Εμφανίζονται 1 - 7 Αποτελέσματα από 7 για την αναζήτηση '"офтальмоонкология"', χρόνος αναζήτησης: 0,54δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: This research was supported by the Russian Science Foundation grant Nº 24-75-00047, https://rscf.ru/ project/24-75-00047/, Исследование выполнено за счет гранта Российского научного фонда № 24-75-00047, https://rscf.ru/ project/24-75-00047/

    Πηγή: Ophthalmology in Russia; Том 21, № 4 (2024); 755-763 ; Офтальмология; Том 21, № 4 (2024); 755-763 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2500/1275; Бровкина АФ. Локальное удаление меланом хориоидеи: за и против. OFTALMOLOGIYA AZ. 2018;1(26):48–53.; Kaliki S, Shields CL. Uveal melanoma: relatively rare but deadly cancer. Eye. 2017;31(2):241–257. doi:10.1038/eye.2016.275.; Саакян СВ, Амирян АГ, Вальский ВВ, Миронова ИС, Цыганков АЮ. Причины энуклеации после брахитерапии увеальных меланом. Российский офтальмологический журнал. 2016;9(4):46–51. doi:10.21516/2072-0076-2016-9-4-46-51.; Shields CL, Kaliki S, Furuta M, Fulco E, Alarcon C, Shields JA. American Joint Committee on Cancer Classification of Uveal Melanoma (Anatomic Stage) Predicts Prognosis in 7731 Patients. Ophthalmology. 2015;122(6):1180–1186. doi:10.1016/j.ophtha.2015.01.026.; Afshar AR, Damato, BE. Uveal Melanoma: Evidence for Efficacy of Therapy. International Ophthalmology Clinics. 2015;55(1):23–43. doi:10.1097/iio.0000000000000053.; Бровкина АФ, Стоюхина АС, Чесалин ИП. Брахитерапия меланом хориоидеи и вторичная энуклеация. Офтальмологические ведомости. 2014;7(7-2):69–77. doi:10.17816/OV2014269-77.; Blasi ML, Tagliaferri L, Scupola A, Villano A, Caputo CG, Pagliara MM. Brachytherapy alone or with neoadjuvant photodynamic therapy for amelanotic choroidal melanoma. Retina. 2016;36(11):2205–2212. doi:10.1097/iae.0000000000001048.; Белый ЮА, Терещенко АВ, Володин ПЛ, Каплан МА. Фотодинамическая терапия с фотосенсибилизатором Фотодитазин в офтальмологии. Калуга: МНТК «Микрохирургия глаза»; 2008.; Бойко ЭВ, Панова ИЕ, Петросян ЮМ, Самкович ЕВ. Фотодинамическая терапия в лечении меланомы хориоидеи. Обзор литературы. Медицина. 2022;10(2):73–92. doi:10.29234/2308-9113-2022-10-2-73-92.; Kessel D. Photodynamic therapy: critical PDT theory. Photochemistry and photobiology. 2023;99(2):199–203. doi:10.1111/php.13616.; Науменко ЛВ. Пятилетние результаты комбинированного лечения пациентов с меланомой сосудистой оболочки глаза больших размеров. Здравоохранение (Минск). 2021;8(893):68–76.; Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX. Susceptibility and Resistance Mechanisms during Photodynamic Therapy of Melanoma. Frontiers in Oncology. 2020;75:718–721. doi:10.3389/fonc.2020.00597.; Mazloumi M, Dalvin LA, Abtahi SH, Yavari N, Yaghy A, Mashayekhi A, Shields JA, Shields CL. Photodynamic therapy in ocular oncology. Journal of Ophthalmic & Vision Research. 2020;15(4):547. doi:10.18502/jovr.v15i4.7793.; Ганусевич ОН, Нестерович ТН, Ачинович СЛ, Федоркевич ИВ. Опыт неоадьювантной фотодинамической терапии меланомы. Research’n Practical Medicine Journal. 2019;6(Спецвыпуск):94.; Лихванцева ВГ, Акопян ВС, Султанова ЭО. Способ органосохраняющего лечения внутриглазных опухолей. Патент на изобретение RU 2452444, 10.06.2012.; Бойко ЭВ, Шишкин ММ, Сухотерина АН, Куликов АН. Возможности диодлазерной транссклеральной ретинопексии (в сравнении с криопексией) в витреоретинальной хирургии. Офтальмохирургия и терапия. 2001;1(1):47–52.; Berezin YuD, Eremenko SA, Malinin BG, Boiko EV, Kochergin VA, Shishkin MM. Experimental study of endoscleral and transscleral actions of IR radiation of diode, neodymium, and holmium lasers on the retina of the eye. Journal of Optical Technology. 1999;66(12):1040.; Keung EZ, Gershenwald JE. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Rev Anticancer Ther. 2018;18(8):775–784. doi:10.1080/14737140.2018.1489246.; Панова ИЕ, Самкович ЕВ. Способ органосохраняющего лечения меланомы хориоидеи на основе применения гибридной фотодинамической терапии. Патент на изобретение RU 2785609, 09.12.2022.; Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M., Rubinstein L. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European journal of cancer, 2009;45(2):228–247. doi:10.1016/j.ejca.2008.10.026.; Белый ЮА, Терещенко АВ, Володин ПЛ, Тещин ВВ. Способ определения показаний к фотодинамической терапии меланом хориоидеи. Патент на изобретение RU 2343831, 20.01.2009.; Белый ЮА, Терещенко АВ, Тещин ВВ. Способ определения эффективности фотодинамической терапии меланом хориоидеи. Патент на изобретение RU 2374992, 10.12.2009.; Campbell WG, Pejnovic TM. Treatment of amelanotic choroidal melanoma with photodynamic therapy. Retina. 2012;32(7):1356–1362. doi:10.1097/iae.10.1097/iae.0b013e31822c28ec.; Fabian ID, Stacey AW, Harby LA, Arora AK, Sagoo MS, Cohen VML. Primary photodynamic therapy with verteporfin for pigmented posterior pole cT1a choroidal melanoma: a 3year retrospective analysis. Br. J. Ophthalmol. 2018;102(12):1705– 1710. doi:10.1136/bjophthalmol-2017-311747.; Fabian ID, Stacey AW., Papastefanou V, Harby LA, Arora AK, Sagoo MS, Cohen VM. Primary photodynamic therapy with verteporfin for small pigmented posterior pole choroidal melanoma. Eye (Lond). 2017;31(4):519–528. doi:10.1038/eye.2017.22.; https://www.ophthalmojournal.com/opht/article/view/2500

  2. 2
    Academic Journal

    Συνεισφορές: The study was conducted with the support of the Ministry of Health of the Russian Federation (state task No. 300060056 for the Pirogov Russian National Research Medical University of the Ministry of Health of Russia)., Исследование проведено при поддержке Минздрава России (государственное задание № 300060056 для ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России).

