Showing 1 - 20 results of 456 for search '"параметризация"', query time: 1.17s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Известия Уральского федерального университета. Серия 2: Гуманитарные науки, Vol 26, Iss 2 (2024)
    Izvestia. Ural Federal University Journal. Series 2. Humanities and Arts; Том 26, № 2; 42–57
    Известия Уральского федерального университета. Серия 2. Гуманитарные науки; Том 26, № 2; 42–57

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Contributors: The creation of a new parameterization scheme for snow albedo and its inclusion in the LSM SPONSOR was carried out within the framework of the State Assignment FMGE-2019-0004, testing of a new parameterization scheme for snow albedo as part of the LSM SPONSOR model using long-term observational data for high-mountain cites of the ESM-Snow MIP project was carried out with financial support from the Russian Science Foundation grant № 23-17-00247., Создание новой схемы параметризации альбедо снежного покрова и её включение в модель LSM SPONSOR выполнено в рамках Госзадания FMWS-2024-0004, тестирование новой схемы параметризации альбедо снежного покрова в составе модели LSM SPONSOR с использованием многолетних данных наблюдений для высоко горных полигонов проекта ESM-SnowMIP – при финансовой поддержке гранта РНФ № 23-17-00247.

    Source: Ice and Snow; Том 64, № 3 (2024); 403-419 ; Лёд и Снег; Том 64, № 3 (2024); 403-419 ; 2412-3765 ; 2076-6734

