-
1Academic Journal
Συγγραφείς: K. V. Danilko, K. I. Enikeeva, I. R. Kabirov, S. Y. Maksimova, D. S. Vishnyakov, J. G. Kzhyshkowska, V. N. Pavlov, К. В. Данилко, К. И. Еникеева, И. Р. Кабиров, С. Ю. Максимова, Д. С. Вишняков, Ю. Г. Кжышковска, В. Н. Павлов
Συνεισφορές: The study was funded by the state grant of the Ministry of Science and Higher Education of the Russian Federation “Genetic and epigenetic editing of tumor cells and the microenvironment to block metastasis” No. 075-15-2021-1073 (experiments) and BSMU Strategic Academic Leadership Program PRIORITY-2030 (clinical data analysis)., Исследование выполнено за счет гранта Министерства науки и высшего образования Российской Федерации «Генетическое и эпигенетическое редактирование опухолевых клеток и микроокружения с целью блокирования метастазирования» № 075-15-2021-1073 (эксперименты) и программы «Приоритет 2030» (клинические данные).
Πηγή: Siberian journal of oncology; Том 21, № 6 (2022); 81-90 ; Сибирский онкологический журнал; Том 21, № 6 (2022); 81-90 ; 2312-3168 ; 1814-4861
Θεματικοί όροι: опухолевая прогрессия, tumor-associated macrophages, giant macrophages, tumor progression, опухоль-ассоциированные макрофаги, гигантские макрофаги
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2377/1056; Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65(2): 87–108. doi:10.3322/caac.21262.; Global Burden of Disease Cancer Collaboration, Fitzmaurice C., Abate D., Abbasi N., Abbastabar H., Abd-Allah F., Abdel-Rahman O., Abdelalim A., Abdoli A., Abdollahpour I., Abdulle A.S.M., Abebe N.D., Abraha H.N., Abu-Raddad L.J., at al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019; 5(12): 1749–68. doi:10.1001/jamaoncol.2019.2996. Erratum in: JAMA Oncol. 2020; 6(3): 444. Erratum in: JAMA Oncol. 2020; 6(5): 789. Erratum in: JAMA Oncol. 2021; 7(3): 466.; Steele C.B., Li J., Huang B., Weir H.K. Prostate cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer. 2017; 123 (Suppl 24): 5160–77. doi:10.1002/cncr.31026.; Sfanos K.S., Yegnasubramanian S., Nelson W.G., De Marzo A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018; 15(1): 11–24. doi:10.1038/nrurol.2017.167.; Patysheva M., Larionova I., Stakheyeva M., Grigoryeva E., Iamshchikov P., Tarabanovskaya N., Weiss C., Kardashova J., Frolova A., Rakina M., Prostakishina E., Zhuikova L., Cherdyntseva N., Kzhyshkowska J. Efect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol. 2022; 11. doi:10.3389/fonc.2021.800235.; Patysheva M., Frolova A., Larionova I., Afanas’ev S., Tarasova A., Cherdyntseva N., Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol. 2022; 13. doi:10.3389/fmmu.2022.994319.; Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.566511.; Kzhyshkowska J., Neyen C., Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012; 217(5): 492–502. doi:10.1016/j.imbio.2012.02.015.; Krawczyk K.M., Nilsson H., Allaoui R., Lindgren D., Arvidsson M., Leandersson K., Johansson M.E. Papillary renal cell carcinoma-derived chemerin, IL-8, and CXCL16 promote monocyte recruitment and diferentiation into foam-cell macrophages. Lab Invest. 2017; 97(11): 1296–305. doi:10.1038/labinvest.2017.78.; Corn K.C., Windham M.A., Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 2020; 80. doi:10.1016/j.plipres.2020.101055.; Wu H., Han Y., Rodriguez Sillke Y., Deng H., Siddiqui S., Treese C., Schmidt F., Friedrich M., Keye J., Wan J., Qin Y., Kühl A.A., Qin Z., Siegmund B., Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019; 11(11). doi:10.15252/emmm.201910698.; Zhang Y., Sun Y., Rao E., Yan F., Li Q., Zhang Y., Silverstein K.A., Liu S., Sauter E., Cleary M.P., Li B. Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-β responses in tumor-associated macrophages. Cancer Res. 2014; 74(11): 2986–98. doi:10.1158/0008-5472.CAN-13-2689.; Zhang Q., Wang H., Mao C., Sun M., Dominah G., Chen L., Zhuang Z. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol. 2018; 94: 27–35. doi:10.1016/j.molimm.2017.12.011.; Chiba S., Hisamatsu T., Suzuki H., Mori K., Kitazume M.T., Shimamura K., Mizuno S., Nakamoto N., Matsuoka K., Naganuma M., Kanai T. Glycolysis regulates LPS-induced cytokine production in M2 polarized human macrophages. Immunol Lett. 2017; 183: 17–23. doi:10.1016/j.imlet.2017.01.012.; Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008; 13: 453–61. doi:10.2741/2692.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016; 397(3): 231–47. doi:10.1515/hsz-2015-0269.; Larionova I.V., Sevastyanova T.N., Rakina A.A., Cherdyntseva N.V., Kzhyshkowska J.G. Chitinase-like proteins as promising markers in cancer patients. Siberian Journal of Oncology. 2018; 17(4): 99–105. doi:10.21294/1814-4861-2018-17-4-99-105.; Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel). 2021; 13(13): 3253. doi:10.3390/cancers13133253.; Larionova I., Kazakova E., Patysheva M., Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel). 2020; 12(6): 1411. doi:10.3390/ cancers12061411.; Dirat B., Bochet L., Dabek M., Daviaud D., Dauvillier S., Majed B., Wang Y.Y., Meulle A., Salles B., Le Gonidec S., Garrido I., Escourrou G., Valet P., Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011; 71(7): 2455–65. doi:10.1158/0008-5472.CAN-10-3323.; Rakina M.A., Kazakova E.O., Sudaskikh T.S., Bezgodova N.V., Villert A.B., Kolomiets L.A., Larionova I.V. Giant foam-like macrophages in advanced ovarian cancer. Siberian Journal of Oncology. 2022; 21(2): 45–54. doi:10.21294/1814-4861-2022-21-2-45-54.; Kratz M., Coats B.R., Hisert K.B., Hagman D., Mutskov V., Peris E., Schoenfelt K.Q., Kuzma J.N., Larson I., Billing P.S., Landerholm R.W., Crouthamel M., Gozal D., Hwang S., Singh P.K., Becker L. Metabolic dysfunction drives a mechanistically distinct proinfammatory phenotype in adipose tissue macrophages. Cell Metab. 2014; 20(4): 614–25. doi:10.1016/j.cmet.2014.08.010.; Tiwari P., Blank A., Cui C., Schoenfelt K.Q., Zhou G., Xu Y., Khramtsova G., Olopade F., Shah A.M., Khan S.A., Rosner M.R., Becker L. Metabolically activated adipose tissue macrophages link obesity to triplenegative breast cancer. J Exp Med. 2019; 216(6): 1345–58. doi:10.1084/jem.20181616.; Boibessot C., Molina O., Lachance G., Tav C., Champagne A., Neveu B., Pelletier J.F., Pouliot F., Fradet V., Bilodeau S., Fradet Y., Bergeron A., Toren P. Subversion of infltrating prostate macrophages to a mixed immunosuppressive tumor-associated macrophage phenotype. Clin Transl Med. 2022; 12(1). doi:10.1002/ctm2.581.; Siefert J.C., Cioni B., Muraro M.J., Alshalalfa M., Vivié J., van der Poel H.G., Schoots I.G., Bekers E., Feng F.Y., Wessels L.F.A., Zwart W., Bergman A.M. The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by Single-Cell Transcriptomics. Mol Cancer Res. 2021; 19(10): 1778–91. doi:10.1158/1541-7786.MCR-20-0740.; Su P., Wang Q., Bi E., Ma X., Liu L., Yang M., Qian