    Πηγή: Advances in Molecular Oncology; Vol 10, No 3 (2023); 90-97 ; Успехи молекулярной онкологии; Vol 10, No 3 (2023); 90-97 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Συνεισφορές: The study was conducted with the support of the Ministry of Health of Russia (state task 300060056 for the Federal State Educational Institution of theN.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia)., Исследование проведено при поддержке Министерства здравоохранения Российской Федерации (государственное задание 300060056 для ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России).

    Πηγή: Advances in Molecular Oncology; Vol 9, No 1 (2022); 57-63 ; Успехи молекулярной онкологии; Vol 9, No 1 (2022); 57-63 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  4. 4
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 8, № 3 (2021); 43-49 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 8, № 3 (2021); 43-49 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/742/675; Rao R., Honavar S.G. Retinoblastoma. Indian J Pediatr 2017;84(12):937–44. doi:10.1007/s12098-017-2395-0.; Ушакова Т.Л. Этиология, патогенез, клиника, диагностика ретинобластомы. Проблемы органосохраняющего лечения. Детская онкология 2003;1:40–5. [Ushakova T.L. Etiology, pathogenesis, clinical picture, diagnosis of retinoblastoma. Problems of organpreserving treatment. Detskaya onkologiya = Pediatric Oncology 2003;1:40–5. (In Russ.)].; Fabian I.D., Abdallah E., Abdullahi S.U., Abdulqader R.A., Boubacar S.A., Ademola-Popoola D.S., Adio A., Afshar A.R., Aggarwal P., Aghaji A.E., Ahmad A. Global Retinoblastoma Presentation and Analysis by National Income Level. JAMA Oncol 2020;6(5):685–95. doi:10.1001/jamaoncol.2019.6716.; Ancona-Lezama D., Dalvin L.A., Shields C.L. Modern treatment of retinoblastoma: A 2020 review. Indian J Ophthalmol 2020;68(11):2356–65. doi:10.4103/ijo.IJO_721_20.; Ушакова Т.Л., Трофимов И.А., Горовцова О.В., Яровой А.А., Саакян С.В., Летягин И.А., Матинян Н.В., Кукушкин А.В., Мартынов Л.А., Погребняков И.В., Иванова О.А., Серов Ю.А., Яровая В.А., Глеков И.В., Виршке Э.Р., Долгушин Б.И., Поляков В.Г. Новая эра органосохраняющего лечения детей с интраокулярной ретинобластомой в России: мультицентровое когортное исследование. Онкопедиатрия 2018;5(1):51–69. doi:10.15690/onco.v5i1.1866. [Ushakova T.L., Trofimov I.A., Gorovtsova O.V., Yarovoy A.A., Saakyan S.V., Letyagin I.A., Matinyan N.V., Kukushkin A.V., Martynov L.A., Pogrebnyakov I.V., Ivanova O.A., Serov Y.A., Yarovaya V.A., Glekov I.V., Virshke E.R., Dolgushin B.I., Polyakov V.G. A New Era of Organ-Preserving Treatment in Pediatric Intraocular Retinoblastoma in Russia: A Multicentre Study. Onkopediatria = Oncopediatrics 2018;5(1):51–69. (In Russ.)].; Shields C.L., Santos M.C.M., Diniz W., Gündüz K., Mercado G., Cater J.R., Shields J.A. Thermotherapy for Retinoblastoma. Arch Ophthalmol 1999;117(7):885–93. doi:10.1001/archopht.117.7.885.; Abramson D.H., Schefler A.C. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma. Ophthalmology 2004;111(5):984–91. doi:10.1016/j.ophtha.2003.08.035.; Кривовяз О.С., Булгакова Е.С., Яровой А.А. Способ потенцирования транспупиллярной лазерной термотерапии при ретинобластоме. Современные технологии в офтальмологии 2015;3:91–3. [Krivovyaz O.S., Bulgakova E.S., Yarovoy A.A. A method of potentiating transpupillary laser thermotherapy for retinoblastoma. Sovremennye tekhnologii v oftal’mologii = Modern Technologies in Ophthalmology 2015;3:91–3. (In Russ.)].; Яровой А.А., Ушакова Т.Л., Поляков В.Г., Кривовяз О.С., Горовцова О.В. Транспупиллярная диод-лазерная термотерапия в схеме органосохраняющего лечения интраокулярной ретинобластомы у детей. X Съезд офтальмологов России – 2015. С. 218. [Yarovoy A.A., Ushakova T.L., Polyakov V.G., Krivovyaz O.S., Gorovtsova O.V. Transpupillary diode-laser thermotherapy in the regimen of organ-preserving treatment of intraocular retinoblastoma in children. X Congress of Ophthalmologists of Russia – 2015. P. 218. (In Russ.)].; Саакян С.В., Тацков Р.А., Мякошина Е.Б., Ушакова Т.Л., Поляков В.Г. Эффективность транспупиллярной термотерапии в комбинированном лечении малых кальцифицированных ретинобластом. Российский офтальмологический журнал 2017;10(3):71–7. doi:10.21516/2072-0076-2017-10-3-71-77. [Saakyan S.V., Tatskov R.A., Myakoshina E.B., Ushakova T.L., Polyakov V.G. Transpupillary thermotherapy efficiency in the combined treatment of small calcified retinoblastoma. Rossiyskiy oftal’mologicheskiy zhurnal = Russian Ophthalmological Journal 2017;10(3):71–7. (In Russ.)].; Lumbroso L., Doz F., Levy C., Dendale R., Vedrenne J., Bours D., Zucker J.M., Asselain B., Desjardins L. Diode laser thermotherapy and chemothermotherapy in the treatment of retinoblastoma. J Fr Ophtalmol 2003;26(2):154–9. PMID: 12660589.; Hasanreisoglu M., Saktanasate J., Schwendeman R., Shields J.A., Shields C.L. Indocyanine Green-Enhanced Transpupillary Thermotherapy for Retinoblastoma: Analysis of 42 Tumors. J Pediatr Ophthalmol Strabismus 2015;52(6):348–54. doi:10.3928/01913913-20150929-17.; Яровой А.А., Ушакова Т.Л., Поляков В.Г., Булгакова Е.С., Кривовяз О.С., Горовцова О.