Εμφανίζονται 1 - 20 Αποτελέσματα από 35 για την αναζήτηση '"опухолеассоциированные макрофаги"', χρόνος αναζήτησης: 0,86δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: Front Immunol
    Frontiers in Immunology, Vol 13 (2023)
    Frontiers in immunology. 2022. Vol. 13. P. 1080501 (1-18)

    Περιγραφή αρχείου: application/pdf

  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 22-25-00435., Работа выполнена при поддержке гранта РНФ №22-25-00435.

    Πηγή: Siberian journal of oncology; Том 21, № 6 (2022); 68-80 ; Сибирский онкологический журнал; Том 21, № 6 (2022); 68-80 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2376/1055; Goldszmid R.S., Dzutsev A., Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe. 2014; 15(3): 295–305. doi:10.1016/j.chom.2014.02.003.; Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019; 106(2): 309–22. doi:10.1002/JLB.4RI0818-311R.; Saqib U., Sarkar S., Suk K., Mohammad O., Baig M.S., Savai R. Phytochemicals as modulators of M1-M2 macrophages in infammation. Oncotarget. 2018; 9(25): 17937–50. doi:10.18632/oncotarget.24788.; Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.566511.; Ma W.T., Gao F., Gu K., Chen D.K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2019; 10: 1140. doi:10.3389/fmmu.2019.01140.; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116(16): 74–80. doi:10.1182/blood-2010-02-258558.; Kiss M., Caro A.A., Raes G., Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol. 2020; 10: 1399. doi:10.3389/fonc.2020.01399.; Poschke I., Mougiakakos D., Hansson J., Masucci G.V., Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010; 70(11): 4335–45. doi:10.1158/0008-5472.CAN-09-3767.; Hamm A., Prenen H., Van Delm W., Di Matteo M., Wenes M., Delamarre E., Schmidt T., Weitz J., Sarmiento R., Dezi A., Gasparini G., Rothé F., Schmitz R., D’Hoore A., Iserentant H., Hendlisz A., Mazzone M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut. 2016; 65(6): 990–1000. doi:10.1136/gutjnl-2014-308988.; Cormican S., Griffn M.D. Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Front Immunol. 2020; 11: 1070. doi:10.3389/fmmu.2020.01070.; Reuter J.A., Spacek D.V., Snyder M.P. High-throughput sequencing technologies. Mol Cell. 2015; 58(4): 586–97. doi:10.1016/j.molcel.2015.05.004.; Chen S., Chai X., Wu X. Bioinformatical analysis of the key differentially expressed genes and associations with immune cell infltration in development of endometriosis. BMC Genom Data. 2022; 23(1): 20. doi:10.1186/s12863-022-01036-y.; Kzhyshkowska J., Gudima A., Moganti K., Gratchev A., Orekhov A. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfus Med Hemother. 2016; 43(2): 66–77. doi:10.1159/000444943.; Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15–21. doi:10.1093/bioinformatics/bts635.; Hartley S.W., Mullikin J.C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015; 16(1): 224. doi:10.1186/s12859-015-0670-5.; Xie Z., Bailey A., Kuleshov M.V., Clarke D.J.B., Evangelista J.E., Jenkins S.L., Lachmann A., Wojciechowicz M.L., Kropiwnicki E., Jagodnik K.M., Jeon M., Ma’ayan A. Gene Set Knowledge Discovery with Enrichr Curr Protoc. 2021; 1(3): 90. doi:10.1002/cpz1.90.; Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measure ment sets. Nucleic Acids Res. 2021; 49(D1): 605-12. doi:10.1093/nar/gkaa1074. Erratum in: Nucleic Acids Res. 2021; 49(18): 10800.; Zenkova D. K.V., Sablina R., Artyomov M., Sergushichev A. Phantasus: visual and interactive gene expression analysis. 2018. doi:10.18129/B9.bioc.phantasus.