Showing 1 - 20 results of 312 for search '"парниковый эффект"', query time: 0.85s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Conference

    Subject Geographic: RSVPU

    File Description: application/pdf

    Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Седьмой Международной научно-практической конференции преподавателей, молодых ученых и студентов. — Екатеринбург, 2024

  8. 8
    Academic Journal

    Source: Izvestiya of Altai State University; No 4(126) (2022): Izvestiya of Altai State University; 104-109
    Известия Алтайского государственного университета; № 4(126) (2022): Известия Алтайского государственного университета; 104-109

    File Description: application/pdf

    Access URL: http://izvestiya.asu.ru/article/view/(2022)4-16

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: Sustainable Development of Russian Regions in the Age of Transformation Processes; 112-114 ; Устойчивое развитие регионов России в эпоху трансформационных процессов; 112-114

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-47-9; https://phsreda.com/e-articles/10614/Action10614-112384.pdf; Бутузов В.А. Теплоснабжение объектов на основе солнечной энергии. Статистика мира и России в 2022 году / А.А. Бутузов [Электронный ресурс]. – Режим доступа: https://www.c-o-k.ru/articles/teplosnabzhenie-obektov-na-osnove-solnechnoy-energii-statistika-mira-i-rossii-v-2022-godu (дата обращения: 20.06.2024).; Ветроэнергетика [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/wiki/Ветроэнергетика (дата обращения: 20.06.2024).; Мировое производство биотоплива в 2023 году составило 2,0 миллиона баррелей в сутки или 92 миллиона тонн (7,5%). Производство биодизеля в 2023 году составило 1,2 миллиона баррелей в сутки или 61 миллион тонн (4%) [Электронный ресурс]. – Режим доступа: https://seala.ru/analyticoil/biotoplivo (дата обращения: 20.06.2024).; Насколько экологичны ветро- и солнечная энергетика на самом деле? [Электронный ресурс]. – Режим доступа: https://dzen.ru/a/YIvhCPRTTnS1nrGI (дата обращения: 20.06.2024).; Установленная мощность ВИЭ [Электронный ресурс]. – Режим доступа: https://www.eeseaec.org/ustanovlennaa-mosnost-vie (дата обращения: 20.06.2024).; https://phsreda.com/article/112384/discussion_platform

