Εμφανίζονται 1 - 13 Αποτελέσματα από 13 για την αναζήτηση '"паралелізація"', χρόνος αναζήτησης: 0,51δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Optoelectronic Information-Power Technologies; Vol. 47 No. 1 (2024); 50-57 ; Оптико-електроннi iнформацiйно-енергетичнi технологiї; Том 47 № 1 (2024); 50-57 ; 2311-2662 ; 1681-7893 ; 10.31649/1681-7893-2024-47-1

    Περιγραφή αρχείου: application/pdf

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: Національний університет “Львівська політехніка”, Lviv Polytechnic National University

    Θέμα γεωγραφικό: Львів, Lviv

    Περιγραφή αρχείου: 29-36; application/pdf; image/png

    Relation: Український журнал інформаційних технологій, 1 (2), 2020; Ukrainian Journal of Information Technology, 1 (2), 2020; https://doi.org/10.1109/TITS.2015.2461000; http://doi.org/10.5038/2375-0901.8.5.4; https://heartbeat.fritz.ai/10-reasons-why-pytorch-is-the-deep-learning-framework-of-future-6788bd6b5cc2; https://doi.org/10.1007/978-1-4471-5571-3_4; https://doi.org/10.1109/TCST.2017.2766042; https://doi.org/10.1109/TPAMI.2015.2437384; https://towardsdatascience.com/what-is-a-gpu-and-do-you-need-one-in-deep-learning-718b9597aa0d; http://robots.stanford.edu/cs221/2016/restricted/projects/vhchoksi/final.pdf; https://doi.org/10.1109/TITS.2017.2755684; https://doi.org/10.1186/s40537-019-0179-2; https://doi.org/10.1109/MLHPC49564.2019.00006; https://doi.org/10.1109/ITSC.2012.6338680; https://doi.org/10.1007/978-3-642-29934-6_57; https://doi.org/10.1109/TKDE.2012.153; https://doi.org/10.1109/MM.2019.2935967; https://pytorch.org/docs/stable/index.html; https://doi.org/10.1109/TPAMI.2016.2577031; https://doi.org/10.1.1.740.6937; https://www.youtube.com/watch?v=RE2j1B7EdQM; [1] Biao Leng, Heng Du, Jianyuan Wang, Li Li, & Zhang Xiong. (2016). Analysis of Taxi Drivers Behaviors Within a Battle Between Two Taxi Apps. IEEE Transactions on Intelligent Transportation Systems, 17(1), 296–300. https://doi.org/10.1109/TITS.2015.2461000; [2] Bruce Schaller. (2005). A regression model of the number of taxicabs in US cities. Journal of Public Transportation, 8(5), 4–11. http://doi.org/10.5038/2375-0901.8.5.4; [3] Dhiraj, K. (2019). 10 reasons why PyTorch is the deep learning framework of the future. Retrieved from: https://heartbeat.fritz.ai/10-reasons-why-pytorch-is-the-deep-learning-framework-of-future-6788bd6b5cc2; [4] Dipanjan Sarkar, Raghav Bali, & Tushar Sharma. (2018). Practical Machine Learning with Python. Springer Science+ Business Media. New York.; [5] Du, K.-L., & Swamy, M.N.s. (2014). Multilayer Perceptrons: Architecture and Error Backpropagation. Neural Networks and Statistical Learning, pp. 83–126. https://doi.org/10.1007/978-1-4471-5571-3_4; [6] Fei Miao, Shuo Han, Shan Lin, Qian Wang, John A. Stankovic, Abdeltawab Hendawi, Desheng Zhang, Tain He, & George J. Pappas. (2019). Data-Driven Robust Taxi Dispatch Under Demand Uncertainties. IEEE Transactions on Control Systems Technology, 17(1), 175–191. https://doi.org/10.1109/TCST.2017.2766042; [7] Firmino, P., de Mattos, Neto P., & Ferreira, T. (2014). Correcting and combining time series forecasters. Neural Networks,50, 1–11.; [8] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2016). Region- Based Convolutional Networks for Accurate Object Detection and Segmentation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 142–158. https://doi.org/10.1109/TPAMI.2015.2437384; [9] Grossberg, S. Z. (2010). Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press, 651 p.; [10] Haykin, S. (2008). Neural Networks and Learning Machines. New Jersey: Prentice Hall, 936 p.; [11] Jason Dsouza. (2020). What is a GPU and do you need one in Deep Learning? Retrieved from: https://towardsdatascience.com/what-is-a-gpu-and-do-you-need-one-in-deep-learning-718b9597aa0d; [12] John Grinberg, Arzav Jain, & Arzav Vivek (2014). Predicting Taxi Pickups in New York City. Retrieved from: http://robots.stanford.edu/cs221/2016/restricted/projects/vhchoksi/final.pdf.; [13] Jun Xu, Rouhollah Rahmatizadeh, Ladislau Bölöni, & Damla Turgut. (2018). Real-Time Prediction of Taxi Demand Using Recurrent Neural Networks. IEEE Transaction on Intelligent transport system, 19(8), 2572–2581. https://doi.org/10.1109/TITS.2017.2755684; [14] Kennedy, R. K., Khoshgoftaar, T. M., Villanustre, F., & Humphrey, T. (2019). A parallel and distributed stochastic gradient descent implementation using commodity clusters. Journal of Big Data, 6(1), 16. https://doi.org/10.1186/s40537-019-0179-2; [15] Kiani, K. (2005). Detecting business cycle asymmetries using artificial neural networks and time series models. Computational Economics, 26(1), 65–89.; [16] Kim, Yoon. (2014). Convolutional neural networks for sentence classification. IEMNLP, 1746–1751.; [17] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv – preprint arXiv: 1412.6980.; [18] Krizhevsky Alex, Sutskever Ilya, Hinton Geoffrey E. (2012). Imagenet classification with deep convolutional neural networks. NIPS, 1106–1114.; [19] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. CoRR, abs/1404.5997.; [20] Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567–581.; [21] Li, J., Nicolae, B., Wozniak, J., & Bosilca, G. (2019). Understanding scalability and fine-grain parallelism of synchronous data parallel training. IEEE/ACM Workshop – Machine Learning in High Performance Computing Environments (MLHPC) IEEE, pp. 1–8. https://doi.org/10.1109/MLHPC49564.2019.00006; [22] Lopatko, O., & Mykytyn, I. (2016). Neural networks as the means of forecasting the temperature value of a transient process. Measuring Equipment and Metrology, 77, 65–69.; [23] Luis Moreira-Matias, et al. (2012). A predictive model for the passenger demand on a taxi network. International IEEE Conference on. IEEE, 15, 1014–1019. https://doi.org/10.1109/ITSC.2012.6338680; [24] Naoto Mukai, & Naoto Yoden. (2012). Taxi Demand Forecasting Based on Taxi Probe Data by Neural Network. Intelligent Interactive Multimedia: Systems and Services. Ed. by Toyohide Watanabe et al. Smart Innovation, Systems and Technologies 14. Springer Berlin Heidelberg, pp. 589–597. https://doi.org/10.1007/978-3-642-29934-6_57; [25] Nicholas Jing Yuan, Yu Zheng, Liuhang Zhang, & Xing Xie. (2013). T-Finder: A Recommender System for Finding Passengers and Vacant Taxis. IEEE Transactions on Knowledge and Data Engineering, 25(10), 2390–2403. https://doi.org/10.1109/TKDE.2012.153; [26] Önder, E., Fɪrat, B., & Hepsen, A. (2013). Forecasting Macroeconomic Variables using Artificial Neural Network and Traditional Smoothing Techniques. Journal of Applied Finance & Banking, 3(4), 73–104.; [27] Pal, S., Ebrahimi, E., Zulfiqar, A., Fu, Y., Zhang, V., Migacz, S., Nellans, D., & Gupta, P. (2019). Optimizing multi-gpu parallelization strategies for deep learning training. EEE Micro, 39(5), 91–101. https://doi.org/10.1109/MM.2019.2935967; [28] PyTorch. (2020). PyTorch documentation. Retrieved from: https://pytorch.org/docs/stable/index.html; [29] Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster RCNN: Towards Real-Time Object Detection with Region Proposal Networks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031; [30] Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large–Scale Image Recognition. CoRR, abs/1409.1556. https://doi.org/10.1.1.740.6937; [31] YouTube. (2020). Consumer assessment of taxi services in large cities. Retrieved from: https://www.youtube.com/watch?v=RE2j1B7EdQM. [In Ukrainian].; [32] Zhang Xiang, Zhao Junbo, LeCun Yann. (2015). Characterlevel convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657.; Згоба М. І. Тренування нейронної мережі для прогнозування попиту на пасажирські перевезення таксі за допомогою графічних процесорів / М. І. Згоба, Ю. І. Грицюк // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2020. — Том 2. — № 1. — С. 29–36.; https://ena.lpnu.ua/handle/ntb/56899; Zghoba M. I. Training neural network for taxi passenger demand forecasting using graphics processing units / M. I. Zghoba, Yu. I. Hrytsiuk // Ukrainian Journal of Information Technology. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2020. — Vol 2. — No 1. — P. 29–36.