В. Результаты локального лечения ретинобластомы при недостаточной эффективности полихимиотерапии. Офтальмохирургия 2014;(1):79–84. [Yarovoy A.A., Ushakova T.L., Polyakov V.G., Bulgakova E.S., Krivovyaz O.S., Gorovtsova O.V. Results of local treatment of retinoblastoma after polychemotherapy. Oftal’mokhirurgiya = Fyodorov Journal of Ophthalmic Surgery 2014;(1):79–84. (In Russ.)].; Яровой А.А., Кривовяз О.С. Способ лазерного лечения резистентных форм ретинобластомы у детей. Патент на изобретение № RU 2 600 145 C1, 2016 г. [Yarovoy A.A., Krivovyaz O.S. Method for laser treatment of resistant forms of retinoblastoma in children. Patent for invention No. RU 2 600 145 C1, 2016 (In Russ.)].; Яровой А.А., Дога А.В., Логинов Р.А., Яровая В.А., Котельникова А.В. Способ лазерного лечения патологии крайней периферии глазного дна при обратной офтальмоскопии. Патент на изобретение № RU 2 715 194 C1, 2020 г. [Yarovoy A.A., Doga A.V., Loginov R.A., Yarovaya V.A., Kotel’nikova A.V. Method for laser treatment of pathology of the extreme periphery of the fundus during reverse ophthalmoscopy. Patent for invention No. RU 2 715 194 C1, 2020. (In Russ.)].; Lagendijk J.J. A microwave heating technique for the hyperthermic treatment of tumours in the eye, especially retinoblastoma. Phys Med Biol 1982;27(11):1313–24. doi:10.1088/0031-9155/27/11/002.; Desjardins L., Chefchaouni M.C., Lumbroso L., Levy C., Asselain B., Bours D., Vedrenne J., Zucker J.M., Doz F. Functional results after treatment of retinoblastoma. J Am Assoc Pediatr Ophthalmol Strabismus 2002;6(2):108–11. doi:10.1067/mpa.2002.121451.; Levy C., Doz F., Quintana E., Pacquement H., Michon J., Schlienger P., Validire P., Asselain B., Desjardins L., Zucker J.M. Role of chemotherapy alone or in combination with hyperthermia in the primary treatment of intraocular retinoblastoma: preliminary results. Br J Ophthalmol 1998;82(10):1154–8. doi:10.1136/bjo.82.10.1154.; Schueler A.O., Jurklies C., Heimann H., Wieland R., Havers W., Bornfeld N. Thermochemotherapy in hereditary retinoblastoma. Br J Ophthalmol 2003;87(1):90–5. doi:10.1136/bjo.87.1.90.; Francis J.H., Abramson D.H., Brodie S.E., Marr B.P. Indocyanine green enhanced transpupillary thermotherapy in combination with ophthalmic artery chemosurgery for retinoblastoma. Br J Ophthalmol 2013;97(2):164–8. doi:10.1136/bjophthalmol-2012-302495.; Schueler A.O., Flühs D., Anastassiou G., Jurklies C., Sauerwein W., Bornfeld N. Beta-Ray Brachytherapy of Retinoblastoma: Feasibility of a New Small-Sized Ruthenium-106 Plaque. Ophthalmic Res 2006;38(1):8–12. doi:10.1159/000088259.; https://journal.nodgo.org/jour/article/view/742

  5. 5
    Academic Journal

    Πηγή: FYODOROV JOURNAL OF OPHTHALMIC SURGERY ; No. 3 (2019): Офтальмохирургия; 7-12 ; ОФТАЛЬМОХИРУРГИЯ; № 3 (2019): Офтальмохирургия; 7-12 ; 2312-4970 ; 0235-4160

    Περιγραφή αρχείου: application/pdf

  6. 6
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 17, № 2 (2020); 172-180 ; Офтальмология; Том 17, № 2 (2020); 172-180 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1193/686; Важенин А.В., Панова И.Е. Избранные вопросы офтальмоонкологии. М.: Изд-во РАМН; 2006. [Vazhenin A.V., Panova I.E. Selected issues of ophthalmology. Moscow: Publishing house of RAMS; 2006 (In Russ.)].; Бровкина А.Ф. Офтальмоонкология. М.: Медицина; 2002. [Brovkina A.F. Ophthalmic oncology. Moscow: Medicine; 2002 (In Russ.)].; Shields C.L., Kaliki S., Furuta M., Mashayekhi A. et al. Clinical spectrum and prognosis of uveal melanoma based on age at presentation in 8,033 cases. Retina. 2012;32(7):1363–1372. DOI:10.1097/IAE.0b013e31824d09a8; Бровкина А.Ф., Панова И.Е., Саакян С.В. Офтальмоонкология: новое за последние два десятилетия. Вестник офтальмологии.2014;130(6):13–19. [Brovkina A.F., Panova I.E., Saakyan S.V. Ophthalmooncology: new over the past two decades. Annales of Ophthalmology = Vestnik oftal’mologii. 2014;130(6):13–9 (In Russ.)].; Саакян С.В., Ширина Т.В. Анализ метастазирования и выживаемости больных увеальной меланомой. Опухоли головы и шеи. 2012;2:53–56. [Saakyan S.V., Shirina T.V. Analysis of metastasis and survival of patients with uveal melanoma. Tumors of the head and neck = Opukholi golovy i shei. 2012;2:53–56 (In Russ.)].; Damato B., Eleuteri A., Taktak A.F., Coupland S.E. Estimating prognosis for survival after treatment of choroidal melanoma. Progress in retinal and eye research. 2011;30(5):285–295. DOI:10.1016/j.preteyeres.2011.05.003; Зиангирова Г. Г., Лихванцева В. Г. Опухоли сосудистого тракта глаза. М.: Последнее слово; 2003. [Ziangirova G.G., Likhvantseva V.G. Tumors of the vascular tract of the eye. Moscow: Last word; 2003 (In Russ.)].; Пальцев М.А., Аничков Н.М. Атлас патологии опухолей человека. М.: Медицина; 2005. [Pal’tsev M.A., Anichkov N.M. Atlas of the pathology of human tumors. Moscow: Medicine; 2005 (In Russ.)].; Folberg R., Hendrix M.J.C., Maniotis A.J. Vasculogenic mimicry and tumor angiogenesis. The American journal of pathology.2000;156(2):361–381. DOI:10.1016/ S0002-9440(10)64739-6; Зербино Д.Д., Дмитрук И.М. Внутриопухолевая пролиферация сосудов. Архив патологии.1983;45(4):80–83. [Zerbino D.D., Dmitruk I.M. Intratumoral proliferation of blood vessels. Pathology Archive = Arhiv patologii. 1983;45(4):80–83 (In Russ.)].; Карамышева А.Ф. Ангиогенез опухоли: механизмы, новые подходы к терапии. Канцерогенез. Под ред. Д.