J., Yi Q. Enhanced Lipid Accumulation and Metabolism Are Required for the Diferentiation and Activation of Tumor-Associated Macrophages. Cancer Res. 2020; 80(7): 1438–50. doi:10.1158/0008-5472.CAN-19-2994. Erratum in: Cancer Res. 2022; 82(5): 945.; Lissbrant I.F., Stattin P., Wikstrom P., Damber J.E., Egevad L., Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000; 17(3): 445–51. doi:10.3892/ijo.17.3.445.; Erlandsson A., Carlsson J., Lundholm M., Fält A., Andersson S.O., Andrén O., Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate. 2019; 79(4): 363–9. doi:10.1002/pros.23742.; Yuri P., Shigemura K., Kitagawa K., Hadibrata E., Risan M., Zulfqqar A., Soeroharjo I., Hendri A.Z., Danarto R., Ishii A., Yamasaki S., Yan Y., Heriyanto D.S., Fujisawa M. Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients’ survival and responses to androgen deprivation therapies in Indonesian patients cohort. Prostate Int. 2020; 8(2): 62–9. doi:10.1016/j.prnil.2019.12.001.; Shimura S., Yang G., Ebara S., Wheeler T.M., Frolov A., Thompson T.C. Reduced infltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res. 2000; 60(20): 5857–61.; https://www.siboncoj.ru/jour/article/view/2377
-
2Academic Journal
Συγγραφείς: A. Stukan I., A. Goryainova Yu., A. Meshcheryakov A., V. Porkhanov A., R. Murashko A., S. Sharov V., V. Bodnya N., А. Стукань И., А. Горяинова Ю., А. Мещеряков А., В. Порханов А., Р. Мурашко А., С. Шаров В., В. Бодня Н.
Πηγή: Bulletin of Siberian Medicine; Том 21, № 1 (2022); 171-182 ; Бюллетень сибирской медицины; Том 21, № 1 (2022); 171-182 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-1
Θεματικοί όροι: estrogen receptor expression, tumor microenvironment, review, tumor-associated fibroblasts, T-lymphocytes, tumor-associated macrophages, экспрессия рецептора эстрогена, микроокружение опухоли, опухоль-ассоциированные фибробласты, Т-лимфоциты, опухоль-ассоциированные макрофаги
Περιγραφή αρχείου: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/4713/3169; https://bulletin.tomsk.ru/jour/article/view/4713/3192; Diaz Bessone M.I., Gattas M.J., Laporte T., Tanaka M., Simian M. The tumor microenvironment as a regulator of endocrine resistance in breast cancer. Frontiers in Endocrinology. 2019;10:547. DOI:10.3389/fendo.2019.00547.; Jeselsohn R., De Angelis C., Brown M., Schiff R. The evolving role of the estrogen receptor mutations in endocrine therapy-resistant breast cancer. Current Oncology Reports. 2017;19(5):35. DOI:10.1007/s11912-017-0591-8.; Hui L., Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Letters. 2015;368(1):7–13. DOI:10.1016/j.canlet.2015.07.039.; Wu T., Dai Y. Tumor microenvironment and therapeutic response. Cancer Letters. 2017;387:61–68. DOI:10.1016/j.canlet.2016.01.043.; Maman S., Witz I.P. A history of exploring cancer in context. Nature Reviews Cancer. 2018;18(6):359–376. DOI:10.1038/s41568-018-0006-7.; Kim J. Pericytes in breast cancer. Advances in Experimental Medicine and Biology. 2019;1147:93–107. DOI:10.1007/978-3-030-16908-4_3.; Pequeux C., Raymond-Letron I., Blacher S., Boudou F., Adlanmerini M., Fouque M.J. et al. Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. Cancer Research. 2012;72(12):3010–3019. DOI:10.1158/0008-5472.can-11-3768.; Knower K.C., Chand A.L., Eriksson N., Takagi K., Miki Y., Sasano H. et al. Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Research and Treatment. 