Showing 1 - 2 results of 2 for search '"органические ацидурии"', query time: 0.42s Refine Results
  1. 1
    Academic Journal

    Contributors: Not specified., Отсутствует.

    Source: Current Pediatrics; Том 23, № 2 (2024); 96-103 ; Вопросы современной педиатрии; Том 23, № 2 (2024); 96-103 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3453/1368; Баранов А.А., Намазова-Баранова Л.С., Боровик Т.Э. и др. Метилмалоновая ацидурия у детей: клинические рекомендации // Педиатрическая фармакологоия. — 2017. — Т. 14. — № 4. — С. 258–271. — doi: https://doi.org/10.15690/pf.v14i4.1757; Другие виды нарушения обмена аминокислот с разветвленной цепью (метилмалоновая ацидемия/ацидурия): клинические рекомендации. — 2021. Доступно по: https://cr.minzdrav.gov.ru/schema/387_2. Ссылка активна на 30.01.2024.; Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130. doi: https://doi.org/10.1186/s13023-014-0130-8; Неонатальный скрининг / под ред. С.И. Куцева. — М.: ГЭОТАР-Медиа; 2023. — С. 216–226.; Manoli I, Sloan JL, Venditti CP. Isolated Methylmalonic Acidemia. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., eds. Seattle (WA): University of Washington, Seattle; 1993.; Zhou X, Cui Y, Han J. Methylmalonic acidemia: Current status and research priorities. Intractable & Rare Diseases Research. 2018;7(2):73–78. doi: https://doi.org/10.5582/irdr.2018.01026; LMBR1 Domain-containing protein 1: LMBRD1. OMIM *612625. In: OMIM: Official website. Available online: https://www.omim.org/entry/612625?search=lmbrd1&highlight=lmbrd1. Accessed on January 30, 2024.; Metabolism of cobalamin associated D; MMADHC. OMIM*611935. In: OMIM: Official website. Available online: https://www.omim.org/entry/611935?search=mmadhc&highlight=mmadhc. Accessed on January 30, 2024.; Metabolism of cobalamin associated C; MMACHC. OMIM*609831. In: OMIM: Official website. Available online: https://www.omim.org/entry/609831?search=mmachc&highlight=mmachc. Accessed on January 30, 2024.; Forny P, Horster F, Ballhausen D, et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis. 2021;44(3):566–592. doi: https://doi.org/10.1002/jimd.12370; Байдакова Г.В, Иванова Т.А., Захарова Е.Ю., Кокорина О.С. Роль тандемной масс-спектрометрии в диагностике наследственных болезней обмена веществ // Российский журнал детской гемтологии и онкологии. — 2018. — Т. 3. — № 5. — С. 96–105. — doi: https://doi.org/10.17650/2311-1267-2018-5-3-96-105; Немчинова Н.В., Баирова Т.А., Бельских А.В. и др. Оценка референсных интервалов ацилкарнитинов у новорождённых Сибири // Acta biomedical scientifica. — 2022. — Т. 7. — № 5-1. — С. 86–99. — doi: https://doi.org/10.29413/ABS.2022-7.5-1.10; Matern D, Tortorelli S, Oglesbee D, et al. Reduction of the false positive rate in newborn screening by implementation of MS/MS-based second tier tests: The Mayo Clinic experience (2004–2007). J Inherit Metab Dis. 2007;30(4):585–592. doi: https://doi.org/10.1007/s10545-007-0691-y; Garilov DK, Piazza AL, Pino G, et al. The combined impact of CLIR post-analytical tools and second tier testing on the performance of newborn screening for disorders of propionate, methionine, and cobalamin metabolism. Int J Neonatal Screen. 2020;6(2):33. doi: https://doi.org/10.3390/ijns6020033; Held PK, Singh E, Schwoerer JS. Screening for Methylmalonic and Propionic Acidemia: Clinical Outcomes and Follow-Up Recommendations. Int J Neonatal Screen. 2022;8(1):13. doi: https://doi.org/10.3390/ijns8010013; Pillai NR, Stroup BM, Poliner A, et al. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review. Mol Genet Metab. 2019;128(4):431–443. doi: https://doi.org/10.1016/j.ymgme.2019.11.001; Chander RJ, Venditti CP. Gene Therapy for Methylmalonic Acidemia: Past, Present, and Future. Hum Gene Ther. 2019;30(10):1236–1244. doi: https://doi.org/10.1089/hum.2019.113; Liang L, Ling S, Yu Y, et al. Evaluation of the clinical, biochemical, genotype and prognosis of mut-type methylmalonic acidemia in 365 Chinese cases. J Med Genet. 2023;61(1):8–17. doi: https://doi.org/10.1136/jmg-2022-108682; Воронин С.