-
1Academic Journal
Authors: Olga V. Bugun, Galina P. Bogonosova, Tatyana A. Astakhova, Tatyana A. Bairova, Natalya N. Martynovich, Darya M. Barycova, Tatyana Y. Belkova, Yuliya S. Livadarova, Nanalya I. Sysoeva, О. В. Бугун, Г. П. Богоносова, Т. А. Астахова, Т. A. Баирова, Н. Н. Мартынович, Д. М. Барыкова, Т. Ю. Белькова, Ю. С. Ливадарова, Н. И. Сысоева
Contributors: Not specified., Отсутствует.
Source: Current Pediatrics; Том 23, № 2 (2024); 96-103 ; Вопросы современной педиатрии; Том 23, № 2 (2024); 96-103 ; 1682-5535 ; 1682-5527
Subject Terms: клинический случай, organic acidurias, hereditary metabolic diseases, clinical case, органические ацидурии, наследственные болезни обмена веществ
File Description: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3453/1368; Баранов А.А., Намазова-Баранова Л.С., Боровик Т.Э. и др. Метилмалоновая ацидурия у детей: клинические рекомендации // Педиатрическая фармакологоия. — 2017. — Т. 14. — № 4. — С. 258–271. — doi: https://doi.org/10.15690/pf.v14i4.1757; Другие виды нарушения обмена аминокислот с разветвленной цепью (метилмалоновая ацидемия/ацидурия): клинические рекомендации. — 2021. Доступно по: https://cr.minzdrav.gov.ru/schema/387_2. Ссылка активна на 30.01.2024.; Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130. doi: https://doi.org/10.1186/s13023-014-0130-8; Неонатальный скрининг / под ред. С.И. Куцева. — М.: ГЭОТАР-Медиа; 2023. — С. 216–226.; Manoli I, Sloan JL, Venditti CP. Isolated Methylmalonic Acidemia. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993.; Zhou X, Cui Y, Han J. Methylmalonic acidemia: Current status and research priorities. Intractable & Rare Diseases Research. 2018;7(2):73–78. doi: https://doi.org/10.5582/irdr.2018.01026; LMBR1 Domain-containing protein 1: LMBRD1. OMIM *612625. In: OMIM: Official website. Available online: https://www.omim.org/entry/612625?search=lmbrd1&highlight=lmbrd1. Accessed on January 30, 2024.; Metabolism of cobalamin associated D; MMADHC. OMIM*611935. In: OMIM: Official website. Available online: https://www.omim.org/entry/611935?search=mmadhc&highlight=mmadhc. Accessed on January 30, 2024.; Metabolism of cobalamin associated C; MMACHC. OMIM*609831. In: OMIM: Official website. Available online: https://www.omim.org/entry/609831?search=mmachc&highlight=mmachc. Accessed on January 30, 2024.; Forny P, Horster F, Ballhausen D, et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis. 2021;44(3):566–592. doi: https://doi.org/10.1002/jimd.12370; Байдакова Г.В, Иванова Т.А., Захарова Е.Ю., Кокорина О.С. Роль тандемной масс-спектрометрии в диагностике наследственных болезней обмена веществ // Российский журнал детской гемтологии и онкологии. — 2018. — Т. 3. — № 5. — С. 96–105. — doi: https://doi.org/10.17650/2311-1267-2018-5-3-96-105; Немчинова Н.В., Баирова Т.А., Бельских А.В. и др. Оценка референсных интервалов ацилкарнитинов у новорождённых Сибири // Acta biomedical scientifica. — 2022. — Т. 7. — № 5-1. — С. 86–99. — doi: https://doi.org/10.29413/ABS.2022-7.5-1.10; Matern D, Tortorelli S, Oglesbee D, et al. Reduction of the false positive rate in newborn screening by implementation of MS/MS-based second tier tests: The Mayo Clinic experience (2004–2007). J Inherit Metab Dis. 2007;30(4):585–592. doi: https://doi.org/10.1007/s10545-007-0691-y; Garilov DK, Piazza AL, Pino G, et al. The combined impact of CLIR post-analytical tools and second tier testing on the performance of newborn screening for disorders of propionate, methionine, and cobalamin metabolism. Int J Neonatal Screen. 