2013;142(1):211–223. DOI:10.1007/s10549-013-2716-6.; Pontiggia O., Sampayo R., Raffo D., Motter A., Xu R., Bissell M.J. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Research and Treatment. 2012;133(2):459–471. DOI:10.1007/s10549-011-1766-x.; Chand A.L., Herridge K.A., Howard T.L., Simpson E.R., Clyne C.D. Tissue-specific regulation of aromatase promoter ii by the orphan nuclear receptor lrh-1 in breast adipose stromal fibroblasts. Steroids. 2011;76(8):741–744. DOI:10.1016/j.steroids.2011.02.024.; Brechbuhl H.M., Finlay-Schultz J., Yamamoto T.M., Gillen A.E., Cittelly D.M., Tan A.C. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clinical Cancer Research. 2017;23(7):1710–1721. DOI:10.1158/1078-0432.CCR-15-2851.; Morgan M.M., Livingston M.K., Warrick J.W., Stanek E.M., Alarid E.T., Beebe D.J. et al. Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model. Scientific Reports. 2018;8(1):7139. DOI:10.1038/s41598-018-25461-1.; Huang J., Woods P., Normolle D., Goff J.P., Benos P.V., Stehle C.J. et al. Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals. Breast Cancer Research and Treatment. 2017;161(2):229–243. DOI:10.1007/s10549-016-4052-0.; Sflomos G., Dormoy V., Metsalu T., Jeitziner R., Battista L., Scabia V. A preclinical model for eralpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–422. DOI:10.1016/j.ccell.2016.02.002.; Roswall P., Bocci M., Bartoschek M., Li H., Kristiansen G., Jansson S. et al. Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nature Medicine. 2018;24(4):463–473. DOI:10.1038/nm.4494.; Jansson S., Aaltonen K., Bendahl P.O., Falck A.K., Karlsson M., Pietras K. et al. The PDGF pathway in breast cancer is linked to tumour aggressiveness, triple-negative subtype and early recurrence. Breast Cancer Research and Treatment. 2018;169(2):231–241. DOI:10.1007/s10549-018-4664-7.; Umansky V., Blattner C., Gebhardt C., Utikal J. The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines. 2016;4(4):36. DOI:10.3390/vaccines4040036.; Svoronos N., Perales-Puchalt A., Allegrezza M.J., Rutkowski M.R., Payne K.K., Tesone A.J. et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discovery. 2017;7(1):72–85. DOI:10.1158/2159-8290.cd-16-050.2; Kaushik S., Pickup M.W., Weaver V.M. From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer and Metastasis Reviews. 2016;35(4):655–667. DOI:10.1007/s10555-016-9650-0 .; Acerbi I., Cassereau L., Dean I., Shi Q., Au A., Park C. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integrative Biology. 2015;7(10):1120–1134. DOI:10.1039/c5ib00040h.; Jansen M.P., Foekens J.A., van Staveren I.L., DirkzwagerKiel M.M., Ritstier K., Look M.P. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. Joyrnal of Clinical Oncology. 2005;23(4):732–740. DOI:10.1200/JCO.2005.05.145.; Helleman J., Jansen M.P., Ruigrok-Ritstier K., van Staveren I.L., Look M.P., Meijervan Gelder M.E. Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clinical Cancer Research. 2008;14(17):5555–5564. DOI:10.1158/1078-0432.CCR-08-0555.; Sampayo R.G., Toscani A.M., Rubashkin M.G., Thi K., Masullo L.A., Violi I.L. et al. Fibronectin rescues estrogen receptor alpha from lysosomal degradation in breast cancer cells. Journal of Cell Biology. 2018;217(8):2777–2798. DOI:10.1083/jcb.201703037.; Studebaker A.W., Storci G., Werbeck J.L., Sansone P., Sasser A.K., Tavolari S. et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Research. 