeets M.B., Laurent-Maquin D., et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33. DOI:10.1152/ajpheart.00410.2005; Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., et al. Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J Biomed Mater Res B Appl Biomater. 2014;102(6):1190–8. DOI:10.1002/jbm.b.33102; Shortliffe L.M., Freiha F.S., Kessler R., Stamey T.A., Constantinou C.E. Treatment of urinary incontinence by the periurethral implantation of glutaraldehyde cross-linked collagen. J Urol. 1989;141(3):538–41. DOI:10.1016/s0022-5347(17)40885-8; Richardson T.D., Kennelly M.J., Faerber G.J. Endoscopic injection of glutaraldehyde cross-linked collagen for the treatment of intrinsic sphincter deficiency in women. Urology. 1995;46(3):378–81. DOI:10.1016/S0090-4295(99)80223-4; Frey P., Gudinchet F., Jenny P. GAX 65: new injectable cross-linked collagen for the endoscopic treatment of vesicoureteral reflux—a double-blind study evaluating its efficiency in children. J Urol. 1997;158(3 Pt 2):1210–2. PMID: 9258175; Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. DOI:10.1007/s13277-013-1511-7; Iselin C.E. Periurethral collagen injections for incontinence following radical prostatectomy: does the patient benefit? Curr Opin Urol. 1999;9(3):209–12. DOI:10.1097/00042307-199905000-00003; Appell R.A. Collagen injection therapy for urinary incontinence. Urol Clin North Am. 1994;21(1):177–82. PMID: 8284841; Glynn J.J., Polsin E.G., Hinds M.T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. DOI:10.1016/j.actbio.2014.11.038; Kumar D., Benson M.J., Bland J.E. Glutaraldehyde cross-linked collagen in the treatment of faecal incontinence. Br J Surg. 1998;85(7):978–9. DOI:10.1046/j.1365-2168.1998.00751.x; Versteegden L.R., van Kampen K.A., Janke H.P., Tiemessen D.M., Hoogenkamp H.R., Hafmans T.G., et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1–8. DOI:10.1016/j.actbio.2017.02.005; Versteegden L.R., Hoogenkamp H.R., Lomme R.M., Van Goor H., Tiemessen D.M., Geutjes P.J., et al. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein. Acta Biomater. 2016;15(44):277–85. DOI:10.1016/j.actbio.2016.08.038; Lin H., Tang Y., Lozito T.P., Oyster N., Kang R.B., Fritch M.R., et al. Projection stereolithographic fabrication of BMP-2 gene-activated matrix for bone tissue engineering. Sci Rep. 2017;7(1):11327. DOI:10.1038/s41598-017-11051-0; Wang Z., Kumar H., Tian Z., Jin X., Holzman J.F., Menard F., et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–69. DOI:10.1021/acsami.8b06607; https://www.surgonco.ru/jour/article/view/1052