    File Description: application/pdf

    Relation: https://ice-snow.igras.ru/jour/article/view/1438/734; Дроздов Е.Д., Турков Д.В., Торопов П.А., Артамонов А.Ю. Термический режим снежного покрова зимой в высокогорной части Эльбруса по натурным данным и результатам моделирования // Лёд и Снег. 2023. Т. 63. № 2. С. 225–242. https://doi.org/10.31857/S2076673423020059; Кондратьев К.Я. Актинометрия. Л.: Гидрометеоиздат, 1965. 691 с.; Котляков В.М. Криосфера и климат // Экология и жизнь. 2010. № 11. С. 51–59.; Красс М.С., Мерзликин В.Г. Радиационная физика сне га и льда. Л.: Гидрометеоиздат, 1990. 264 с.; Кузьмин П.П. Физические свойства снежного покрова. Л.: Гидрометеоиздат, 1957. 179 с.; Кузьмин П.П. Процесс таяния снежного покрова. Л.: Гидрометеоиздат, 1961. 344 с.; Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы. Л.: Гидрометеоиздат, 1984. 752 с.; Снег: Справочник / Под ред. Д.М. Грея, Д.Х. Мэйла. Пер. с англ. под ред. В.М. Котлякова. Л.: Гидрометеоиздат, 1986. 751 с.; Турков Д.В., Сократов В.С. Расчёт характеристик снежного покрова равнинных территорий с использованием модели локального тепловлагообмена SPONSOR и данных реанализа на примере Московской области // Лёд и Снег. 2016. Т. 56. № 3. С. 369–380. https://doi.org/10.15356/2076-6734-2016-3-369-380; Шмакин А.Б., Турков Д.В., Михайлов А.Ю. Модель снежного покрова с учётом слоистой структуры и её сезонной эволюции // Криосфера Земли. 2009. Т. XIII (4). С. 69–79.; Barlett P.A., MacKay M.D., Verseghy D.L. Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands // Atmosphere-Ocean. 2006. 44. № 3. P. 207–222. https://doi.org/10.3137/ao.440301; Chandrasekhar S. Radiative transfer. New York: Dover Publications, 2016. 393 p.; Danabasoglu G., Lamarque J.F., Bacmeister J., Bailey D.A., DuVivier A.K., Edwards J., Emmons L.K., Fasullo J., Garcia R., Gettelman A., Hannay C., Holland M.M., Large W.G., Lauritzen P.H., Lawrence D.M., Len aerts J.T.M., Lindsay K., Lipscomb W.H., Mills M.J., Neale R., Oleson K.W., Otto‐BliesnerB., Phillips A.S., Sacks W., Tilmes S., Van Kampenhout L., Verten stein M., Bertini A., Dennis J., Deser C., Fisch er C., Fox‐Kemper B., Kay J.E., Kinnison D., Kush ner P.J., Larson V.E., Long M.C., Mickelson S., Moore J.K., Nienhouse E., Polvani L., Rasch P.J., Strand W.G. The Community Earth System Mod el Version 2 (CESM2) // Journ. Adv Model Earth System 2020. 12 (2). P. e2019MS001916. https://doi.org/10.1029/2019MS001916; Dang C., Zender C.S., Flanner M.G. Intercomparison and improvement of two-stream shortwave radiative trans ferschemes in Earth system models for a unified treatment of cryospheric surfaces // The Cryosphere. 2019. V. 13. P. 2325–2343. https://doi.org/10.5194/tc-13-2325-2019; Decharme B., Brun E., Boone A., Delire C., Le Moigne P., Morin S. Impacts of snow and organic soils parame terization on northern Eurasian soil temperature pro files simulated by the ISBA land surface model // The Cryosphere. 2016. V. 10. № 2. P. 853–877. https://doi.org/10.5194/tc-10-853-2016; Dickinson R., Henderson-Sellers A., Kennedy P. Bio sphere-Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model. 1993. 80 p. https://doi.org/10.5065/D67W6959; Flanner M.G., Arnheim J.B., Cook J.M., Dang C., He C., Huang X., Singh D., Skiles S.M., Whicker C.A., Zender C.S. SNICAR-ADv3: a community tool for modeling spectral snow albedo // Geosci. Model Dev. 2021. V. 14. P. 7673–7704. https://doi.org/10.5194/gmd-14-7673-2021; He C., Liou K.-N., Takano Y., Yang P., Qi L., Chen F. Im pact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis // Journ. of Geophysical Re search: Atmospheres. 