Г. Заридзе. М.; 2000:298–309 [Karamysheva A.F. Tumor angiogenesis: mechanisms, new approaches to therapy. Carcinogenesis. Ed. D.G. Zaridze. Moscow; 2000:298–309 (In Russ.)].; Лихтенштейн А.В., Шапот В.С. Опухолевый рост: ткани, клетки, молекулы. Патологическая физиология.1998;3:25–44. [Lichtenstein A.V., Shapot V.S. Tumor growth: tissues, cells, molecules. Pathological physiology = Patologicheskaja fiziologija. 1998;3:25–44 (In Russ.)].; Копнин Б.П. Неопластическая клетка: основные свойства и механизмы их возникновения. Практическая онкология. 2002;3(4):229–235. [Kopnin B.P. Neoplastic cell: basic properties and mechanisms of their occurrence. Practical oncology = Prakticheskaja onkologija. 2002;3(4):229–235 (In Russ.)].; Степанова Е.В., Барышников А.Ю., Личиницер М.Р. Оценка ангиогенеза опухолей человека. Успехи современной биологии. 2000;120(6):599. [Stepanova E.V., Baryshnikov A.Yu., Lichinitser M.R. Evaluation of the angiogenesis of human tumors. Advances in Modern Biology = Uspehi sovremennoj biologii. 2000;120(6):599 (In Russ.)].; Folkman J. Tumor angiogenesis. Advances in cancer research. Academic Press. 1974;(19):331–358. DOI:10.1016/S0065-230X(08)60058-5; Folkman J. Angiogenesis inhibitors generated by tumors. Molecular medicine. 1995;1(2):120–122. DOI:10.1007/BF03401559; Folkman J. Tumors Are Angiogenesis Dependent? Journal of the National Cancer Institute: JNCI. 1990;82(1):4.; Владимирская Е.Б. Биологические основы противоопухолевой терапии. М.: Агат-Мед; 2001:1. [Vladimirskaya E.B. Biological basis of antitumor therapy. Moscow: Agat-Med; 2001:1 (In Russ.)].; Мертвецов Н.П., Стефанович Л.Е. Ангиогенин и механизм ангиогенеза. Новосибирск: Наука; 1997:78. [Mertvetsov N.P., Stefanovich L.E. Angiogenin and the mechanism of angiogenesis. Novosibirsk: Nauka; 1997:78 (In Russ.)].; Folkman J., Haudenschild C. Angiogenesis in vitro. Nature. 1980;288(551):6. DOI:10.1038/288551a0; Thompson W.D., Shiach K.J., Fraser R.A., Mcintosh L.C., et al. Tumors acquire their vasculature by vessel incorporation, not vessel ingrowth. J. Pathol. 1987;(151):323–332. DOI:10.1002/path.1711510413; Shubik P., Warren B.A. Additional literature on ‘vasculogenic mimicry’ not cited. Am. J. Pathol. 2000;156:736. DOI:10.1016/S0002-9440(10)64778-5; Hendrix M.J., Seftor E.A., Meltzer P.S., et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. U. S. A. 2001;98:8018–8023. DOI:10.1073/pnas.131209798; McDonald D.M., Lance Munn, Rakesh K.J. Vasculogenic Mimicry: How Convincing, How Novel, and How Significant? American Journal of Pathology. 2000;156(2):383–388. DOI:10.1016/S0002-9440(10)64740-2; Mueller A.J., Bartsch D.U., Folberg R., et al. Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy. Arch Ophthalmol. 1998;116:31–33. DOI:10.1001/archopht.116.1.31; Mueller A.J., Freeman W.R., Folberg R., et al. Evaluation of microvascularization pattern visibility in human choroidal melanomas: comparison of confocal fluorescein with indocyanine green angiography. Graefes Arch Clin Exp Ophthalmol. 1999;237:448–456. DOI:10.1007/s004170050260; Schneider U., Gelisken F., Inhoffen W., Kreissig I. Indocyanine-green videoangiography of malignant melanomas of the choroid using the scanning laser ophthalmoscope. Ger J Ophthalmol. 1996;5:6–11.; Alitalo K., Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease.Cancer Cell. 2002;l:219–227. DOI:10.1016/S1535-6108(02)00051-X; Самкович Е.В., Мелихова М.В., Панова И.Е. Комплексная инструментальная диагностика «малых» новообразований хориоидеи. Современные технологии в офтальмологии. 2019;6(31):104–107. [Samkovich E.V., Melikhova M.V., Panova I.E. Complex instrumental diagnostics of “small” neoplasms of the choroid. Modern technologies in ophthalmology = Sovremennye tehnologii v oftal’mologii. 2019;6(31):104–107 (In Russ.)].; Амирян А.Г., Бровкина А.Ф., Лелюк В.Г. Ангиоархитектоника увеальных меланом. Офтальмология. 2005;2(1):37–40. [Amiryan A.G., Brovkina A.F., Lelyuk V.G. Angioarchitectonics of uveal melanomas. Ophthalmology = Oftal’mologija. 2005;2(1):37–40 (In Russ.)].; Катькова Е.А. Диагностический ультразвук. Офтальмология: практическое руководство. М.: ООО «Фирма СТРОМ»: 2002:122. [Katkova E.A. Diagnostic ultrasound. Ophthalmology: a practical guide. Moscow: LLC “Firm STROM”; 2002:122 (In Russ.)].; Лелюк В.Г., Бровкина А.Ф., Амирян А.Г. Комплексное ультразвуковое исследование при увеальной меланоме. Эхография. 2004;5(2):166. [Lelyuk V.G., Brovkina A.F., Amiryan A.G. Integrated ultrasound examination for uveal melanoma. Sonography = Jehografija. 2004;5(2):166 (In Russ.)].; Яровой А.А., Линник Л.Ф., Семикова Т.С., Булгакова Е.С. Малые меланомы хориоидеи: особенности клиники и выбора метода лечения. Новое в офтальмологии. 2004;2:28–37. [Yarovoy A.A., Linnik L.F., Semikova T.S., Bulgakova E.S. Small melanomas of the choroidal: clinical features and the choice of treatment method. New in ophthalmology = Novoe v oftal’mologii. 2004;2:28–37 (In Russ.)].; Wang Z.Y., Yang W.L., Li D.J., Chen W., et al. Ultrasound diagnosis and differential diagnosis of medium and small choroidal melanomas. Chinese journal of ophthalmology. 2018;54(11):843–848. DOI:10.3760/cma.j.issn.0412-4081.2018.11.009; Wolff‐Korman P.G., Kormann B.A., Hasenfratz G.C., et al. Duplex and color Doppler ultrasound in the differential diagnosis of choroidal tumors. Acta Ophthalmologica. 