Εμφανίζονται 1 - 18 Αποτελέσματα από 18 για την αναζήτηση '"параметрическое описание"', χρόνος αναζήτησης: 0,53δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The article was published as part of the research topic No. FNEN‑2019–0008 of the state assignment of the V. M. Gorbatov Federal Research Center for Food Systems of RAS., Статья опубликована в рамках выполнения темы НИР № FNEN‑2019–0008 государственного задания ФГБНУ «ФНЦ пищевых систем им. В. М. Горбатова» РАН.

    Πηγή: Food systems; Vol 6, No 1 (2023); 64-71 ; Пищевые системы; Vol 6, No 1 (2023); 64-71 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/230/218; Lichtenstein, A. H., Appel, L. J., Vadiveloo, M., Hu, F. B., Kris-Etherton, P. M., Rebholz, C. M. et al (2021). Dietary guidance to improve cardiovascular health: a scientific statement from the American heart association. Circulation, 144(23), e472–e477. https://doi.org/10.1161/CIR.0000000000001031; Ayoub, J. J, Samra, M. J. A., Hlais, S. A., Bassil, M. S., Obeid, O. A. (2015). Effect of phosphorus supplementation on weight gain and waist circumference of overweight/obese adults: a randomized clinical trial. Nutrition and Diabetes, 5(12), Article e189. https://doi.org/10.1038/nutd.2015.38; Mattar, L., Zeeni, N., Bassil, M. (2015). Effect of movie violence on mood, stress, appetite perception and food preferences in a random population. European Journal of Clinical Nutrition, 69(8), 972–973. https://doi.org/10.1038/ejcn.2014.262; Stigler, G. (1945). The cost of subsistence. Journal of Farm Economics, 27(2), 303–314. http://doi.org/10.2307/1231810; Lancaster, L. M. (1992). The history of the application of mathematical programming to menu planning. European Journal of Operational Research, 57(3), 339–347. https://doi.org/10.1016/0377–2217(92)90345-A; Lenstra, H. W. (1983). Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4), 538–548.; Schniederjans, M. (1995). Goal programming: methodology and applications. 1st edn. New York: Springer, 1995. https://doi.org/10.1007/978–1–4615–2229–4; McCann-Rugg, M., White, G. P., Endres, J. M. (1983). Using goal programming to improve the calculation of diabetic diets. Computers and Operations Research, 10(4), 365–373. https://doi.org/10.1016/0305–0548(83)90011–4; Bassi, L. J. (1976). The diet problem revisited. The American Economist, 20(2), 35–39. https://doi.org/10.1177/056943457602000206; Foytik, J. (1981). Devising and using a computerized diet: An exploratory study. The Journal of Consumer Affairs, 15(1), 158–169. https://doi.org/10.1111/J.1745–6606.1981.TB00699.X; Valdez-Pena, H., Martinez-Alfaro, H. (2003, 08 October). Menu planning using the exchange diet system. Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics (SMC’03). Washington, DC, USA. 3, 3044–3049. https://doi.org/10.1109/ICSMC.2003.1244355; Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R. Jr., Tudor-Locke, C., Greer, G. R. et al. (2011). 2011 compendium of physical activities: a second up-date of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12; Fister, D., Fister, R. S. I. (2016, 17–19 November). Generating eating plans for athletes using the particle swarm optimization. Proceedings of the 2016 IEEE17th International Symposium on Computational Intelligence and Informatics (CINTI’2016). Budapest, Hungary. 193–198. https://doi.org/10.1109/CINTI.2016.7846402; Razali, A. N. A. M., Bakar, E. M. N. E. A., Mahamud, K. R. K., Arbin, N., Rusiman, M. R. (2018). Self-adaptive hybrid genetic algorithm (SHGA). Far East Journal of Mathematical Sciences, 103(1), 171–190. http://doi.org/10.17654/MS103010171; Seljak, B. K. (2009). Computer-based dietary menu planning. Journal of Food Composition and Analysis, 22(5), 414–420. https://doi.org/10.1016/J.JFCA.2009.02.006; Türkmenoglu, C., Uyar, A. S. E., Kiraz, B. (2021). Recommending healthy meal plans by optimising nature-inspired many-objective diet problem. Health Informatics Journal, 27(1), Article 1460458220976719. https://doi.org/10.1177/1460458220976719; Salloum, G., Tekli, J. (2022). Automated and personalized meal plan generation and relevance scoring using a multi-factor adaptation of the transportation problem. Soft Computing, 26, 2561–2585. https://doi.org/10.1007/s00500–021–06400–1; Bianchi, L., Dorigo, M., Gambardella, L. M., Gutjahr, W. J. (2009). A Survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8, 239–287. https://doi.org/10.1007/s11047–008–9098–4; El-Ghazi, T. (2009). Metaheuristics: from design to implementation. New Jersey: Wiley, 2009.; Husain, W., Wei, L. J, Cheng, S. L., Zakaria, N. (2011, 05–06 December). Application of data mining techniques in a personalized diet recommendation system for cancer patients. Proceedings of the 2011 IEEE colloquium on humanities, science and engineering, Penang, Malaysia. 