2008;68(21):9087–9095. DOI:10.1158/0008-5472.can-08-0400.; Rothenberger N.J., Somasundaram A., Stabile L.P. The role of the estrogen pathway in the tumor microenvironment. International Journal of Molecular Sciences. 2018;19(2):611. DOI:10.3390/ijms19020611.; Zhou X.L., Fan W., Yang G., Yu M.X. The clinical significance of PR, ER, NF-kappa b, and TNF-alpha in breast cancer. Disease Markers. 2014;2014:1–7. DOI:10.1155/2014/494581.; Stabile L.P., Farooqui M., Kanterewicz B., Abberbock S., Kurland B.F., Diergaarde B., Siegfried M. Preclinical evidence for combined use of aromatase inhibitors and NSAIDs as preventive agents of tobacco-induced lung cancer. Journal of Thoracic Oncology. 2018;13(3):399–412. DOI:10.1016/j.jtho.2017.11.126.; Bure L.A., Azoulay L., Benjamin A., Abenhaim H.A. Pregnancy-associated breast cancer: a review for the obstetrical care provider. Journal of Obstetrics and Gynaecology Canada. 2011;33(4):330–337. DOI:10.1016/S1701-2163(16)34850-2.; Sestak I., Distler W., Forbes J.F., Dowsett M., Howell A., Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. Journal of Clinical Oncoogy. 2010;28(21):3411–3415. DOI:10.1200/JCO.2009.27.2021.; Xuan Q.J., Wang J.X., Nanding A., Wang Z.P., Liu H., Lian X. Tumor-associated macrophages are correlated with tamoxifen resistance in the postmenopausal breast cancer patients. Pathology & Oncology Research. 2014;20(3):619–624. DOI:10.1007/s12253-013-9740-z.; Zhang B., Cao M., He Y., Liu Y., Zhang G., Yang C. Incre ased circulating M2-like monocytes in patients with breast cancer. Tumour Biology. 2017;39(6):1010428317711571. DOI:10.1177/1010428317711571.; Miyasato Y., Shiota T., Ohnishi K., Pan C., Yano H., Horlad H. et al. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Science. 2017;108(8):1693–1700. DOI:10.1111/cas.13287.; Ciucci A., Zannoni G.F., Buttarelli M., Lisi L., Travaglia D., Martinelli E., Scambia G.et al. Multiple direct and indirect mechanisms drive estrogen-induced tumor growth in high grade serous ovarian cancers. Oncotarget. 2016;7(7):8155-8171. DOI:10.18632/oncotarget.6943.; Gwak J.M., Jang M.H., Kim D.I., Seo A.N., Park S.Y. Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS One. 2015;10(4):e0125728. DOI:10.1371/journal.pone.0125728.; Svensson S., Abrahamsson A., Rodriguez G.V., Olsson A.K., Jensen L., Cao Y. et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clinical Cancer Research. 2015;21(16):3794–3805. DOI:10.1158/1078-0432.ccr-15-0204.; Okizaki S., Ito Y., Hosono K., Oba K., Ohkubo H., Kojo K. et al. Vascular endothelial growth factor receptor type 1 signaling prevents delayed wound healing in diabetes by attenuating the production of IL-1β by recruited macrophages. The American Journal of Pathology. 2016;186(6):1481–1498. DOI:10.1016/j.ajpath.2016.02.014.; Majima M. Vascular endothelial growth factor receptor type 1 signaling prevents delayed wound healing in diabetes by attenuating the production of il-1 beta by recruited macrophages. The American Journal of Pathology. 2016;186(6):1481–1498. DOI:10.1016/j.ajpath.2016.02.014.; Ning C., Xie B., Zhang L., Li C., Shan W., Yang B. et al. Infiltrating macrophages induce ERalpha expression through an IL17a-mediated epigenetic mechanism to sensitize endometrial cancer cells to estrogen. Cancer Research. 2016;76(6):1354–1366. DOI:10.1158/0008-5472.can-15-1260.; Sun L., Chen B., Jiang R., Li J., Wang B. Resveratrol inhibits lung cancer growth by suppressing m2-like polarization of tumor associated macrophages. Cellular Immunology. 