2020;6(2):33. doi: https://doi.org/10.3390/ijns6020033; Held PK, Singh E, Schwoerer JS. Screening for Methylmalonic and Propionic Acidemia: Clinical Outcomes and Follow-Up Recommendations. Int J Neonatal Screen. 2022;8(1):13. doi: https://doi.org/10.3390/ijns8010013; Pillai NR, Stroup BM, Poliner A, et al. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review. Mol Genet Metab. 2019;128(4):431–443. doi: https://doi.org/10.1016/j.ymgme.2019.11.001; Chander RJ, Venditti CP. Gene Therapy for Methylmalonic Acidemia: Past, Present, and Future. Hum Gene Ther. 2019;30(10):1236–1244. doi: https://doi.org/10.1089/hum.2019.113; Liang L, Ling S, Yu Y, et al. Evaluation of the clinical, biochemical, genotype and prognosis of mut-type methylmalonic acidemia in 365 Chinese cases. J Med Genet. 2023;61(1):8–17. doi: https://doi.org/10.1136/jmg-2022-108682; Воронин С.В., Куцев С.И. Неонатальный скрининг на наследственные заболевания в России: вчера, сегодня, завтра // Неонатология: новости, мнения, обучения. — 2022. — Т. 10. — № 4. — С. 34–39. — doi: https://doi.org/10.33029//2308-2402-10-4-34-39; Алексеенко А.С., Зенкина О.Ю. Метилмалоновая ацидурия у ребенка // Российский педиатрический журнал. — 2020. — Т. 23. — № 6. — С. 389–390.; Ломтева Н.А. Клинический вариант течения метилмалоновой ацидемии // Новая наука в интерпретации современного образовательного процесса. — Казань; 2017. — С. 312–315.; Ткачук Е.А., Барыкова Д.М., Ливадарова Ю.С. и др. Клинический случай метилмалоновой ацидемии // Байкальский медицинский журнал. — 2023. — Т. 2. — № 1. — С. 40–49. — doi: https://doi.org/10.57256/2949-0715-2023-1-40-49; Adhikari A, Gallagher R, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26(9):1392–1397. doi: https://doi.org/10.1038/s41591-020-0966-5; Han B, Nie W, Sun M, et al. Clinical presentation, molecular analysis and follow-up of patients with mut methylmalonic acidemia in Shandong province, China. Pediatr Neonatol. 2020;61(2):148–154. doi: https://doi.org/10.1016/j.pedneo.2019.07.004; Şeker Yılmaz B, Kor D, Bulut FD, et al. Clinical and molecular findings in 37 Turkish patients with isolated methylmalonic acidemia. Turk J Med Sci. 2021;51(3):1220–1228. doi: https://doi.org/10.3906/sag-2001-72
-
2Academic Journal
Authors: O. V. Bugun, N. N. Martynovich, G. P. Bogonosova, T. A. Astahova, L. V. Rychkova, О. В. Бугун, Н. Н. Мартынович, Г. П. Богоносова, Т. А. Астахова, Л. В. Рычкова
Source: Acta Biomedica Scientifica; Том 6, № 5 (2021); 112-125 ; 2587-9596 ; 2541-9420
Subject Terms: дефекты митохондриального β-окисления, inborn errors of metabolism, tandem mass spectrometry, aminoacidopathies, organic acidurias, mitochondrial β-oxidation defects, тандемная масс-спектрометрия, аминоацидопатии, органические ацидурии