1992;70(204):66–70. DOI:10.1111/j.1755-3768.1992.tb04928.x; Самкович Е.В., Мелихова М.В., Панова И.Е. Возможности идентификации сосудистой сети пигментированных новообразований хориоидеи. Современные технологии в офтальмологии. 2019;4(29):223–227. [Samkovich E.V., Melikhova M.V., Panova I.E. Possibilities of identification of the vasculature of pigmented neoplasms of the choroid. Modern technologies in ophthalmology = Sovremennye tehnologii v oftal’mologii. 2019;4(29):223–227 (In Russ.)]. DOI:10.25276/2312-4911-2019-4-223-227; Нероев В.В., Киселева Т.Н. Ультразвуковые исследования в офтальмологии: Руководство для врачей. 1-е изд. М: ИКАР; 2019:324. [Neroev V.V., Kiseleva T.N. Ultrasound Research in Ophthalmology: A Guide for Physicians. 1st ed. Moscow: IKAR; 2019:324 (In Russ.)].; Рыкун В.С., Катькова Е.А. Особенности сосудистой сети меланомы хориоидеи по результатам триплексного ультразвукового исследования. Вестник офтальмологии. 2001;2:17–18. [Rykun V.S., Katkova E.A. Features of the vascular network of choroid melanoma according to the results of triplex ultrasound. Annales of Ophthalmology = Vestnik oftal’mologii. 2001;2:17–18 (In Russ.)].; Lassau N. New hemodynamic approach to angiogenesis: color and pulsed Doppler ultrasonography. Invest. Radiol. 1999;34(3):194–198.; Proniewska-Skretek E. An application of color Doppler ultrasonography in evaluate of brachytherapy in patients with uveal melanoma. Klin. Oczna. 2007;109(4–6):187–190. DOI:10.1080/02713683.2017.1341534; Shields C.L., Shields J.A., De Potter P. Patterns of indocyanine green videoangiography of choroidal tumours. British journal of ophthalmology. 1995;79(3):237–245. DOI:10.1136/bjo.79.3.237; Atmaca L.S., Batioğlu F., Atmaca P. Fluorescein and indocyanine green videoangiography of choroidal melanomas. Japanese journal of ophthalmology. 1999;43(1):25–30. DOI:10.1016/S0021-5155(98)00059-8; Andersen M.V., Scherfig E., Prause J.U. Differential diagnosis of choroidal melanomas and naevi using scanner laser ophthalmoscopical indocyanine green angiography. Acta Ophthalmologica Scandinavica. 1995;73(5):453–456. DOI:10.1111/j.1600-0420.1995.tb00308.x; Kubicka-Trzaska A., Starzycka M., Romanowska-Dixon B. Indocyanine green angiography in the diagnosis of small choroidal tumours. Ophthalmologica. 2002;216(5):316–319. DOI:10.1159/000066177; Shiraki K., Moriwaki M., Yanagihara N., Kohno T. Indocyanine green angiograms of choroidal nevi: Comparison between confocal and nonconfocal scanning ophthalmoscope and fundus video camera. Japanese journal of ophthalmology. 2001;45(4):368–374. DOI:10.1016/S0021-5155(01)00362-8; Yannuzzi L. Lawrence A. Indocyanine green angiography: a perspective on use in the clinical setting. American journal of ophthalmology. 2011;151(5):745–751. DOI:10.1016/j.ajo.2011.01.043; Frenkel S., Barzel I., Levy J., Lin A.Y. Demonstrating circulation in vasculogenic mimicry patterns of uveal melanoma by confocal indocyanine green angiography. Eye. 2008;22(7):948. DOI:10.1038/sj.eye.6702783; Shields C.L., Furuta M., Berman E.L., Zahler J.D. Choroidal nevus transformation into melanoma. Analysis of 2514 consecutive cases. Archives of Ophthalmology. 2009;127(8):981–987. DOI: :10.1001/archophthalmol.2009.151; Sallet G., Amoaku W.M.K., Lafaut B.A., Brabant P., De Laey J.J. Indocyanine green angiography of choroidal tumors. Graefes Arch Clin Exp Ophthalmol. 1995;233:677–689. DOI:10.1007/BF00164669; Свирин А.В., Кийко Ю.И., Обруч Б.В., Богомолов А.В. Спектральная оптическая когерентная томография: принципы и возможности метода. РМЖ. Клиническая офтальмология. 2009;2:50–53. [Svirin A.V., Kiiko Yu.I., Obruch B.V., Bogomolov A.V. Spectral optic coherent tomography: principles and possibilities (Literary review). Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klinicheskaya oftal’mologiya. 2009;2:50–53 (In Russ.)].; Duker J.S., Waheed N.K., Goldman D.R. Handbook of retinal OCT: optical coherence tomography. Philadelphia: WB Saunders; 2014.; Jia Y., Tan O., Tokayer J. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710. DOI:10.1364/oe.20.004710; Chalam K. V., Sambhav K. Optical coherence tomography angiography in retinal diseases. Journal of ophthalmic & vision research. 2016;11(1):84. DOI:10.4103/2008-322X.180709; Jia Y., Bailey S.T., Hwang T.S., McClintic S.M. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA. 2015;112(18):2395–2402. DOI:10.1073/pnas.1500185112; Coscas G., Lupidi M., Coscas F. Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects. Dev Ophthalmol. 2016;56:1–5. DOI:10.1159/000442768; Shields C.L., Sioufi K., Fuller T., Higgins T. Which tumor, what imaging modality. Retina Today.2016;08:57–64.; Shields C.L., Say E.A., Samara W.A., Khoo C.T. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: Comparison of irradiated versus nonirradiated eyes in 65 patients. Retina. 2016;36(8):1493– 1505. DOI:10.1097/IAE.0000000000001021; Lumbroso B., Huang D., Jia Y., Fujimoto J.A., Rispoli M. Clinical guide to Angio-OCT. Jaypee; 2014.; Valverde-Megías A., Say E.A., Ferenczy S.R., Shields C.L. Differential macular features on optical coherence tomography angiography in eyes with choroidal nevus and melanoma. Retina. 