Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"первичная/приобретенная резистентность"', χρόνος αναζήτησης: 0,47δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: M. S. Sayapina, М. С. Саяпина

    Πηγή: Malignant tumours; № 2 (2017); 94-99 ; Злокачественные опухоли; № 2 (2017); 94-99 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/349/316; Blank C. et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro, Int. J. Cancer, 2006, Vol. 119, No. 2, pp. 317–327.; Brahmer J.R., Tykodi S.S., Cho L.Q., Hwu W. J., Topalian S. L., Hwu P. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer, N. Engl. J. Med. 2012. Vol. 366, pp. 2455–2465.; Topalian S. L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D. F. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med. 2012. Vol. 366, pp. 2443–2454.; Sharma P., Allison J.P., The future of immune checkpoint therapy, Science, 2015, Vol. 348, No. 6230, pp. 56–61.; Okazaki T., Honjo T., PD-1 and PD-1 ligands: from discovery to clinical application, Int. Immunol., 2007, Vol. 19, No. 813–824.; Keir M. E., Liang S.C., Guleria I., Latchman Y. E., Qipo A., Albacker L.A. et al. Tissue expression of PD-L1mediates peripheral T cell tolerance, J. Exp. Med., 2006, Vol. 203, No. 4, pp. 883–895.; Tseng S.Y., Otsuji M., Gorski K., Huang X., Slansky J. E., Pai S. I. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells, J. Exp. Med., 2001, Vol. 193, pp. 839–846.; Dong H., Strome S. E., Salomao D.R., Tamura H., Hirano F., Flies D.B. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat. Med., 2002, Vol. 8, pp. 793–800.; Wang L., Pino-Lagos K., de Vries V.C., Guleria I., Sayegh M.H., Noelle R. J., Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 +CD4+ regulatory T cells, Proc. Natl. Acad.Sci. USA, 2008, Vol. 105, pp. 9331–9336; Iwai Y., Ishida M., Tanaka Y., Okazaki T., Honjo T., Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade, Proc. Natl. Acad.Sci. USA, 2002, Vol. 99, pp. 12293–12297.; Tsushima F., Yao S., Shin T., Flies A., Flies S., Xu H. et al. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy, Blood, 2007, Vol. 110, pp. 180–185.; Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J., 1992, Vol. 11, pp. 3887–3895.; Freeman G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 2000, Vol. 192, pp. 1027–1034.; Zitvogel L., Kroemer G., Targeting PD-1/PD-L1 interactions for cancer immunotherapy, OncoImmunology, 2012, Vol. 1:8, pp. 1223–1225.; Parry R.V., Chemnitz J.M., Frauwirth K.A., Lanfranco A.R., Braunstein I., Kobayashi S.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms, Mol. Cell. Biol., 2005, Vol. 25, pp. 9543–9553.; Marzec M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of 573 immunosuppressive protein CD274 (PD-L1, B7-H1), Proc. Natl. Acad.Sci. USA, 2008, Vol. 105, No. 52, pp. 20852–20857.; Parsa A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma, Nat. Med., 2007, Vol. 13, No. 1, pp. 84–88.; Mittendorf E.A. et al. PD-L1 expression in triple-negative breast cancer, Cancer Immunol. Res., 2014, Vol. 2, No. 4, pp. 361–370.; Ribas A. Adaptive Immune Resistance: How Cancer Protects from Immune Attack, Cancer Discov., 2015, Vol. 5, No. 9, pp. 915–919.; Chen L., Han X., Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future, J. Clin. Invest., 2015, Vol. 125, No. 9, pp. 3384–91.; Mittal D. et al. New insights into cancer immunoediting and its three component phases elimination, equilibrium and escape, Curr. Opin. Immunol., 2014, Vol. 27, pp. 16–25.; Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy, Nat.Rev. Cancer, 2012, Vol. 12, No. 4, pp. 252–264.; Nishimura H., Honjo T., Minato N. Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice, J. Exp. Med., 2000, Vol. 191, pp. 891–898.; Probst H.C., McCoy K., Okazaki T., Honjo T., van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA- 4, Nat. Immunol., 2005, Vol. 6, pp. 280–286.; Ansari M. J., Salama A.D., Chitnis T., Smith R.N., Yagita H., Akiba H. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice, J. Exp. Med., 2003, Vol. 198, pp. 63–69.; Francisco L.M., Salinas V.H., Brown K. E., Vanguri V.K., Freeman G. J., Kuchroo V.K. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells, J. Exp. Med., 2009, Vol. 206, pp. 3015–3029.; Dong H., Zhu G., Tamada K., Chen L. B7H1, a third member of the B7 family, co-stimulates Tcell proliferation and interleukin 10 secretion, Nature Med., 1999, Vol. 5, pp. 1365–1369.; Latchman Y. et al. PDL2 is a second ligand for PD1 and inhibits T cell activation, Nature Immunol., 2001, Vol. 2, pp. 261–268.; Shin T. et al. In vivo costimulatory role of B7DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses, J. Exp. Med., 2005, Vol. 201, pp. 1531–1541.; Paterson A.M. et al. The programmed death1 ligand 1: B7–1 pathway restrains diabetogenic effector T cells in vivo, J. Immunol., 2011, Vol. 187, pp. 1097–1105.; Park J. J. et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance, Blood, 2010, Vol. 116, pp. 1291–1298.; Kuang D.M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PDL1, J. Exp. Med., 2009, Vol. 206, pp. 1327–1337.; Liu Y., Zeng B., Zhang Z., Zhang Y., Yang R. B7H1 on myeloid-derived suppressor cells in immune suppression by a mouse model of ovarian cancer, Clin. Immunol., 2008, Vol. 129, pp. 471–481.; Rosenwald A. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma, J. Exp. Med., 2003, Vol. 198, pp. 851–862.; Steidl C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers, Nature, 2011, Vol. 471, pp. 377–381.; Terme M. et al. IL18 induces PD-1-dependent immunosuppression in cancer, Cancer Res., 2011, Vol. 71, pp. 5393–5399.; Fanoni D. et al. New monoclonal antibodies against Bcell antigens: possible new strategies for diagnosis of primary cutaneous Bcell lymphomas, Immunol. Lett., 2011, Vol. 134, pp. 157–160.; Velu V. et al. Enhancing SIV-specific immunity in vivo by PD1 blockade, Nature, 2009, Vol. 458, pp. 206–210.; Ahmadzadeh M. et al. T cells infiltrating the tumor express high levels of PD1 and are functionally impaired, Blood, 2009, Vol. 114, No. 8, pp. 1537–1544.; O’Donnell J.S., Long G.V., Scolyer R.A. et al. Resistance to PD1/PDL1 checkpoint inhibition, Cancer Treatment Reviews, 2017, Vol. 52, pp. 71–81.; Schumacher T.N., Schreiber R.D., Neoantigens in cancer immunotherapy, Science, 2015, Vol. 348, No. 6230, pp. 69–74.; Martin A.M. et al., Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance, Prostate Cancer Prostatic Dis., 2015, Vol. 18, No. 4, pp. 325–332.; Spranger S., Bao R., Gajewski T. F., Melanoma-intrinsic -catenin signaling prevents anti-tumor immunity, Nature, 2015, Vol. 523, No. 7559, pp. 231–235.; Ellis L.M., Hicklin D. J. VEGF-targeted therapy: mechanisms of anti- tumor activity, Nat.Rev. Cancer, 2008, Vol. 8, No. 8, pp. 579–591.; Young M.R. et al., Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta, Cancer Immunol. Immunother., 1992, Vol. 35, No. 1, pp. 14–18.; Commeren D. L. et al. Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells, Immunology, 2003, Vol. 110, No. 2, pp. 188–196.; Baas M., Besancon A., Goncalves T. et al. TGFb-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance eLife 2016; 5: e08133.; Thommen D.S. et al., Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors, Cancer Immunol. Res., 2015, Vol. 3, No. 12, pp. 344–355.; Prendergast G.C. Immune escape as a fundamental trait of cancer: focus on IDO, Oncogene, 2008, Vol. 27, pp. 3889–3900.; Holmgaard R.B. et al., Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4, J. Exp. Med., 2013, Vol. 210, No. 7, pp. 1389–1402.; Spranger S. et al., Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8 (+) T cells 700 directly within the tumor microenvironment, J. Immunother. Cancer, 2014, Vol. 2, p. 3.; Zarek P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing Tcell anergy and the generation of adaptive regulatory T cells, Blood, 2008, Vol. 111, pp. 251–259.; Deaglio S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression, J. Exp. Med., 2007, Vol. 204, pp. 1257–1265.; Ribas A. et al. PD-1 Blockade Expands Intratumoral Memory T Cells, Cancer Immunol. Res., 2016, Vol. 4, No. 3, pp. 194–203.; https://www.malignanttumors.org/jour/article/view/349