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/3041/2224; Строева Л.Е., Мозжухина Л.И., Ратинская Н.В., Кириллова В.С., Горячева Н.Ю. Клинические маски наследственных болезней обмена. V Пичугинские чтения. Актуальные проблемы современной педиатрии. Сборник трудов конференции. 2017; 354-359.; Green NS, Dolan SM, Murray TH. Newborn screening: Complexities in universal genetic testing. Am J Public Health. 2006; 96(11): 1955-1959. doi:10.2105/AJPH.2005.070300; Печатникова Н.Л., Брюханова Н.О., Потехин О.Е., Витковская И.П., Петряйкина И.Е. Наследственные болезни обмена веществ. Московская медицина. 2017; 6(21): 16-20.; Байдакова Г.В., Иванова Т.А., Захарова Е.Ю., Кокорина О.С. Роль тандемной масс-спектрометрии в диагностике наследственных болезней обмена веществ. Российский журнал детской гематологии и онкологии. 2018; 5(3): 96-105. doi:10.17650/2311-1267-2018-5-3-96-105; Николаева Е.А., Мамедов И.С., Золкина И.В. Современные технологии диагностики наследственных болезней обмена аминокислот. Российский вестник перинатологии и педиатрии. 2011; 56(4): 20-30.; Мартынович Н.Н., Глобенко Н.Э., Кузнецова С.Н. Клинико-лабораторные маркеры наследственных болезней обмена веществ у детей первого полугодия жизни. Acta biomedica scientifica. 2020; 5(4): 73-78. doi:10.29413/abs.2020-5.4.10; Захарова Е.Ю., Ижевская В.Л., Байдакова Г.В., Иванова Т.А., Чумакова О.В. КСИ. Массовый скрининг на наследственные болезни: Ключевые вопросы. Медицинская генетика. 2017; 16(10): 3-13.; Aliu E, Kanungo S, Arnold GL. Amino acid disorders. Ann Transl Med. 2018; 6(24): 471. doi:10.21037/atm.2018.12.12; Van Wegberg A, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017; 12(1): 162. doi:10.1186/s13023-017-0685-2; Morrow G, Tanguay RM. Biochemical and clinical aspects of hereditary tyrosinemia type 1. Adv Exp Med Biol. 2017; 959: 9-21. doi:10.1007/978-3-319-55780-9_2; Chinsky JM, Singh R, Ficicioglu C, Karnebeek CD, Grompe M, Mitchell G, et al. Diagnosis and treatment of tyrosinemia type I: A US and Canadian consensus group review and recommendations. Genet Med. 2017; 19(12). doi:10.1038/gim.2017.101; Zatkova A, Ranganath LK. Alkaptonuria: Current perspectives. Appl Clin Genet. 2020; 13: 37-47. doi:10.2147/TACG. S186773; Feng W, Jia J, Guan H, Tian Q. Case report: Maple syrup urine disease with a novel DBT gene mutation. BMC Pediatr. 2019; 19(1): 494. doi:10.1186/s12887-019-1880-1; OMIM. Maple syrup urine disease; MSUD. URL: https://www.omim.org/entry/248600?search=maple%20syrop%20urine%20disoder&highlight=disoder%20maple%20syrop%20urine [date of access: 05.06.2021].; Strauss KA, Puffenberger EG, Carson VJ. Maple syrup urine disease. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK1319/ [date of access: 05.06.2021].; Sacharow SJ, Picker JD, Levy HL. Homocystinuria caused by cystathionine beta-synthase deficiency summary genetic counseling. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/nbk/nbk1524 [date of access: 05.06.2021].; Al-Sadeq DW, Nasrallah GK. The spectrum of mutations of homocystinuria in the MENA region. Genes. 2020;11(3): 330. doi:10.3390/genes11030330; Morris AAM, Kožich V, Santra S, Andria G, Ben-Omran TIM, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017; 40(1): 49-74. doi:10.1007/s10545-016-9979-0; Coughlin CR, Swanson MA, Kronquist K, Acquaviva C, Hutchin T, Rodríguez-Pombo P, et al. The genetic basis of classic nonketotic hyperglycinemia due to mutations in GLDC and AMT. Genet Med. 2017; 19(1): 104-111. doi:10.1038/gim.2016.74; Van Hove J, Coughlin S, Swanson M, Hennermann JB, Adam MP, Ardinger HH. Nonketotic hyperglycinemia. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK1357/ [date of access: 05.06.2021].; Fan L, Zhao J, Jiang L, Xie L, Ma J, Li X, et al. Molecular, biochemical, and clinical analyses of five patients with carbamoyl phosphate synthetase 1 deficiency. J Clin Lab Anal. 2020; 34(4): e23124. doi:10.1002/jcla.23124; OMIM. Carbamoyl phosphate synthetase I deficiency, hyperammonemia due to. URL: https://www.omim.org/entry/237300?search=Carbamoylphosphat%20synthetase%20deficiency&highlight=carbamoylphosphat%20deficiency%20synthetase [date of access: 05.06.2021].; OMIM. Ornithine transcarbamylase deficiency, hyperammonemia due to. URL: https://www.omim.org/entry/311250?search=Ornithine%20Transcarbamylase%20Deficiency&highlight=deficiency%20ornithine%20transcarbamylase [date of access: 05.06.2021].; OMIM. Citrullinemia, classic. URL: https://www.omim.org/entry/215700?search=ASS1%20deficiency&highlight=ass1%20 deficiency [date of access: 5.06.2021].; OMIM. Argininosuccinic aciduria. URL: https://www.omim.org/entry/207900?search=Argininosuccinate%20Lyase%20Deficiency&highlight=argininosuccinate%20deficiency%20lyase [date of access: 05.06.2021].; OMIM. Argininemia. URL: https://www.omim.org/ entry/207800?search=Arginase%20Deficiency&highlight=arginase%20deficiency [date of access: 5.06.2021].; OMIM. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome; HHHS. URL: https://www.omim.org/entry/238970?search=Hyperornithinemia&highlight=hyperornithinemia [date of access: 05.06.2021].; OMIM. Citrullinemia, type II, neonatal-onset. URL: https://www.omim.org/entry/605814?search=Citrin%20Deficiency&highlight=citrin%20deficiency [date of access: 5.06.2021].; Mew NA, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK1217/ [date of access: 05.06.2021].; Foschi FG, Morelli MC, Savini S, Dall’Aglio AC, Lanzi A, Cescon M, et al. Urea cycle disorders: A case report of a successful treatment with liver transplant and a literature review. World J Gastroenterol. 2015; 21(13): 4063-4068. doi:10.3748/wjg.v21.i13.4063; Lichter-Konecki U, Caldovic L, Morizono H, Simpson K. Ornithine transcarbamylase deficiency. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/NBK/nbk154378 [date of access: 05.06.2021].; Camacho J, Rioseco-Camacho N. Hyperornithinemiahyperammonemia-homocitrullinuria syndrome. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https:// europepmc.org/article/nbk/nbk97260 [date of access: 05.06.2021].; Nagamani S, Erez A, Lee B. Argininosuccinate lyase deficiency. Genet Med. 2012; 14(5): 501-507. doi:10.1038/gim.2011.1; Zhou X, Cui Y, Han J. Methylmalonic acidemia: Current status and research priorities. Intractable Rare Dis Res. 2018; 7(2): 73-78. doi:10.5582/irdr.2018.01026; Баранов А.А., Намазова-Баранова Л.С., Боровик Т.Е., Бушуева Т.В., Вишнёва Е.А., Глоба О.В., и др. Метилмалоновая ацидурия у детей: клинические рекомендации. Педиатрическая фармакология. 2017; 14(4): 258-271. doi:10.15690/pf.v14i4.1757; Frasera JL, Venditti CP. Methylmalonic and propionic acidemias: Clinical management update. Curr Opin Pediatr. 2016; 28(6): 682-693. doi:10.1097/MOP.0000000000000422; Shchelochkov OA, Carrillo N, Venditti C. Propionic acidemia. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/nbk/nbk92946 [date of access: 05.06.2021].; Ibarra-González I, Fernández-Lainez C, Guillén-López S, López-Mejía L, Belmont-Matínez L, Sokolsky TD, et al. Molecular analysis using targeted next generation DNA sequencing and clinical spectrum of Mexican patients with isovaleric acidemia. Clin Chim Acta. 2020; 501: 216-221. doi:10.1016/j.cca.2019.10.041; Schlune A, Riederer A, Mayatepek E, Ensenauer R. Aspects of newborn screening in isovaleric acidemia. IntJ Neonatal Screen. 