2017 Apr;37(4):731-740. doi:10.1097/IAE.0000000000001233; Нероев В. В., Саакян, С. В., Мякошина, Е. Б. Оптическая когерентная томография-ангиография в диагностике начальной меланомы и отграниченной гемангиомы хориоидеи. Вестник офтальмологии. 2018;134(3):4–18. [Neroev V.V., Sahakyan, S.V., Myakoshina, E. B. Optical coherence tomography-angiography in the diagnosis of initial melanoma and delimited choroid hemangioma. Annales of Ophthalmology = Vestnik oftal’mologii. 2018;134(3):4–18 (In Russ.)]. DOI:10.17116/oftalma201813434; Ghassemi F., Mirshahi R., Fadakar K., Sabour S. Optical coherence tomography angiography in choroidal melanoma and nevus. Clinical ophthalmology (Auckland, NZ). 2018;12:207. DOI:10.2147/OPTH.S148897; Pellegrini M., Corvi F., Invernizzi A., Ravera V. Swept-source optical coherence tomography angiography in choroidal melanoma: an analysis of 22 consecutive cases. Retina. 2019;39(8):1510–1519. DOI:10.1097/IAE.0000000000002205; https://www.ophthalmojournal.com/opht/article/view/1193

  7. 7
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 17, № 1 (2020); 20-31 ; Офтальмология; Том 17, № 1 (2020); 20-31 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1127/666; Аверкин А.Н., Гаазе-Рапопорт М.Г., Поспелов Д.А. Толковый словарь по искусственному интеллекту. М.: Радио и связь, 1992. С. 38–39; Pesapane F., Codari M., Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental. 2018;2(1):35. DOI:10.1186/s41747018-0061-6; Lakhani P., Prater A.B., Hutson R.K., Andriole K.P., Dreyer K.J., Morey J., Prevedello L.M., Clark T.J., Geis J.R., Itri J.N., Hawkins C. M. Machine Learning in Radiology: Applications Beyond Image Interpretation. Journal of the American College of Radiology. 2018;15(2):350–359. DOI:10.1016/j.jacr.2017.09.044; Kappor R., Walters S.P., Al-Aswad L.A. The Current State of Artificial Intelligence in Ophthalmology. Survey of Ophthalmology. 2018; Sep 22. DOI:10.1016/j.survophthal.2018.09.002; Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development. 1959;3(3):210–229. DOI:10.1147/rd.33.0210; Bishop C.M. Pattern recognition and machine learning. New York: Springer; 2006. P. 2–3.; Kotsiantis S.B. Supervised machine learning: a review of classification techniques. Informatica. 2007;31:249–268.; Liaw A., Wiener M. Classification and regression by random Forest. R news. 2002;2:18–22.; Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386.; King B.F. Guest Editorial: Discovery and Artificial Intelligence. American Journal of Roentgenology. 2017;209(6):1189–1190. DOI:10.2214/ajr.17.19178; Deng L., Yu D. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing. 2014;7(3–4):1–199.; Chartrand G., Cheng P.M., Vorontsov E., Drozdzal M., Turcotte S., Pal C.J., Kadoury S., Tang A. Deep Learning: A Primer for Radiologists. RadioGraphics. 2017;37(7):2113–2131. DOI:10.1148/rg.2017170077; Sánchez C.I., Niemeijer M., Dumitrescu A.V., Suttorp-Schulten M.S.A., Abràmoff M.D., van Ginneken B. Evaluation of a Computer-Aided Diagnosis System for Diabetic Retinopathy Screening on Public Data. Investigative Opthalmology & Visual Science. 2011;52(7):4866. DOI:10.1167/iovs.10-6633; Marin D., Gegundez-Arias M.E., Suero A., Bravo J.M. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Computer Methods and Programs in Biomedicine. 2015;118(2):173– 185. DOI:10.1016/j.cmpb.2014.11.003; Quellec G., Lamard M., Abràmoff M.D., Decencière E., Lay B., Erginay A., Cochener B., Cazuguel G. A multiple-instance learning framework for diabetic retinopathy screening. Medical Image Analysis. 2012;16(6):1228–1240. DOI:10.1016/j. media.2012.06.003; Decencière E., Cazuguel G., Zhang X., Thibault G., Klein J.C., Meyer F., Marcotegui B., Quellec G., Lamard M., Danno R., Elie D., Massin P., Viktor Z., Erginay A., Laÿ B., Chabouis A. TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM. 2013;34(2):196–203. DOI:10.1016/j.irbm.2013.01.010; Choi J.Y., Yoo T.K., Seo J.G., Kwak J., Um T.T., Rim T.H. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PLOS ONE. 2017; 12(11):e0187336. DOI:10.1371/journal.pone.0187336; Gulshan V., Peng L., Coram M., Stumpe M.C., Wu D., Narayanaswamy A., Venugopalan S., Widner K., Madams T., Cuadros J., Kim R., Raman R., Nelson P.C., Mega J.L., Webster, D.R. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402. DOI:10.1001/jama.2016.17216; Gargeya R., Leng, T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology. 2017;124(7):962–969. DOI:10.1016/j.ophtha.2017.02.008; Abràmoff M.D., Folk, J.C., Han, D.P., Walker, J.D., Williams, D.F., Russell, S.R., Massin P., Cochener B., Gain P., Tang L., Lamard M., Moga D.C., Quellec G., Niemeijer M. Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy. JAMA Ophthalmology. 2013;131(3):351. DOI:10.1001/jamaophthalmol.2013.1743; Abràmoff M.D., Lou Y., Erginay A., Clarida W., Amelon R., Folk J.C., Niemeijer M. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Investigative Opthalmology & Visual Science. 2016;57(13):5200. DOI:10.1167/iovs.16-19964; Takahashi H., Tampo H., Arai Y., Inoue Y., Kawashima H. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PLOS ONE. 2017;12(6):e0179790. DOI:10.1371/journal.pone.0179790; Schmidt-Erfurth U., Sadeghipour A., Gerendas B.S., Waldstein S.M., Bogunović H. Artificial intelligence in retina. Progress in Retinal and Eye Research. 