2017;311:86–93. DOI:10.1016/j.cellimm.2016.11.002.; Segovia-Mendoza M., Morales-Montor J. immune tumor microenvironment in breast cancer and the participation of estrogen and its receptors in cancer physiopathology. Frontiers in Immunology. 2019;10:348. DOI:10.3389/fimmu.2019.00348.; Dannenfelser R., Nome M., Tahiri A., Ursini-Siegel J., Vollan H.K., Haakensen V.D. et al. Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, cancer activity, and genomic complexity. Oncotarget. 2017;8(34):57121–57133. DOI:10.18632/oncotarget.19078.; Jiang X., Orr B.A., Kranz D.M., Shapiro D.J. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology. 2006;147(3):1419–1426. DOI:10.1210/en.2005-0996.; Jiang X., Ellison S.J., Alarid E.T., Shapiro D.J. Interplay between the levels of estrogen and estrogen receptor controls the level of the granzyme inhibitor, proteinase inhibitor 9 and susceptibility to immune surveillance by natural killer cells. Oncogene. 2007;26(28):4106–4114. DOI:10.1038/sj.onc.1210197.; Ali H.R., Provenzano E., Dawson S.J., Blows F.M., Liu B., Shah M. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Annals of Oncology. 2014;25(8):1536–1543. DOI:10.1093/annonc/mdu191.; Rugo H.S., Delord J.P., Im S.A., Ott P.A., Piha-Paul S.A., Bedard P.L. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2- negative advanced breast cancer. Clinical Cancer Research. 2018;24(12):2804–2811. DOI:10.1158/1078-0432.CCR-17-3452.; Nanda R., Chow L.Q., Dees E.C., Berger R., Gupta S., Geva R. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. Journal of Clinical Oncology. 2016;34(21):2460–2467. DOI:10.1200/JCO.2015.64.8931.; Tanaka A., Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Research. 2017;27(1):109–118. DOI:10.1038/cr.2016.151.; Chaudhary B., Elkord E. Regulatory t cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Vaccines. 2016;4(3):28. DOI:10.3390/vaccines4030028.; Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: A systematic review and meta-analysis. Science Reports. 2015;5:15179. DOI:10.1038/srep15179.; Yang L., Huang F., Mei J., Wang X., Zhang Q., Wang H. et al. Posttranscriptional control of PD-L1 expression by 17 beta-estradiol via pi3k/akt signaling pathway in er alpha-positive cancer cell lines. International Journal of Gynecologic Cancer. 2017;27(2):196–205. DOI:10.1097/igc.0000000000000875.; Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death & Disease. 2015;6(6):e1792–1792. DOI:10.1038/cddis.2015.162.; Patel S.P., Kurzrock R. Pd-L1 expression as a predictive biomarker in cancer immunotherapy. Molecular Cancer Therapeutics. 2015;1(4):847–856. DOI:10.1158/1535-7163.mct14-0983.; Green A.R., Aleskandarany M.A., Ali R., Hodgson E.G., Atabani S., De Souza K. et al. Clinical impact of tumor DNA repair expression and T-cell infiltration in breast cancers. Cancer Immunology Research. 2017;5(4):292–299. DOI:10.1158/2326-6066.cir-16-0195.; McGranahan N., Rosenthal R., Hiley C.T., Rowan A.J., Watkins T.B.K., Wilson G.A. et al. Abstract LB-A03: Allele specific HLA loss and immune escape in lung cancer evolution. Molecular Cancer Therapeutics. 