  13. 13
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 7 (2024); 183-208 ; Альтернативная энергетика и экология (ISJAEE); № 7 (2024); 183-208 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2453/1992; Ali S., Alkhatib I., AlHajaj A., Vega L. (2023). How sustainable and profitable are large-scale hydrogen production plants from CH4 and H2S? Journal of Cleaner Production, 428(20), 139475. Doi:10.1016/j.jcle-pro.2023.139475; Bazhenov S., Dobrovolsky Yu., Maksimov A., Zhdaneev O. (2022). Key challenges for the development of the hydrogen industry in the Russian Federation. Sustainable Energy Technologies and Assessments. 54. 102867. 10.1016/j.seta.2022.102867.; Bhandari R., Trudewind C. A., Zap P. Life Cycle Assessment of Hydrogen Production Methods-A Review Contribution to Ely Grid Project.; Bockris, J. (2013, Февраль). The hydrogen economy: Its history. International Journal of Hydrogen Energy, 38(6), 2579-2588. Doi:10.1016/j.ijhydene.2012.12.026; CertifHy. (2024). Retrieved Март 14, 2024, from certifhy.eu: https://www.certifhy.eu/; Cetinkaya E., Dincer I., Naterer G. (2012). Life cycle assessment of various hydrogen production methods. International journal of hydrogen energy, 37(3), 2071-2080. Doi:10.1016/j.ijhydene.2011.10.064; Chan Y., Loy A., Cheah K., Chai S., Ngu L., How B., Lam, S. (2023). Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook. Chemical Engineering Journal, 458, 141398. Doi: https://doi.org/10.1016/j.cej.2023.141398; Chivers T., Hyne J., Lau C. (1980). The thermal decomposition of hydrogen sulfide over transition metal sulfides. International Journal of Hydrogen Energy, 5(5), 499-506. Doi: https://doi.org/10.1016/0360-3199(80)90056-7; Chupin Evgeniy, Frolov Konstantin, Korzhavin Maxim, Zhdaneev Oleg. (2021). Energy storage systems for drilling rigs. Journal of Petroleum Exploration and Production Technology. 12. 10.1007/s13202-021-01248-5.; Department of Climate Change, Energy, the Environment and Water. (2023). Australia’s Guarantee of Origin Scheme: consultation papers. Retrieved Март 14, 2024, from consult.dcceew.gov.au: https://consult.dcceew.gov.au/aus-guarantee-of-origin-scheme-consulta-tion; Derwent R., Simmonds P., O’Doherty S., Manning A., Collins W., Stevenson D. (2006, Май). Global environmental impacts of the hydrogen economy. International Journal of Nuclear Hydrogen Production and Applications, 1(1), 57-67. doi:10.1504/IJNHPA.2006.009869; E4tech & LBST. (2021). Options for a UK low carbon hydrogen standard. Обзор. Retrieved from https://assets.publishing.service.gov.uk/media/616012f-ce90e071979dfebba/Options_for_a_UK_low_carbon_hydrogen_standard_report.pdf; El-Melih, A. M., Iovine, L., Al Shoaibi A. & Gupta A. K. (2017). Production of hydrogen from hydrogen sulfide in presence of methane. International Journal of Hydrogen Energy, 42(8), 4764-4773. doi: https://doi.org/10.1016/j.ijhydene.2016.11.096; Ernst & Young Limited. (2022). Low-Carbon Hydrogen International Standard Post-Workshop Report. Post-Workshop Repor, Asia-Pacific Economic Cooperation Secretariat, Singapore. Retrieved from https://www.apec.org/docs/default-source/publications/2022/7/low-carbon-hydrogen-international-standard-post-work-shop-report/222_scsc_low-carbon-hydrogen-internation-al-standard.pdf?sfvrsn=b6028b32_2; Galitskaya E. Development of electrolysis technologies for hydrogen production: A case study ofgreen steel manufacturing in the Russian Federation / E. Galitskaya, O. Zhdaneev // Environmental Technology and Innovation. – 2022. – Vol. 27. – P. 102517. – DOI 10.1016/j.eti.2022.102517. – EDN EYZKTG.; Galitskaya E., Khakimov R., Moskvin A., Zhdaneev O. (2023). Towards a new perspective on the efficiency of water electrolysis with anionconducting matrix. International Journal of Hydrogen Energy. 49. 10.1016/j.ijhydene.2023.10.339.; G7 Ministers of Climate, Energy and the Enviroment. (2023). G7 Climate, Energy and Environment Ministers’ Communiqué. Retrieved Март 14, 2024, from meti.go.jp: https://www.meti.go.jp/press/2023/04/20230417004/20230417004-1.pdf; Green Hydrogen Organisation (GH2). (2023). Green Hydrogen Standard. Retrieved Март 14, 2024, from gh2.org: https://gh2.org/sites/default/files/2023-01/GH2_Standard_A5_JAN%202023_1.pdf; Harvey A., Mountain R. (2017). Correlations for the Dielectric Constants of H2S, SO2, SF6. International Journal of Thermophysics, 38(10). doi:10.1007/s10765-017-2279-6; Huang C., T-Raissi A. (2008). Liquid hydrogen production via hydrogen sulfide methane reformation. Journal of Power Sources, 175(1), 464-472. doi:10.1016/j.jpowsour.2007.09.079; International Energy