2018;67:1–29. DOI:10.1016/j.preteyeres.2018.07.004; Lawrence M.G. The accuracy of digital-video retinal imaging to screen for diabetic retinopathy: an analysis of two digital-video retinal imaging systems using standard stereoscopic seven-field photography and dilated clinical examination as reference standards. Trans Am Ophthalmol Soc. 2004;102:321–340.; Tsao H.Y., Chan P.Y., Su E.C.Y. Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms. BMC Bioinformatics. 2018;19(S9):195–205. DOI:10.1186/s12859-018-2277-0; Jiang Z., Yu Z., Feng S., Huang Z., Peng Y., Guo J., Ren Q., Lu Y. A super-resolution method-based pipeline for fundus fluorescein angiography imaging. BioMedical Engineering OnLine. 2018;17(1):125. DOI:10.1186/s12938-018-0556-7; Serrano-Aguilar P., Abreu R., Antón-Canalís L., Guerra-Artal C., Ramallo-Fariña Y., Gómez-Ulla F., Nadal J. Development and validation of a computer-aided diagnostic tool to screen for age-related macular degeneration by optical coherence tomography. British Journal of Ophthalmology. 2011;96(4):503–507. DOI:10.1136/ bjophthalmol-2011-300660; Venhuizen F.G., van Ginneken B., van Asten F., van Grinsven M.J.J.P., Fauser S., Hoyng C.B., Theelen T., Sánchez C.I. Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. Investigative Opthalmology & Visual Science. 2017;58(4):2318. DOI:10.1167/iovs.16-20541; Treder M., Lauermann J. L., Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2017;256(2):259–265. DOI:10.1007/s00417-017-3850-3; Burlina P.M., Joshi N., Pekala M., Pacheco K.D., Freund D.E., Bressler N.M. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmology. 2017;135(11):1170. DOI:10.1001/jamaophthalmol.2017.3782; Lee C.S., Baughman D.M., Lee A.Y. Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration OCT Images. Ophthalmology Retina. 2017;1(4):322–327. DOI:10.1016/j.oret.2016.12.009; Rahimy E. Deep learning applications in ophthalmology. Current Opinion in Ophthalmology. 2018;29(3):254–260. DOI:10.1097/icu.0000000000000470; Bogunovic H., Montuoro A., Baratsits M., Karantonis M.G., Waldstein S.M., Schlanitz F., Schmidt-Erfurth U. Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. Investigative Opthalmology & Visual Science. 2017;58(6):BIO141–BIO150. DOI:10.1167/iovs.17-21789; Bogunovic H., Waldstein S.M., Schlegl T., Langs G., Sadeghipour A., Liu X., Gerendas B.S., Osborne A., Schmidt-Erfurth U. Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Investigative Opthalmology & Visual Science. 2017;58(7):3240. DOI:10.1167/iovs.16-21053; Rohm M., Tresp V., Müller M., Kern C., Manakov I., Weiss M., Sim D.A., Priglinger S., Keane P.A., Kortuem K. Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2018;125(7):1028–1036. DOI:10.1016/j.ophtha.2017.12.034; Hogarty D.T., Mackey D.A., Hewitt A.W. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clinical & Experimental Ophthalmology. 2018;Aug 28. DOI:10.1111/ceo.13381; Yousefi S., Goldbaum M.H., Balasubramanian M., Jung T.P., Weinreb R.N., Medeiros F.A., Zangwill L.M., Liebmann J.M., Girkin C.A., Bowd C. Glaucoma Progression Detection Using Structural Retinal Nerve Fiber Layer Measurements and Functional Visual Field Points. IEEE Transactions on Biomedical Engineering. 2014;61(4):1143–1154. DOI:10.1109/tbme.2013.2295605; Oh E., Yoo T.K., Hong S. Artificial Neural Network Approach for Differentiating Open-Angle Glaucoma From Glaucoma Suspect Without a Visual Field Test. Investigative Opthalmology & Visual Science. 2015;56(6):3957. DOI:10.1167/ iovs.15-16805; Zhang Z., Yin F.S., Liu J., Wong W.K., Tan N.M., Lee B.H., Cheng J., Wong T.Y. ORIGA-light: An online retinal fundus image database for glaucoma analysis and research. Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010; 2010:3065–3068. DOI:10.1109/iembs.2010.5626137; Sng C.C., Fo L.L., Cheng C.Y., Allen J.C., He M., Krishnaswamy G., Nongpiur M.E., Friedman D.S., Wong T.Y., Aung T. Determinants of Anterior Chamber Depth: The Singapore Chinese Eye Study. Ophthalmology. 2012;119(6):1143–1150. DOI:10.1016/j.ophtha.2012.01.011; Chen X., Xu Y., Wong D.W.K., Wong T.Y., Liu J. Glaucoma detection based on deep convolutional neural network. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015;2015:715–718. DOI:10.1109/embc.2015.7318462; Raghavendra U., Fujita H., Bhandary S.V., Gudigar A., Tan J.H., Acharya U.R. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences. 2018; 441(1):41–49. DOI:10.1016/j. ins.2018.01.051; Kim M., Zuallaert J., De Neve W. Few-shot Learning Using a Small-Sized Dataset of High-Resolution FUNDUS Images for Glaucoma Diagnosis. Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care — MMHealth, 2017. P. 89–92. DOI:10.1145/3132635.3132650; Kim S.J., Cho K.J., Oh S. Development of machine learning models for diagnosis of glaucoma. PLOS ONE. 2017;12(5):e0177726. DOI:10.1371/journal.pone.0177726; Souza M.B., Medeiros F.W., Souza D.B., Garcia R., Alves M.R. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations. Clinics. 2010;65(12):1223–1228. DOI:10.1590/s1807-59322010001200002; Arbelaez M.C., Versaci F., Vestri G., Barboni P., Savini G. Use of a Support Vector Machine for Keratoconus and Subclinical Keratoconus Detection by Topographic and Tomographic Data. Ophthalmology. 