2018. V. 123. № 2. P. 1253–1268. https://doi.org/10.1002/2017JD027752; Hedstrom N., Pomeroy J.W. Intercepted snow in boreal forest: measurement and modelling // Hydrol. Process. 1998. V. 12. № 11-12. P. 1611–1625. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/113.0.CO;2-4; Krinner G., Derksen C., Richard E. ESM-SnowMIP: as sessing snow models and quantifying snow-related climate feedbacks // Geosci. Model Dev. 2018. V. 11. P. 5027–5049. https://doi.org/10.5194/gmd-11-5027-2018; Landry C. C., Buck K.A., Raleigh M.S., Clark M.P. Moun tain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes // Water Resource Research 2014. V. 50. P. 1773–1788. https://doi.org/10.1002/2013WR013711; Lee W.Y., Gim H.J., Park S.K. Parameterizations of Snow Cover, Snow Albedo and Snow Density in Land Surface Models: A Comparative Review // Asia-Pacific Journal of Atmospheric Science. 2023. V. 60. P. 185–210. https://doi.org/10.1007/s13143-023-00344-2; Lejeune Y., Dumont M., Panel J.M., Lafaysse M., Lapalus P., Le Gac E., Lesaffre B., Morin S. 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) // Earth System Science Data. 2019. V. 11. P. 71–88. https://doi.org/10.5194/essd-11-71-2019; Menard C., Essery R., Turkov D. Scientific and human er rors in a snow model intercomparison // Bulletin of the American Meteorological Society. 2021. V. 201. № 1. P. E61–E79. https://doi.org/10.1175/BAMS-D-19-0329.1; Rowe P.M., Fergoda M., Neshyba S. Temperature‐Depen dent Optical Properties of Liquid Water From 240 to 298 K // JGR Atmospheres. 2020. V. 125. № 17. P. e2020JD032624. https://doi.org/10.1029/2020JD032624; Snow and Climate. Ed. by R.L. Armstrong, E. Brun. Cambridge, U.K. Cambridge Univ. Press, 2008. 222 p. Stamnes K., Tsay S.C., Wiscombe W., Jayaweera K. Nu merically stable algorithm for discrete-ordinate-meth od radiative transfer in multiple scattering and emit ting layered media // Applied Opt. 1988. V. 27. № 12. P. 2502. https://doi.org/10.1364/AO.27.002502; Vavrus S. The role of terrestrial snow cover in the climate system // Climate Dynamics. 2007. V. 29. P. 73–88. https://doi.org/10.1007/s00382-007-0226-0; Verseghy D. CLASS–The Canadian land surface scheme (version 3.6) // Environment Canada Science and Technology Branch Tech. Rep. 2012.; Vionnet V., Brun E., Morin S., Boone A., Faroux S., Moi gne P.L., Martin E., Willemet J.M. The detailed snow pack scheme Crocus and its implementation in SURFEX v7.2 // Geoscientific Model Development. 2012. V. 5. P. 773–791. https://doi.org/10.5194/gmd-5-773-2012; Warren S.Q. Optical Properties of Snow // Reviews of Geophysics. 1982. V. 20. P. 67–89. https://doi.org/10.1029/RG020i001p00067; Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // Journal of Geophys. Research. 2008. V. 113. D14220 P. 2007JD009744. https://doi.org/10.1029/2007JD009744; Wever N., Schmid L., Heilig A., Eisen O., Fierz C., Lehning M. Verification of the multi-layer SNOWPACK model with different water transport schemes // The Cryosphere. 2015. V 9. P. 2271–2293. https://doi.org/10.5194/tc-9-2271-2015; Whicker C.A., Flanner M.G., Dang C., Zender C.S., Cook J.M., Gardner A.S. SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice // The Cryosphere. 2022. V. 16. P. 1197–1220. https://doi.org/10.5194/tc-16-1197-2022; Wiscombe W.J., Warren S.G. A model for the spectral albedo of snow. I: Pure snow // Journal of Atmosphere Science. 1980. V. 37. P. 2712–2733. https://doi.org/10.1175/1520-0469(1980)0372. 0.CO;2