В., Куцев С.И. Неонатальный скрининг на наследственные заболевания в России: вчера, сегодня, завтра // Неонатология: новости, мнения, обучения. — 2022. — Т. 10. — № 4. — С. 34–39. — doi: https://doi.org/10.33029//2308-2402-10-4-34-39; Алексеенко А.С., Зенкина О.Ю. Метилмалоновая ацидурия у ребенка // Российский педиатрический журнал. — 2020. — Т. 23. — № 6. — С. 389–390.; Ломтева Н.А. Клинический вариант течения метилмалоновой ацидемии // Новая наука в интерпретации современного образовательного процесса. — Казань; 2017. — С. 312–315.; Ткачук Е.А., Барыкова Д.М., Ливадарова Ю.С. и др. Клинический случай метилмалоновой ацидемии // Байкальский медицинский журнал. — 2023. — Т. 2. — № 1. — С. 40–49. — doi: https://doi.org/10.57256/2949-0715-2023-1-40-49; Adhikari A, Gallagher R, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26(9):1392–1397. doi: https://doi.org/10.1038/s41591-020-0966-5; Han B, Nie W, Sun M, et al. Clinical presentation, molecular analysis and follow-up of patients with mut methylmalonic acidemia in Shandong province, China. Pediatr Neonatol. 2020;61(2):148–154. doi: https://doi.org/10.1016/j.pedneo.2019.07.004; Şeker Yılmaz B, Kor D, Bulut FD, et al. Clinical and molecular findings in 37 Turkish patients with isolated methylmalonic acidemia. Turk J Med Sci. 2021;51(3):1220–1228. doi: https://doi.org/10.3906/sag-2001-72

  2. 2
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 6, № 5 (2021); 112-125 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3041/2224; Строева Л.Е., Мозжухина Л.И., Ратинская Н.В., Кириллова В.С., Горячева Н.Ю. Клинические маски наследственных болезней обмена. V Пичугинские чтения. Актуальные проблемы современной педиатрии. Сборник трудов конференции. 2017; 354-359.; Green NS, Dolan SM, Murray TH. Newborn screening: Complexities in universal genetic testing. Am J Public Health. 2006; 96(11): 1955-1959. doi:10.2105/AJPH.2005.070300; Печатникова Н.Л., Брюханова Н.О., Потехин О.Е., Витковская И.П., Петряйкина И.Е. Наследственные болезни обмена веществ. Московская медицина. 2017; 6(21): 16-20.; Байдакова Г.В., Иванова Т.А., Захарова Е.Ю., Кокорина О.С. Роль тандемной масс-спектрометрии в диагностике наследственных болезней обмена веществ. Российский журнал детской гематологии и онкологии. 2018; 5(3): 96-105. doi:10.17650/2311-1267-2018-5-3-96-105; Николаева Е.А., Мамедов И.С., Золкина И.В. Современные технологии диагностики наследственных болезней обмена аминокислот. Российский вестник перинатологии и педиатрии. 2011; 56(4): 20-30.; Мартынович Н.Н., Глобенко Н.Э., Кузнецова С.Н. Клинико-лабораторные маркеры наследственных болезней обмена веществ у детей первого полугодия жизни. Acta biomedica scientifica. 2020; 5(4): 73-78. doi:10.29413/abs.2020-5.4.10; Захарова Е.Ю., Ижевская В.Л., Байдакова Г.В., Иванова Т.А., Чумакова О.В. КСИ. Массовый скрининг на наследственные болезни: Ключевые вопросы. Медицинская генетика. 2017; 16(10): 3-13.; Aliu E, Kanungo S, Arnold GL. Amino acid disorders. Ann Transl Med. 2018; 6(24): 471. doi:10.21037/atm.2018.12.12; Van Wegberg A, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017; 12(1): 162. doi:10.1186/s13023-017-0685-2; Morrow G, Tanguay RM. Biochemical and clinical aspects of hereditary tyrosinemia type 1. Adv Exp Med Biol. 2017; 959: 9-21. doi:10.1007/978-3-319-55780-9_2; Chinsky JM, Singh R, Ficicioglu C, Karnebeek CD, Grompe M, Mitchell G, et al. Diagnosis and treatment of tyrosinemia type I: A US and Canadian consensus group review and recommendations. Genet Med. 2017; 19(12). doi:10.1038/gim.2017.101; Zatkova A, Ranganath LK. Alkaptonuria: Current perspectives. Appl Clin Genet. 2020; 13: 37-47. doi:10.2147/TACG. S186773; Feng W, Jia J, Guan H, Tian Q. Case report: Maple syrup urine disease with a novel DBT gene mutation. BMC Pediatr. 2019; 19(1): 494. doi:10.1186/s12887-019-1880-1; OMIM. Maple syrup urine disease; MSUD. URL: https://www.omim.org/entry/248600?search=maple%20syrop%20urine%20disoder&highlight=disoder%20maple%20syrop%20urine [date of access: 05.06.2021].; Strauss KA, Puffenberger EG, Carson VJ. Maple syrup urine disease. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK1319/ [date of access: 05.06.2021].; Sacharow SJ, Picker JD, Levy HL. Homocystinuria caused by cystathionine beta-synthase deficiency summary genetic counseling. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/nbk/nbk1524 [date of access: 05.06.2021].; Al-Sadeq DW, Nasrallah GK. The spectrum of mutations of homocystinuria in the MENA region. Genes. 2020;11(3): 330. doi:10.3390/genes11030330; Morris AAM, Kožich V, Santra S, Andria G, Ben-Omran TIM, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2017; 40(1): 49-74. doi:10.1007/s10545-016-9979-0; Coughlin CR, Swanson MA, Kronquist K, Acquaviva C, Hutchin T, Rodríguez-Pombo P, et al. The genetic basis of classic nonketotic hyperglycinemia due to mutations in GLDC and AMT. Genet Med. 2017; 19(1): 104-111. doi:10.1038/gim.2016.74; Van Hove J, Coughlin S, Swanson M, Hennermann JB, Adam MP, Ardinger HH. Nonketotic hyperglycinemia. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK1357/ [date of access: 05.06.2021].; Fan L, Zhao J, Jiang L, Xie L, Ma J, Li X, et al. Molecular, biochemical, and clinical analyses of five patients with carbamoyl phosphate synthetase 1 deficiency. J Clin Lab Anal. 2020; 34(4): e23124. doi:10.1002/jcla.23124; OMIM. Carbamoyl phosphate synthetase I deficiency, hyperammonemia due to. URL: https://www.omim.org/entry/237300?search=Carbamoylphosphat%20synthetase%20deficiency&highlight=carbamoylphosphat%20deficiency%20synthetase [date of access: 05.06.2021].; OMIM. Ornithine transcarbamylase deficiency, hyperammonemia due to. URL: https://www.omim.org/entry/311250?search=Ornithine%20Transcarbamylase%20Deficiency&highlight=deficiency%20ornithine%20transcarbamylase [date of access: 05.06.2021].; OMIM. Citrullinemia, classic. URL: https://www.omim.org/entry/215700?search=ASS1%20deficiency&highlight=ass1%20 deficiency [date of access: 5.06.2021].; OMIM. Argininosuccinic aciduria. URL: https://www.omim.org/entry/207900?search=Argininosuccinate%20Lyase%20Deficiency&highlight=argininosuccinate%20deficiency%20lyase [date of access: 05.06.2021].; OMIM. Argininemia. URL: https://www.omim.org/ entry/207800?search=Arginase%20Deficiency&highlight=arginase%20deficiency [date of access: 5.06.2021].; OMIM. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome; HHHS. URL: https://www.omim.org/entry/238970?search=Hyperornithinemia&highlight=hyperornithinemia [date of access: 05.06.2021].; OMIM. Citrullinemia, type II, neonatal-onset. URL: https://www.omim.org/entry/605814?search=Citrin%20Deficiency&highlight=citrin%20deficiency [date of access: 5.06.2021].; Mew NA, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK1217/ [date of access: 05.06.2021].; Foschi FG, Morelli MC, Savini S, Dall’Aglio AC, Lanzi A, Cescon M, et al. Urea cycle disorders: A case report of a successful treatment with liver transplant and a literature review. World J Gastroenterol. 2015; 21(13): 4063-4068. doi:10.3748/wjg.v21.i13.4063; Lichter-Konecki U, Caldovic L, Morizono H, Simpson K. Ornithine transcarbamylase deficiency. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/NBK/nbk154378 [date of access: 05.06.2021].; Camacho J, Rioseco-Camacho N. Hyperornithinemiahyperammonemia-homocitrullinuria syndrome. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https:// europepmc.org/article/nbk/nbk97260 [date of access: 05.06.2021].; Nagamani S, Erez A, Lee B. Argininosuccinate lyase deficiency. Genet Med. 2012; 14(5): 501-507. doi:10.1038/gim.2011.1; Zhou X, Cui Y, Han J. Methylmalonic acidemia: Current status and research priorities. Intractable Rare Dis Res. 2018; 7(2): 73-78. doi:10.5582/irdr.2018.01026; Баранов А.А., Намазова-Баранова Л.С., Боровик Т.Е., Бушуева Т.В., Вишнёва Е.А., Глоба О.В., и др. Метилмалоновая ацидурия у детей: клинические рекомендации. Педиатрическая фармакология. 