2018; 4(1): 7. doi:10.3390/ijns4010007; Larson A, Goodman S. Glutaric acidemia type 1. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/NBK/nbk546575 [date of access: 05.06.2021].; Canda E, Kalkan S, Coker M. Biotinidase deficiency: Prevalence, impact and management strategies. Pediatr Heal Med Ther. 2020; 11: 127-133. doi:10.2147/PHMT.S198656 42. OMIM. Carnitine palmitoyltransferase I, liver; CPT1A. URL: https://www.omim.org/entry/600528?search=cpt1a&highlight=cpt1a [date of access: 5.06.2021].; Hui-ming Y, Hao H, Aisha A, Bing-bing F, Jing L, Zhengjun J, et al. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation: Two case reports and brief literature review. Medicine (Baltimore). 2017; 96(45): e8549. doi:10.1097/MD.0000000000008549; OMIM. Carnitine palmitoyltransferase II; CPT2. URL: https://www.omim.org/entry/600650?search=CPT2&highlight=cpt2 [date of access: 05.06.2021].; OMIM. Carnitine deficienc y, systemic primar y; CDSP. URL: https://www.omim.org/entry/212140?search=Systemic%20primary%20%20carnitine%20deficiency&highlight=carnitine%20deficiency%20primary%20systemic [date of access: 05.06.2021].; OMIM. Acyl-CoA dehydrogenase, very long-chain; ACADVL. URL: https://www.omim.org/entry/609575?search=ACADVL&highlight=acadvl [date of access: 05.06.2021].; OMIM. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. URL: https://www.omim.org/entry/609016?search=longchain%203hydroxy%20acylCoA%20dehydrogenase%20deficiency&highlight=%22acyl%7Ccoa%22%20%22long%20chain%22%20%283hydroxy%7Chydroxy%29%20%28acylcoa%7C%20%29%20deficiency%20dehydrogenase%20longchain [date of access: 05.06.2021].; OMIM. Mitochondrial trifunctional protein deficiency; MTPD. URL: http://www.omim.org/entry/609015?search=Trifunctional%20protein%20deficiency&highlight=%28protein%7Cproteinaceous%29%20deficiency%20trifunctional [date of access: 05.06.2021].; OMIM. Acyl-CoA dehydrogenase, medium-chain, deficiency of; ACADMD. URL: https://www.omim.org/entry/201450?search=mediumchain%20acylCoA%20dehydrogenase%20deficiency&highlight=%22acyl%7Ccoa%22%20%22medium%20chain%22%20%28acylcoa%7C%20%29%20deficiency%20dehydrogenase%20mediumchain [date of access: 5.06.2021].; OMIM. Acyl-CoA dehydrogenase, short-chain, deficiency of; ACADSD. URL: https://www.omim.org/entry/201470?search=shortchain%20acylCoA%20dehydrogenase%20deficiency&highlight=%22acyl%7Ccoa%22%20%22short%20chain%22%20%28acylcoa%7C%20%29%20deficiency%20dehydrogenase%20 shortchain [date of access: 05.06.2021].; OMIM. Multiple acyl-CoA dehydrogenase deficiency; MADD. URL: https://www.omim.org/entry/231680?search=Multiple%20acylCoA%20dehydrogenase%20%20deficiency&highlight=%22acyl%7Ccoa%22%20%28acylcoa%7C%20%28multiple%7Cmultiplicity%29%20%29%20deficiency%20dehydrogenase [date of access: 05.06.2021].; Merritt JL, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018; 6(24): 473. doi:10.21037/atm.2018.10.57; Vishwanath VA. Fatty acid beta-oxidation disorders: A brief review. Ann Neurosci. 2016; 23(1): 51-55. doi:10.1159/000443556; Knottnerus S, Bleeker J, Wüst R, Ferdinandusse S, IJlst L, Wijburg FA, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018; 19(1): 93-106. doi:10.1007/s11154-018-9448-1; https://www.actabiomedica.ru/jour/article/view/3041