  12. 12
    Academic Journal

    Contributors: This is the EGY-6958/16 scholarship-funded study under the joint executive program between the Arab Republic of Egypt and Russian Federation., Исследование выполнено за счет стипендии EGY-6958/16 в рамках совместной программы между Арабской Республикой Египет и Россией.

    Source: Geodynamics & Tectonophysics; Том 15, № 2 (2024); 0751 ; Геодинамика и тектонофизика; Том 15, № 2 (2024); 0751 ; 2078-502X

    File Description: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1821/812; Aboud E., Salem A., Ushijima K., 2005. Subsurface Structural Mapping of Gebel El-Zeit Area, Gulf of Suez, Egypt Using Aeromagnetic Data. Earth Planets Space 57, 755–760. https://doi.org/10.1186/BF03351854.; Abuzied S.M., Kaiser M.F., Shendi E.H., Abdel-Fattah M.I., 2020. Multi-Criteria Decision Support for Geothermal Resources Exploration Based on Remote Sensing, GIS and Geophysical Techniques along the Gulf of Suez Coastal Area, Egypt. Geothermics 88, 101893. https://doi.org/10.1016/j.geothermics.2020.101893.; Afifi A.S., Moustafa A.R., Helmy H.M., 2016. Fault Block Rotation and Footwall Erosion in the Southern Suez Rift: Implications for Hydrocarbon Exploration. Marine and Petroleum Geology 76, 377–396. https://doi.org/10.1016/j.marpetgeo.2016.05.029.; Almalki K.A., Mahmud S.A., 2018. Gulfs of Suez and Aqaba: New Insights from Recent Satellite-Marine Potential Field Data. Journal of African Earth Sciences 137, 116–132. https://doi.org/10.1016/j.jafrearsci.2017.10.004.; Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds), 2019. The Geology of the Arab World – An Overview. Springer, Cham, 546 p. https://doi.org/10.1007/978-3-319-96794-3.; Crossley D., Hinderer J., Riccardi U., 2013. The Measurement of Surface Gravity. Report on Progress in Physics 76, 046101. https://doi.org/10.1088/0034-4885/76/4/046101.; Dadak B., 2017. Inversion of Gravity Data for Depth-to-Basement Estimate Using the Volume and Surface Integral Methods: Model and Case Study. PhD Thesis (Master of Science in Geohysics). Salt Lake City, 84 p.; Elgammal R., Orabi O., 2019. Coniacian-late Campanian Planktonic Events in the Duwi Formation, Red Sea Region, Egypt. Journal of Geology & Geophysics 7, 456. https://doi.org/10.4172/2381-8719.1000456.; Fan D., Li S., Li X., Yang J., Wan X., 2021. Seafloor Topography Estimation from Gravity Anomaly and Vertical Gravity Gradient Using Nonlinear Iterative Least Square Method. Remote Sensing 13 (1), 64. https://doi.org/10.3390/rs13010064.; Faris M., Ghandour I.M., Zahran E., Mosa G., 2015. Calcareous Nannoplankton Changes during the Paleocene-Eocene Thermal Maximum in West Central Sinai, Egypt. Turkish Journal of Earth Sciences 24 (5) 475–493. https://doi.org/10.3906/yer-1412-34.; Feng X., Wang W., Yuan B., 2018. 3D Gravity Inversion of Basement Relief for a Rift Basin Based on Combined Multinorm and Normalized Vertical Derivative of the Total Horizontal Derivative Techniques. Geophysics 83 (5), G107–G118. https://doi.org/10.1190/geo2017-0678.1.; Florio G., 2018. Mapping the Depth to Basement by Iterative Rescaling of Gravity or Magnetic Data. Journal of Geophysical Research: Solid Earth 123 (10), 9101–9120. https://doi.org/10.1029/2018JB015667.; Florio G., 2020. The Estimation of Depth to Basement under Sedimentary Basins from Gravity Data: Review of Approaches and the ITRESC Method, with an Application to the Yucca Flat Basin (Nevada). Surveys in Geophysics 41, 935–961. https://doi.org/10.1007/s10712-020-09601-9.; Hadada Y.T., Hakimi M.H., Abdullah W.H., Kinawy M., El Mahdy O., Lashin A., 2021. Organic Geochemical Characteristics of Zeit Source Rock from Red Sea Basin and Their Contribution to Organic Matter Enrichment and Hydrocarbon Generation Potential. Journal of African Earth Sciences 177, 104151. https://doi.org/10.1016/j.jafrearsci.2021.104151.; Jessell M., Aillères L., Kemp De E., Lindsay M., Wellmann F., Hillier M., Laurent G., Carmichael T., Martin R., 2014. Next Generation Three-Dimensional Geologic Modeling and Inversion. In: K.D. Kelley, H.C. Golden (Eds), Building Exploration Capability for the 21st Century. Special Publications of the Society of Economic Geologists 18, p. 261–272. https://doi.org/10.5382/SP.18.13.; Li Y., Oldenburg D.W., 1998. 