    Διαθεσιμότητα: https://ena.lpnu.ua/handle/ntb/56899

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Dissertation/ Thesis

    Συνεισφορές: Чемерис, Олександр Анатолійович

    Περιγραφή αρχείου: 120 с.; application/pdf

    Relation: Бєй, О. В. Система автоматизації процесів тестування програмного забезпечення з використанням паралелізації тестів : магістерська дис. : 126 Інформаційні системи та технології / Бєй Олександр Вікторович. – Київ, 2018. – 120 с.; https://ela.kpi.ua/handle/123456789/25514

    Διαθεσιμότητα: https://ela.kpi.ua/handle/123456789/25514

  11. 11

    Συγγραφείς: Романюк, В.В., Romanuke, V.V.

    Περιγραφή αρχείου: application/pdf

    Relation: Оптимальне використання matlab-методу gpuarray для добутку квадратних матриць [Текст] / В.В. Романюк // Вісник Хмельницького національного університету. Технічні науки. – 2015. – №3. – С. 243-250.; http://elar.khmnu.edu.ua/jspui/handle/123456789/4241

  12. 12
  13. 13
    Patent

    Relation: Пат. 34897 Україна, МПК G01N 33/36 (2006). Спосіб визначення властивостей текстильних матеріалів / А. О. Потапов, А. М. Слізков, В. Ю. Щербань, М. С. Краснитський, Є. В. Заржицький, С. А. Шулькевич; власник Київський національний університет технологій та дизайну. – № u200804141; заявл. 02.04.2008; опублік. 26.08.2008, Бюл. № 16. – 4 c.; https://er.knutd.edu.ua/handle/123456789/17084