2018;17(Suppl.1):Abstract nr LB-A03. DOI:10.1158/1535-7163.TARG-17-LB-A03.; Marty R., Kaabinejadian S., Rossell D., Slifker M.J., van de Haar J., Engin H.B. et al. MНС-I genotype restricts the oncogenic mutational landscape. Cell. 2017;171(6):1272–1283. DOI:10.1016/j.cell.2017.09.050.; Dirix L.Y., Takacs I., Jerusalem G., Nikolinakos P., Arkenau H.T, Forero-Torres A. et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Research and Treatment. 2018;167(3):671–686. DOI:10.1007/s10549-017-4537-5.; Egelston C.A., Avalos C., Tu T.Y., Simons D.L., Jimenez G., Jung J.Y. Human breast tumor-infiltrating CD8(+) T cells retain polyfunctionality despite PD-1 expression. Nature Communications. 2018;9(1):4297. DOI:10.1038/s41467-018-06653-9.; Liu L., Shen Y., Zhu X., Lv R., Li S., Zhang Z. et al. ERa is a negative regulator of PD-L1 gene transcription in breast cancer. Biochemical and Biophysical Research Communications. 2018;505(1):157–161. DOI:10.1016/j.bbrc.2018.09.005.; Hamilton D.H., Griner L.M., Keller J.M., Hu X., Southall N., Marugan J. et al. Targeting estrogen receptor signaling with fulvestrant enhances immune and chemotherapy-mediated cytotoxicity of human lung cancer. Clinical Cancer Research. 2016;22(24):6204–6216. DOI:10.1158/1078-0432.ccr-15-3059.; Welte T., Zhang X.H., Rosen J.M. Repurposing antiestrogens for tumor immunotherapy. Cancer Discovery. 2017;7(1):17–19. DOI:10.1158/2159-8290.cd-16-1308.; https://bulletin.tomsk.ru/jour/article/view/4713
-
3Academic Journal
Συγγραφείς: Vladimir Riabov, Nadezhda V. Cherdyntseva, M. V. Zavyalova, Julia Kzhyshkowska, Irina Mitrofanova
Πηγή: Immunobiology. 2018. Vol. 223, № 6/7. P. 449-459
Θεματικοί όροι: лимфангиогенез, Adult, 0301 basic medicine, Cell Adhesion Molecules, Neuronal, опухоль-ассоциированные макрофаги, Receptors, Lymphocyte Homing, Vesicular Transport Proteins, Antigens, Differentiation, Myelomonocytic, Breast Neoplasms, 03 medical and health sciences, 0302 clinical medicine, Antigens, CD, Humans, рак молочной железы, неоадъювантная химиотерапия, Aged, Neovascularization, Pathologic, Macrophages, Middle Aged, Neoadjuvant Therapy, 3. Good health, Carcinoma, Ductal, Platelet Endothelial Cell Adhesion Molecule-1, Microvessels, 8. Economic growth, Female
Συνδεδεμένο Πλήρες ΚείμενοΣύνδεσμος πρόσβασης: https://pubmed.ncbi.nlm.nih.gov/29459011
https://www.sciencedirect.com/science/article/pii/S0171298517302000
http://europepmc.org/abstract/MED/29459011
https://www.ncbi.nlm.nih.gov/pubmed/29459011
https://pubmed.ncbi.nlm.nih.gov/29459011/
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000652073 -
4Academic Journal
Συγγραφείς: L. E. Panin, Zh. I. Belonogova, R. A. Knyazev, I. O. Cheshenko, Л. Е. Панин, Ж. И. Белоногова, Р. А. Князев, И. О. Чешенко
Πηγή: Siberian journal of oncology; № 3 (2013); 43-46 ; Сибирский онкологический журнал; № 3 (2013); 43-46 ; 2312-3168 ; 1814-4861 ; undefined
Θεματικοί όροι: биосинтез нуклеиновых кислот, lipoproteins, cortisol, tumor-associated macrophages, biosynthesis of nucleic acid, липопротеины, кортизол, опухоль-ассоциированные макрофаги
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/129/131; Заварзин В.А., Зайнагетдинов Р.З., Какурина Г.В. и др. Роль сфингомиелина и церамида в регуляции процессов пролиферации и апоптоза клеток гепатоцеллюлярной карциномы // Сибирский онкологический журнал. 2006. № 3 (20). С. 41–45.; Климов А.Н., Никульчева Н.Г. Обмен липидов и липопротеидов и его нарушения. СПб.: Питер Ком, 1999. 512 с.; Панин Л.Е., Хощенко О.М., Поляков Л.М. Влияние стероидных гормонов в комплексе с аполипопротеином А-I на биосинтез ДНК ибелка в клетках асцитной гепатомы НА-1 // Вопросы онкологии. 