Agency. (2023). Global Hydrogen Review 2023. Обзор. Retrieved Март 14, 2024, from https://iea.blob.core.windows.net/assets/ecdf-c3bb-d212-4a4c-9ff7-6ce5b1e19cef/GlobalHydrogenRe-view2023.pdf; International Energy Agency. (2023). Towards hydrogen definitions based on their emissions intensity. Обзор, G7 2023 Hiroshima Summit. Retrieved from https://iea.blob.core.windows.net/assets/acc7a642-e42b-4972-8893-2f03bf0bfa03/Towardshydrogendefinitions-basedontheiremissionsintensity.pdf; IPHE, Hydrogen Council. (2023). Hydrogen Certification 101. Retrieved 03, 14, 2024, from iphe.net: https://www.iphe.net/_files/ugd/45185a_fe8631bbe2ad-496c9da93711935f7520.pdf; Khakimov R. Hydrogen as a key technology for long-term & seasonal energy storage applications / R. Khakimov, A. Moskvin, O. Zhdaneev // International Journal of Hydrogen Energy. – 2024. – Vol. 68. – P. 374-381. – DOI 10.1016/j.ijhydene.2024.04.066. – EDN IQQFIU; Li Y., Yu X., Guo Q., Dai Z., Yu G., Wang F. (2017). Kinetic study of decomposition of H2S and CH4 for H2 production using detailed mechanism. Energy Procedia, 142, 1065-1070. Doi: https://doi.org/10.1016/j.egypro.2017.12.357; Lim K., Yue Y., Gao X., Bella Zhang T. Hu F., Kawi S. (2023). Sustainable Hydrogen and Ammonia Technologies with Nonthermal Plasma Catalysis: Mechanistic Insights and Technoeconomic Analysis. ACS Sustainable Chemistry & Engineering, 11(13), 4903-4933. Doi: https://doi.org/10.1021/acssuschemeng.2c06515; Liu W., Wan Y., Xiong Y., Gao P. (2021). Green Hydrogen Standard in China: Standard and Evaluation of Low-Carbon Hydrogen, Clean Hydrogen, and Renewable Hydrogen. In Y. Li, H. Phoumin, S. Kimura, S. Kimura (Ed.). Hydrogen Sourced from Renewables and Clean Energy: A Feasibility Study of Achieving Large-scale Demonstration (pp. 211-24). Jakarta: ERIA Research Project Report. Retrieved from https://www.eria.org/uploads/media/Research-Project-Report/RPR-2021-19/15_Chapter-9-Green-Hydrogen-Standard-in-China_Standard-and-Evaluation-of-Low-Carbon-Hydro-gen,-Clean-Hydrogen,-and-Renewable-Hydro-gen.pdf; Martínez-Salazar A., Melo-Banda J., Coronel-García M., García-Vite P., Martínez-Salazar I., Domínguez-Esquivel J. (2019). Technoeconomic analysis of hydrogen production via hydrogen sulfide methane reformation. International Journal of Hydrogen Energy, 44(24), 12296-12302. Doi: https://doi.org/10.1016/j.ijhydene.2018.11.023; Martínez-Salazar A., Melo-Banda J., Reyes de la Torre A., Salazar-Cerda Y., Coronel-García M., Portales Martínez B., Silva Rodrigo R. (2015). Hydrogen production by methane reforming with H2S using Mo,Cr/ ZrO2–SBA15 and Mo,Cr/ZrO2–La2O3 catalysts. International Journal of Hydrogen Energy, 40(48), 17272-17283. Doi: https://doi.org/10.1016/j.ijhydene.2015.09.154; Ministry of Power, India. (2023). G20 Energy Ministers Adopt Ambitious and Forward-looking Outcome Document and Chair’s Summary. Retrieved Март 14, 2024, from pib.gov.in: https://pib.gov.in/PressRelea-seIframePage.aspx?PRID=1941796; Nagashima Ohno & Tsunematsu. (2023). The Japanese Basic Hydrogen Strategy. Retrieved Март 14, 2024, from noandt.com: https://www.noandt.com/wp-content/uploads/2023/06/japan_no40.pdf; Palma V., Cortese M., Renda S., Ruocco C., Martino M., Meloni E. (2020). A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid-Gas Phase Chemical Processes. Nanomaterials, 10(8), 1596. Doi: https://doi.org/10.3390/nano10081596; Prinzhofer A., Cisse C., Diallo A. (2018, Октябрь). Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42), 19315-19326. doi:10.1016/j.ijhydene.2018.08.193; Spatolisano E., De Guido G., Pellegrini L., Calemma V., de Angelis A., Nali M. (2022). Hydrogen sulphide to hydrogen via H2S methane reformation: Thermodynamics and process scheme assessment. International Journal of Hydrogen Energy, 47(35), 15612-15623. Doi: https://doi.org/10.1016/j.ijhydene.2022.03.090; Startsev A. N. (2020). The crucial role of catalysts in the reaction of low temperature decomposition of hydrogen sulfide: Non-equilibrium thermodynamics of the irreversible process in an open system. 497, 11240. Doi: https://doi.org/10.1016/j.mcat.2020.111240; Svirchuk Y. S., Golikov A. N. (2016, Декабрь). Three-Phase Zvezda-Type Plasmatrons. IEEE Transactions on Plasma Science, 44(12), 3042-3047. doi:10.1109/TPS.2016.2571746; THE EUROPEAN COMMISSION. (2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL,THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS A hydrogen strategy for a climate-neutral Europe. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-%3A52020DC0301; THE EUROPEAN COMMISSION. (2023). COMMISSION DELEGATED REGULATION (EU) 2023/1184. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TX-T/?uri=CELEX%3A32023R1184&qid=1704969010792; THE EUROPEAN COMMISSION. (2023). COMMISSION DELEGATED REGULATION (EU) 2023/1185. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TX-T/?uri=CELEX%3A32023R1185; The UK’s Department for Energy Security & Net Zero. (2023). UK Low Carbon Hydrogen Standard. Стандарт, London. Retrieved from https://assets.publish-ing.service.gov.uk/media/6584407fed3c3400133bfd47/uk-low-carbon-hydrogen-standard-v3-december-2023.pdf; The United States Department of State and the United States Executive Office of the President. (2021). THE LONG-TERM STRATEGY OF THE UNITED STATES. Retrieved Март 14, 204, from whitehouse. gov: https://www.whitehouse.gov/wp-content/up-loads/2021/10/us-long-term-strategy.pdf; The US Department of Energy. (2023). U. S. Department of Energy Clean Hydrogen Production Standard (CHPS) Guidance. Retrieved Март 14, 2024, from hydrogen.energy.gov: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/clean-hydro-gen-production-standard-guidance.pdf; TÜV SÜD Industrie Service. (2021). ÜV SÜD Standard CMS 70 Production of green hydrogen (Green Hydrogen). Retrieved Март 14, 2024, from tuvsud.com: https://www.tuvsud.com/en/-/media/global/pdf-files/brochures-and-infosheets/tuvsud-cms70-standard-green-hydrogen-certification.pdf; Yang L., Wang S., Zhang Z., Lin K., Zheng M. (2023, Июнь 26). Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality. Sustainability, 15(13), 10118. doi:10.3390/su151310118; Zhdaneev O. V. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition / O. V. Zhdaneev, K. N. Frolov // International Journal of Hydrogen Energy. – 2024. – Vol. 58. – P. 1418-1428. – DOI:10.1016/j.ijhydene.2024.01.285. – EDN PLLMKU.; Zhe Li, Hailong Du, Hui Xu, Yan Xiao, Lunhui Lu, Jinsong Guo, Yves Prairie, Sara Mercier-Blais, The carbon footprint of largeand mid-scale hydropower in China: Synthesis from five China’s largest hydroproject, Journal of Environmental Management, Volume 250, 2019.; Zgonnik V. (2020, Апрель). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. Doi:10.1016/j.earscirev.2020.103140; Аксютин О., Ишков А., Романов К., Тетеревлев Р. (Март 2021 г.). Роль российского природного газа в развитии водородной энергетики. Энергетическая политика. Получено из https://energypolicy.ru/o-aksyutin-a-ishkov-k-romanov-r-teterevlev-rol-rossijskogo-prirodnogo-gaza-v-razvitii-vodorodnoj-energetiki/gaz/2021/12/25/; Бахтина А. (2023). Открытие месторождения во Франции снизило скептицизм в отношении белого водорода. Получено 20 Июнь 2024 г. из Нефтегаз: https://neftegaz.ru/news/Geological-exploration/800617-otkrytie-mestorozhdeniya-vo-frantsii-snizilo-skeptitsizm-v-otnoshenii-belogo-vodoroda/; Бондур В. Г., Мохов И. И., Макоско А. А. (2022). Метан и климатические изменения: научные проблемы и технологические аспекты (изд. 1-е). (В. Г. Бондур, Ред.) Москва, Россия: Российская академия наук. Doi: 978-5-907036-54-3; Ишков А., Романов К., Колошкин Е., Удалов Д., Богдан И., Лугвищук Д., Михайлов А. (Апрель 2024 г.). Нормативное регулирование оценки углеродного следа при производстве водорода. Энергетическая политика, 195(4), 54-77. Doi:10.46920/2409-5516_2024_4195_54; Колшаков В. В., Ребров С. Г., Голиков А. Н., Федоров И. А. (2021). Ресурсные характеристики плазмотрона переменного тока «Звезда». Физика плазмы и плазменные методы (4), 32-39. Doi:10.51368/1996-0948-2021-4-32-39; Максимов А. Л., Ишков А. Г., Пименов А. А., Романов К. В., Михайлов А. М., Колошкин Е. А. (Февраль 2024 г.). Физико-химические аспекты и углеродный след получения водорода из воды и углеводородов. Записки горного института, 265, 87-94.; Нефтегаз 2025. (2024). Получено 20 Июнь 2024 г., из https://www.neftegaz-expo.ru/ru/articles/neft-rossii/; Савитенко М. А., Рыбаков Б. А. (Март 2021 г.). Применение водорода в энергетике: вопросы экологии. Турбины и Дизели, 94(1), 10-20.; Старцев, А. Н. (2017). Сероводород как источник получения водорода. Известия Академии наук. Серия химическая (8). Retrieved from http://start-sev-an.ru/wp-content/uploads/%D0%98%D0%B7%D0%B2%D0%90%D0%9D-17-%D0%A1%D1%82%D0%B0%D1%80%D1%86%D0%B5%D0%B2.pdf; Сывороткин В. (2013). Озонная методика изучения водородной дегазации Земли. Электронное научное издание Альманах Пространство и Время. – Т. 4. – Вып. 1.; Молчанов, В. И. (1981). Генерация водорода в литогенезе. Новосибирск: Наука.; Ehhalt D. H., Rohrer F. The tropospheric cycle of H2: A critical review // Tellus. 2009.; https://www.isjaee.com/jour/article/view/2453

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20