2017; 14(4): 258-271. doi:10.15690/pf.v14i4.1757; Frasera JL, Venditti CP. Methylmalonic and propionic acidemias: Clinical management update. Curr Opin Pediatr. 2016; 28(6): 682-693. doi:10.1097/MOP.0000000000000422; Shchelochkov OA, Carrillo N, Venditti C. Propionic acidemia. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/nbk/nbk92946 [date of access: 05.06.2021].; Ibarra-González I, Fernández-Lainez C, Guillén-López S, López-Mejía L, Belmont-Matínez L, Sokolsky TD, et al. Molecular analysis using targeted next generation DNA sequencing and clinical spectrum of Mexican patients with isovaleric acidemia. Clin Chim Acta. 2020; 501: 216-221. doi:10.1016/j.cca.2019.10.041; Schlune A, Riederer A, Mayatepek E, Ensenauer R. Aspects of newborn screening in isovaleric acidemia. IntJ Neonatal Screen. 2018; 4(1): 7. doi:10.3390/ijns4010007; Larson A, Goodman S. Glutaric acidemia type 1. In: GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993. URL: https://europepmc.org/article/NBK/nbk546575 [date of access: 05.06.2021].; Canda E, Kalkan S, Coker M. Biotinidase deficiency: Prevalence, impact and management strategies. Pediatr Heal Med Ther. 2020; 11: 127-133. doi:10.2147/PHMT.S198656 42. OMIM. Carnitine palmitoyltransferase I, liver; CPT1A. URL: https://www.omim.org/entry/600528?search=cpt1a&highlight=cpt1a [date of access: 5.06.2021].; Hui-ming Y, Hao H, Aisha A, Bing-bing F, Jing L, Zhengjun J, et al. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation: Two case reports and brief literature review. Medicine (Baltimore). 2017; 96(45): e8549. doi:10.1097/MD.0000000000008549; OMIM. Carnitine palmitoyltransferase II; CPT2. URL: https://www.omim.org/entry/600650?search=CPT2&highlight=cpt2 [date of access: 05.06.2021].; OMIM. Carnitine deficienc y, systemic primar y; CDSP. URL: https://www.omim.org/entry/212140?search=Systemic%20primary%20%20carnitine%20deficiency&highlight=carnitine%20deficiency%20primary%20systemic [date of access: 05.06.2021].; OMIM. Acyl-CoA dehydrogenase, very long-chain; ACADVL. URL: https://www.omim.org/entry/609575?search=ACADVL&highlight=acadvl [date of access: 05.06.2021].; OMIM. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. URL: https://www.omim.org/entry/609016?search=longchain%203hydroxy%20acylCoA%20dehydrogenase%20deficiency&highlight=%22acyl%7Ccoa%22%20%22long%20chain%22%20%283hydroxy%7Chydroxy%29%20%28acylcoa%7C%20%29%20deficiency%20dehydrogenase%20longchain [date of access: 05.06.2021].; OMIM. Mitochondrial trifunctional protein deficiency; MTPD. URL: http://www.omim.org/entry/609015?search=Trifunctional%20protein%20deficiency&highlight=%28protein%7Cproteinaceous%29%20deficiency%20trifunctional [date of access: 05.06.2021].; OMIM. Acyl-CoA dehydrogenase, medium-chain, deficiency of; ACADMD. URL: https://www.omim.org/entry/201450?search=mediumchain%20acylCoA%20dehydrogenase%20deficiency&highlight=%22acyl%7Ccoa%22%20%22medium%20chain%22%20%28acylcoa%7C%20%29%20deficiency%20dehydrogenase%20mediumchain [date of access: 5.06.2021].; OMIM. Acyl-CoA dehydrogenase, short-chain, deficiency of; ACADSD. URL: https://www.omim.org/entry/201470?search=shortchain%20acylCoA%20dehydrogenase%20deficiency&highlight=%22acyl%7Ccoa%22%20%22short%20chain%22%20%28acylcoa%7C%20%29%20deficiency%20dehydrogenase%20 shortchain [date of access: 05.06.2021].; OMIM. Multiple acyl-CoA dehydrogenase deficiency; MADD. URL: https://www.omim.org/entry/231680?search=Multiple%20acylCoA%20dehydrogenase%20%20deficiency&highlight=%22acyl%7Ccoa%22%20%28acylcoa%7C%20%28multiple%7Cmultiplicity%29%20%29%20deficiency%20dehydrogenase [date of access: 05.06.2021].; Merritt JL, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018; 6(24): 473. doi:10.21037/atm.2018.10.57; Vishwanath VA. Fatty acid beta-oxidation disorders: A brief review. Ann Neurosci. 2016; 23(1): 51-55. doi:10.1159/000443556; Knottnerus S, Bleeker J, Wüst R, Ferdinandusse S, IJlst L, Wijburg FA, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018; 19(1): 93-106. doi:10.1007/s11154-018-9448-1; https://www.actabiomedica.ru/jour/article/view/3041