239–244. https://doi.org/10.1109/CHUSER.2011.6163724; Khan, A. S., Hoffmann, A. (2003). An advanced artificial intelligence tool for menu design. Nutrition and Health, 17(1), 43–53. https://doi.org/10.1177/026010600301700105; Khan, A. S., Hoffmann, A. (2003). Building a case-based diet recommendation system without a knowledge engineer. Artificial Intelligence in Medicine, 27(2), 155–179. https://doi.org/10.1016/s0933–3657(02)00113–6; Petot, G. J., Marling, C., Sterling, L. (1998). An artificial intelligence system for computer-assisted menu planning. Journal of the Academy of Nutrition and Dietetics, 98(9), 1009–1014. https://doi.org/10.1016/S0002–8223(98)00231–4; Lee, C.-S., Wang, M.-H., Hsu, C.-Y., Hagras, H. (2009, 15–18 September). A novel type‑2 fuzzy ontology and its application to diet assessment. Proceedings of the 2009 IEEE/WIC/ACM International joint conference on web intelligence and intelligent agent technology, Milan, Italy. 3, 417–420. https://doi.org/10.1109/WI–IAT.2009.315; Lee, C.-S., Wang, M.-H., Acampora, G., Hsu, C.-Y., Hagras, H. (2010). Diet assessment based on type‑2 fuzzy ontology and fuzzy markup language. International Journal of Intelligent Systems, 25(12), 1187–1216. https://doi.org/10.1002/int.20449; Wang, M.-H., Lee, C.-S., Hsieh, K.-L., Hsu, C.-Y., Chang, C.-C. (2009, 20–24 August). Intelligent ontological multi-agent for healthy diet planning. Proceedings of the 2009 IEEE International Conference on Fuzzy Systems, Jeju, Korea (South). Article 10905832. https://doi.org/10.1109/FUZZY.2009.5277049; Lee, C.-S., Wang, M.-H., Habras, H., Chen, Z.-W., Lan, S.-T., Hsu, C.-Y. et al. (2012). A novel genetic fuzzy markup language and its application to healthy diet assessment. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20(suppl02), 247–278. https://doi.org/10.1142/S0218488512400235; Lee, C.-S., Wang, M.-H., Lan, S. T. (2015, October). Adaptive personalized diet linguisti recommendation mechanism based on type‑2 fuzzy sets and genetic fuzzy markup language. Proceedings of the 2015 IEEE Transactions on Fuzzy Systems. 23(5), 1777–1802. https://doi.org/10.1109/TFUZZ.2014.2379256; Evans, D. (2017). MyFitnessPal. British Journal of Sports Medicine, 51(14), 1101–1102. http://doi.org/10.1136/bjsports‑2015–095538; Livestrong Foundation. MyPlate Calorie Counter. Retrieved from: https://www.livestrong.com/myplate/ Accessed May 25, 2022.; MyNetDiary, Retrieved from: https://www.mynetdiary.com/. Accessed May 25, 2022.; EatThisMuch Inc. Eat this much. Retrieved from: https://www.eatthismuch.com/. Accessed May 25, 2022.; Fitness Meal Planner. Retrieved from: http://www.fitnessmealplanner.com/. Accessed May 25, 2022.; MakeMyPlate Inc. Make my plate. Retrieved from: http://www.makemyplate.co/. Accessed May 25, 2022.; Yang, L., Hsieh, C.-K., Yang, H., Dell, N., Belongie, S., Cole, C. et al. (2018). Yum-Me: A personalized nutrient-based meal recommender system. ACM Transactions on Information Systems, 36(1), Article 7. https://doi.org/10.1145/3072614; Ивашкин, Ю. А., Никитина, М. А. (2018). Концепция биологической совместимости в оптимизации рациона питания человека. Наукоемкие технологии, 19(3), 33–44.; Nikitina, M. (2020, 26–29 May). Structural-parametric modeling in human healthy nutrition system. Proceedings of the 6th International Conference Information Technology and Nanotechnology. Session Data Science, Samara, Russia. 219–224.; Ивашкин, Ю. А. (2004). Структурно-параметрическое моделирование и идентификация аномальных ситуаций в сложных технологических системах. Проблемы управления, 3, 39–45.; Лисицын А. Б., Иванова В. Н. (2018). Современные технологии функциональных пищевых продуктов. Москва: ДеЛи плюс, 2018.; Диета и метаболизм (2011). UA, San Diego: Genex, 50 p. Электронный ресурс https://www.lifemedical.ru/netcat_files/File/5678%20FIT%20russian.pdf. Дата доступа 2.01.2023.; Nikitina, M. A. (2022). Digital Technology in the Development of Healthy Diet Decision Support System. Chapter in a book: Society 5.0: HumanCentered Society Challenges and Solutions. Heidelberg: Springer, 2022. https://doi.org/10.1007/978–3–030–95112–2_6; Никитина, М. А. (2022). Персонализация в структурной оптимизации рациона индивидуального питания человека. Математические методы в технологиях и технике, 1, 85–88. https://doi.org/10.52348/2712–8873_MMTT_2022_1_85; https://www.fsjour.com/jour/article/view/230

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Управление движением и навигация летательных аппаратов. - Ч. 2 . - Текст : электронный

    Θεματικοί όροι: 629.7.05(082)

    Relation: Управление движением и навигация летательных аппаратов : сб. [науч.] тр. XIV Всерос. семинара по упр. движением и навигации летат. аппаратов (Самара