2012;119(11):2231–2238. DOI:10.1016/j. ophtha.2012.06.005; Smadja D., Touboul D., Cohen A., Doveh E., Santhiago M.R., Mello G.R., Krueger R.R., Colin J. Detection of Subclinical Keratoconus Using an Automated Decision Tree Classification. American Journal of Ophthalmology. 2013;156(2):237– 246.e1. DOI:10.1016/j.ajo.2013.03.034; Ruiz Hidalgo I., Rodriguez P., Rozema J.J., Ní Dhubhghaill S., Zakaria N., Tassignon M.J., Koppen C. Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography. Cornea. 2016;35(6):827–832. DOI:10.1097/ico.0000000000000834; Kovács I., Miháltz K., Kránitz K., Juhász É., Takács Á., Dienes L., Gergely R., Nagy Z. Z. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. Journal of Cataract & Refractive Surgery. 2016;42(2):275–283. DOI:10.1016/j.jcrs.2015.09.020; Ambrósio R., Lopes B.T., Faria-Correia F., Salomão M.Q., Bühren J., Roberts C.J., Elsheikh A., Vinciguerra R., Vinciguerra P. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. Journal of Refractive Surgery. 2017;33(7):434–443. DOI:10.3928/1081597x-20170426-02; Ting D.S.W., Cheung C. Y.L., Lim G., Tan G.S.W., Quang N.D., Gan A., Hamzah H., Garcia-Franco R., San Yeo I.Y., Lee S.Y., Wong E.Y.M., Sabanayagam C., Baskaran M., Ibrahim F., Tan N.C., Finkelstein E.A., Lamoureux E.L., Wong I.Y., Bressler N.M., Sivaprasad S., Varma R., Jonas J.B., He M.G., Cheng C.Y., Cheung G.C.M., Aung T., Hsu W., Lee M.L., Wong T.Y. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017;318(22):2211. DOI:10.1001/jama.2017.18152; Kermany D.S., Goldbaum M., Cai W., Valentim C.C.S., Liang H., Baxter S.L., McKeown A., Yang G., Wu X., Yan F., Dong J., Prasadha M.K., Pei J., Ting M.Y.L., Zhu J., Li C., Hewett S., Dong J., Ziyar I., Shi A., Zhang R., Zheng L., Hou R., Shi W., Fu X., Duan Y., Huu V.A.N., Wen C., Zhang E.D., Zhang C.L., Li O., Wang X., Singer M.A., Sun X., Xu J., Tafreshi A., Lewis M.A., Xia H. Zhan, K. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122–1131.e9. DOI:10.1016/j.cell.2018.02.010; Schlegl T., Waldstein S.M., Bogunovic H., Endstraßer F., Sadeghipour A., Philip A.M., Podkowinski D., Gerendas B.S., Langs G. Schmidt-Erfurth U. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology. 2018;125(4):549–558. DOI:10.1016/j.ophtha.2017.10.031; Samagaio G., Estévez A., Moura J., Novo J., Fernández M.I., Ortega M. Automatic macular edema identification and characterization using OCT images. Computer Methods and Programs in Biomedicine. 2018;163:47–63. DOI:10.1016/j. cmpb.2018.05.033; Gao X., Lin S., Wong T.Y. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning. IEEE Transactions on Biomedical Engineering. 2015;62(11):2693–2701. DOI:10.1109/tbme.2015.2444389; Liu X., Jiang J., Zhang K., Long E., Cui J., Zhu M., An Y., Zhang J., Liu Z., Lin Z., Li X., Chen J., Cao Q., Li J., Wu X., Wang D., Li H. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLOS ONE. 2017;12(3):e0168606. DOI:10.1371/ journal.pone.0168606; Zhang, Li J., Zhang I., Han H., Liu B., Yang J., Wang Q. Automatic cataract detection and grading using Deep Convolutional Neural Network. IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), 2017. P. 60–65. DOI:10.1109/icnsc.2017.8000068; Kaiserman I., Rosner M., Pe’er J. Forecasting the Prognosis of Choroidal Melanoma with an Artificial Neural Network. Ophthalmology. 2005;112(9):1608. DOI:10.1016/j.ophtha.2005.04.008; Damato B., Eleuteri A., Fisher A.C., Coupland S.E., Taktak A.F.G. Artificial Neural Networks Estimating Survival Probability after Treatment of Choroidal Melanoma. Ophthalmology. 2008;115(9):1598–1607. DOI:10.1016/j.ophtha.2008.01.032; Vaquero-Garcia J., Lalonde E., Ewens K.G., Ebrahimzadeh J., Richard-Yutz J., Shields C. L., Barrera A., Green C.J., Barash Y., Ganguly A. PRiMeUM: A Model for Predicting Risk of Metastasis in Uveal Melanoma. Investigative Opthalmology & Visual Science. 2017;58(10):4096. DOI:10.1167/iovs.17-22255; Khosravi, P., Kazemi, E., Imielinski, M., Elemento, O., & Hajirasouliha, I. Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine. 2018;27:317–328. DOI:10.1016/j.ebiom.2017.12.026; Kwak J.T., Hewitt S.M., Sinha S., Bhargava, R. Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer. 2011;11(1):1–16. DOI:10.1186/1471-2407-11-62; Hamilton P.W., Wang Y., Boyd C., James J.A., Loughrey M.B., Hougton, J.P., Boyle D.P., Kelly P. , Maxwell P., McCleary D., Diamond J., McArt DG., Tunstall J., Bankhead P., Salto-Tellez M. Automated tumor analysis for molecular profiling in lung cancer. Oncotarget. 2015;6(29):27938–27952 DOI:10.18632/oncotarget.4391; Wang L.W., Qu A.P., Yuan J.P., Chen C., Sun S.R., Hu M.B., Liu J., Li Y. ComputerBased Image Studies on Tumor Nests Mathematical Features of Breast Cancer and Their Clinical Prognostic Value. PLoS ONE. 2013;8(12):e82314. DOI:10.1371/ journal.pone.0082314; Bruno K., Andrea M.O., Allen P.M., Catherine M.N., Matthew A.S., Lorenzo T., Arief A.S., Saeed H.Deep learning for classification of colorectal polyps on wholeslide images. PLoS One. 2013;8(12):e82314.; Janowczyk A., Chandran S., Singh R., Sasaroli D., Coukos G., Feldman M.D., Madabhushi A. High-Throughput Biomarker Segmentation on Ovarian Cancer Tissue Microarrays via Hierarchical Normalized Cuts. IEEE Transactions on Biomedical Engineering. 2012;59(5):1240–1252. DOI:10.1109/tbme.2011.2179546; https://www.ophthalmojournal.com/opht/article/view/1127