2007.Т. 53, № 5. С. 562–565; Суханова Г.А., Акбашева О.Е. Апоптоз. Томск: Изд. ТПУ, 2006. 171 с.; Kader A., Pater A. Loading anticancer drugs into HDL as well as LDL has little effect on properties of complexes and enhances cytotoxicity to human carcinoma cells // J. Control Release. 2002. Vol. 80 (1–3). P. 29–44.; Lindholm A., Henricsson S., Gang P. The free fraction of cyclosporine in plasma: clinical findings with a new method // Transplant Proc. 1988. Vol. 20. P. 377–381.; Lou B., Liao X.L., Wu M.P. et al. High-density lipoprotein as a potential for delivery of a lipophilic antitumoral drug into hepatoma cells // World J. Gastroenterol. 2005. Vol. 11 (7). P. 954–959.; Lowry O.H., Rosebrough N.J., Farr A.L. et al. Protein measurement with the Folin phenol reagent // J. Biol. Chem. 1951. Vol. 193. P. 265–275.; Maniatis T., Fritsch E., Sambrook J. The methods of genetic engineering. Molecular cloning. Moscow: Mir, 1984. 480 p.; Masquelier M., Vitols S., Pålsson M. et al. Low density lipoprotein as a carrier of cytostatics in cancer chemotherapy: study of stability of drug-carrier complexes in blood // J. Drug Target. 2000. Vol. 8 (3). P. 155–164.; Panin L.E., Kunitsyn V.G., Polyakov L.M. Structural changes in blood plasma lipoproteins in the physiological temperature range and their interaction with steroid hormones // Protein Structure / Ed. L.M. Haggerty. USA: Nova Science Publ., Inc. 2011. P. 123–153.; Sharma A., Lawrence S.J. Lipoprotein – cyclodextrin interaction // Clin. Chim. Acta. 1991. Vol. 199. P. 129–138.; Yatscoff R.W., Honcharik N., Lukowski M. et al. Distribution of cyclosporin G (NVa2 cyclosporin) in blood and plasma // J. Clin Chem. 1993. Vol. 39 (2). P. 213–217.; Winnerer R.C., Juthries S.C., Clark J.H. Characterization of a triphenylethylene-antiestrogen binding site on rat serum low density lipoprotein // Endocrinology. 1983. Vol. 112. P. 1823–1827.; https://www.siboncoj.ru/jour/article/view/129; undefined
Διαθεσιμότητα: https://www.siboncoj.ru/jour/article/view/129
-
5Academic Journal
Πηγή: Сибирский онкологический журнал.
Θεματικοί όροι: ОПУХОЛЕВЫЕ КЛЕТКИ, ЛИПОПРОТЕИНЫ, КОРТИЗОЛ, ОПУХОЛЬ-АССОЦИИРОВАННЫЕ МАКРОФАГИ, БИОСИНТЕЗ НУКЛЕИНОВЫХ КИСЛОТ
Περιγραφή αρχείου: text/html
-
6
Συγγραφείς: Кузьмина Дарья Олеговна, Kuzmina Dara Olegovna
Συνεισφορές: Силаева Юлия Юрьевна, Silaeva Ulia Urevna, Сабанеева Елена Валентиновна, Sabaneeva Elena Valentinovna
Θεματικοί όροι: опухоль-ассоциированные макрофаги, фенотип, облучение, mTORC1, HLA-DR, tumor-associated macrophages, phenotype, irradiation
Relation: 062422; http://hdl.handle.net/11701/32427
Διαθεσιμότητα: http://hdl.handle.net/11701/32427
-
7
Συγγραφείς: Larionova, Irina V., Kiselev, Artem M., Denisov, Evgeny V., Cherdyntseva, Nadezhda V., Kzhyshkowska, Julia G., Tengfei, Liu
Πηγή: The 22nd International Charles Heidelberger symposium on cancer research : proceedings of the International symposium, 17-19 September 2018. Tomsk, 2018. P. 62-63
Θεματικοί όροι: опухоль-ассоциированные макрофаги, химиотерапия, цисплатин, онкологические заболевания, секвенирование следующего поколения
Περιγραφή αρχείου: application/pdf
Relation: The 22nd International Charles Heidelberger symposium on cancer research : proceedings of the International symposium, 17-19 September 2018; vtls:000662055; https://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000662055