3-D inversion of Gravity Data. Geophysics 63 (1), 109–119. https://doi.org/10.1190/1.1444302.; Maag E., Li Y., 2018. Discrete-Valued Gravity Inversion Using the Guided Fuzzy. Geophysics 83 (4), G59–G77. https://doi.org/10.1190/geo2017-0594.1.; Makled W.A., Ashwah A.A.E.E., Lotfy M.M., Hegazey R.M., 2020. Anatomy of the Organic Carbon Related to the Miocene Syn-Rift Dysoxia of the Rudeis Formation Based on Foraminiferal Indicators and Palynofacies Analysis in the Gulf of Suez, Egypt. Marine and Petroleum Geology 111, 695–719. https://doi.org/10.1016/j.marpetgeo.2019.08.048.; Mallesh K., Chakravarthi V., Ramamma B., 2019. 3D Gravity Analysis in the Spatial Domain: Model Simulation by Multiple Polygonal Cross-Sections Coupled with Exponential Density Contrast. Pure and Applied Geophysics, 176, 2497–2511. https://doi.org/10.1007/s00024-019-02103-9.; Oldenburg D.W., 1974. The Inversion and Interpretation of Gravity Anomalies. Geophysics 39(4), 526–536. https://doi.org/10.1190/1.1440444.; Pham L.T., Oksum E., Do T.D., 2018. GCH_Gravinv: A MATLAB-Based Program for Inverting Gravity Anomalies over Sedimentary Basins. Computers & Geosciences 120, 40–47. https://doi.org/10.1016/j.cageo.2018.07.009.; Preston L., Poppeliers C., Schodt D.J., 2020. Seismic Characterization of the Nevada National Security Site Using Joint Body Wave, Surface Wave, and Gravity Inversion. Bulletin of the Seismological Society of America 110 (1), 110–126. https://doi.org/10.1785/0120190151.; Radwan A.E., Abdelghany W.K., Elkhawaga M.A., 2021. Present-Day In-Situ Stresses in Southern Gulf of Suez, Egypt: Insights for Stress Rotation in an Extensional Rift Basin. Journal of Structural Geology 147, 104334. https://doi.org/10.1016/j.jsg.2021.104334.; Ren Z., Chen C., Pan K., Kalscheuer T., Maurer H., Tang J., 2017. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts. Surveys in Geophysics 38, 479–502. https://doi.org/10.1007/s10712-016-9395-x.; Said R. (Ed.), 2017. The Geology of Egypt. Routledge, London, 734 p. https://doi.org/10.1201/9780203736678.; Silva J.B.C., Santos D.F., Gomes K.P., 2014. Fast Gravity Inversion of Basement Relief. Geophysics 79 (5), G79–G91. https://doi.org/10.1190/GEO2014-0024.1.; Stolk W., Kaban M., Beekman F., Tesauro M., Mooney W.D., Cloetingh S., 2013. High Resolution Regional Crustal Models from Irregularly Distributed Data: Application to Asia and Adjacent Areas. Tectonophysics 602, 55–68. https://doi.org/10.1016/j.tecto.2013.01.022.; Van Dijk J., Al Bloushi A., Ajayi A.T., De Vincenzi L., Ellen H., Guney H., Holloway Ph., Khdhaouria M., McLeod I.S., 2019. Hydrocarbon Exploration and Production Potential of the Gulf of Suez Basin in the Framework of the New Tectonostratigraphic Model. In: Proceedings of the SPE Gas & Oil Technology Showcase and Conference 2019 (October 21–23, 2019, Dubai, UAE). SPE, SPE-198622-MS. https://doi.org/10.2118/198622-MS.; Wu L., 2016. Efficient Modelling of Gravity Effects Due to Topographic Masses Using the Gauss-FFT Method. Geophysical Journal International 205 (1), 160–178. https://doi.org/10.1093/gji/ggw010.; Wu L., 2018. Efficient Modeling of Gravity Fields Caused by Sources with Arbitrary Geometry and Arbitrary Density Distribution. Surveys in Geophysics 39, 401–434. https://doi.org/10.1007/s10712-018-9461-7.; Wu L., 2019. Fourier-Domain Modeling of Gravity Effects Caused by Polyhedral Bodies. Journal of Geodesy 93, 635–653. https://doi.org/10.1007/s00190-018-1187-2.; Wu L., Lin Q., 2017. Improved Parker’s Method for Topographic Models Using Chebyshev Series and Low Rank Approximation. Geophysical Journal International 209 (2), 1296–1325. https://doi.org/10.1093/gji/ggx093.; Youssef M., El-Sorogy A., El-Sabrouty M., Al-Otaibi N., 2016. Invertebrate Shells as Pollution Bio-Indicators, Gebel El-Zeit Area, Gulf of Suez, Egypt. Indian Journal of Geo-Marine Sciences 45 (5), 687–695.

  13. 13
  14. 14
    Academic Journal

    Source: Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20