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61. doi:10.1016/j.immuni.2014.06.010. Erratum in: Immunity. 2014; 41(5): 866.; Cassetta L., Fragkogianni S., Sims A.H., Swierczak A., Forrester L.M., Zhang H., Soong D.Y.H., Cotechini T., Anur P., Lin E.Y., Fidanza A., LopezYrigoyen M., Millar M.R., Urman A., Ai Z., Spellman P.T., Hwang E.S., Dixon J.M., Wiechmann L., Coussens L.M., Smith H.O., Pollard J.W. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specifc Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019; 35(4): 588–602. doi:10.1016/j.ccell.2019.02.009.; Ramos R.N., Rodriguez C., Hubert M., Ardin M., Treilleux I., Ries C.H., Lavergne E., Chabaud S., Colombe A., Trédan O., Guedes H.G., Laginha F., Richer W., Piaggio E., Barbuto J.A.M., Caux C., MénétrierCaux C., Bendriss-Vermare N. CD163+ tumor-associated macrophage accumulation in breast cancer patients refects both local diferentiation signals and systemic skewing of monocytes. Clin Transl Immunology. 2020; 9(2): 1108. doi:10.1002/cti2.1108.; Patysheva M., Larionova I., Stakheyeva M., Grigoryeva E., Iamshchikov P., Tarabanovskaya N., Weiss C., Kardashova J., Frolova A., Rakina M., Prostakishina E., Zhuikova L., Cherdyntseva N., Kzhyshkowska J. Efect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol. 2022; 11. doi:10.3389/fonc.2021.800235.; Sanford D.E., Belt B.A., Panni R.Z., Mayer A., Deshpande A.D., Carpenter D., Mitchem J.B., Plambeck-Suess S.M., Worley L.A., Goetz B.D., Wang-Gillam A., Eberlein T.J., Denardo D.G., Goedegebuure S.P., Linehan D.C. Infammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res. 2013; 19(13): 3404–15. doi:10.1158/1078-0432.CCR-13-0525.; Pan Y.C., Jia Z.F., Cao D.H., Wu Y.H., Jiang J., Wen S.M., Zhao D., Zhang S.L., Cao X.Y. Preoperative lymphocyte-to-monocyte ratio (LMR) could independently predict overall survival of resectable gastric cancer patients. Medicine (Baltimore). 2018; 97(52). doi:10.1097/MD.0000000000013896.; Lu C., Zhou L., Ouyang J., Yang H. Prognostic value of lymphocyte-to-monocyte ratio in ovarian cancer: A meta-analysis. Medicine (Baltimore). 2019; 98(24). doi:10.1097/MD.0000000000015876.; Hayashi T., Fujita K., Tanigawa G., Kawashima A., Nagahara A., Ujike T., Uemura M., Takao T., Yamaguchi S., Nonomura N. Serum monocyte fraction of white blood cells is increased in patients with high Gleason score prostate cancer. Oncotarget. 2017; 8(21): 35255–61. doi:10.18632/oncotarget.13052.; Rakina M.A. Kazakova E.O., Sudarskikh T.S., Bezgodova N.V., Villert A.B., Kolomiets L.A., Larionova I.V. Giant foam-like macrophages in advanced ovarian cancer. Siberian Journal of Oncology. 2022; 21(2): 45–54. doi:10.21294/1814-4861-2022-21-2-45-54.; Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheyeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian Journal of Oncology. 2022; 21(4): 124–36. doi:10.21294/1814-4861-2022-21-4-124-136.; Jeong H., Hwang I., Kang S.H., Shin H.C., Kwon S.Y. TumorAssociated Macrophages as Potential Prognostic Biomarkers of Invasive Breast Cancer. J Breast Cancer. 2019; 22(1): 38–51. doi:10.4048/jbc.2019.22.e5.; Tiainen S., Tumelius R., Rilla K., Hämäläinen K., Tammi M., Tammi R., Kosma V.M., Oikari S., Auvinen P. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology. 2015; 66(6): 873–83. doi:10.1111/his.12607.; Miyasato Y., Shiota T., Ohnishi K., Pan C., Yano H., Horlad H., Yamamoto Y., Yamamoto-Ibusuki M., Iwase H., Takeya M., Komohara Y. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci. 2017; 108(8): 1693–700. doi:10.1111/cas.13287.; Ge Z., Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.590941.; Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019; 26(1): 78. doi:10.1186/s12929-019-0568-z.; Norton K.A., Jin K., Popel A.S. Modeling triple-negative breast cancer heterogeneity: Efects of stromal macrophages, fbroblasts and tumor vasculature. J Theor Biol. 2018; 452: 56–68. doi:10.1016/j.jtbi.2018.05.003.; Eue I., Pietz B., Storck J., Klempt M., Sorg C. Transendothelial migration of 27E10+ human monocytes. Int Immunol. 2000; 12(11): 1593–604. doi:10.1093/intimm/12.11.1593.; Viemann D., Strey A., Janning A., Jurk K., Klimmek K., Vogl T., Hirono K., Ichida F., Foell D., Kehrel B., Gerke V., Sorg C., Roth J. Myeloid-related proteins 8 and 14 induce a specifc infammatory response in human microvascular endothelial cells. Blood. 2005; 105(7): 2955–62. doi:10.1182/blood-2004-07-2520.; Simkhes Yu.V., Karpov S.M., Baturin V.A., Vyshlova A. Role of s100 protein in the pathogenesis of pain syndromes. Neurology, Neuropsychiatry, Psychosomatics. 2016; 8(4): 62–4. doi: doi.org/10.14412/2074-2711-2016-4-62-64.; Kim J.H., Oh S.H., Kim E.J., Park S.J., Hong S.P., Cheon J.H., Kim T.I., Kim W.H. The role of myofbroblasts in upregulation of S100A8 and S100A9 and the diferentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun. 2012; 423(1): 60–6. doi:10.1016/j.bbrc.2012.05.081.; Fox J.M., Kausar F., Day A., Osborne M., Hussain K., Mueller A., Lin J., Tsuchiya T., Kanegasaki S., Pease J.E. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Scientifc reports. 2018; 8(1): 9466. doi:10.1038/s41598-018-27710-9.; Schioppa T., Sozio F., Barbazza I., Scutera S., Bosisio D., Sozzani S., Del Prete A. Molecular Basis for CCRL2 Regulation of Leukocyte Migration. Front Cell Dev Biol. 2020; 8. doi:10.3389/fcell.2020.615031.; Jayasingam S.D., Citartan M., Thang T.H., Mat Zin A.A., Ang K.C., Ch’ng E.S. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol. 2020; 9: 1512. doi:10.3389/fonc.2019.01512.; Fontana M.F., Baccarella A., Pancholi N., Pufall M.A., Herbert D.R., Kim C.C. JUNB is a key transcriptional modulator of macrophage activation. J Immunol. 2015; 194(1): 177–86. doi:10.4049/jimmunol.1401595.; Hamada M., Tsunakawa Y., Jeon H., Yadav M.K., Takahashi S. Role of MafB in macrophages. Exp Anim. 2020; 69(1): 1–10. doi:10.1538/expanim.19-0076.; Rigo A., Gottardi M., Zamò A., Mauri P., Bonifacio M., Krampera M., Damiani E., Pizzolo G., Vinante F. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol Cancer. 2010; 9: 273. doi:10.1186/1476-4598-9-273.; Vlaicu P., Mertins P., Mayr T., Widschwendter P., Ataseven B., Högel B., Eiermann W., Knyazev P., Ullrich A. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specifc EGFR ligands and a STAT3 activator. BMC Cancer. 2013; 13: 197. doi:10.1186/1471-2407-13-197.; Ongusaha P.P., Kwak J.C., Zwible A.J., Macip S., Higashiyama S., Taniguchi N., Fang L., Lee S.W. HB-EGF is a potent inducer of tumor growth and angiogenesis. Cancer Res. 2004; 64(15): 5283–90. doi:10.1158/0008-5472.CAN-04-0925.; Carroll M.J., Kapur A., Felder M., Patankar M.S., Kreeger P.K. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget. 2016; 7(52): 86608–20. doi:10.18632/oncotarget.13474.; Yonemitsu K., Miyasato Y., Shiota T., Shinchi Y., Fujiwara Y., Hosaka S., Yamamoto Y., Komohara Y. Soluble Factors Involved in Cancer Cell-Macrophage Interaction Promote Breast Cancer Growth. Anticancer Res. 2021; 41(9): 4249–58. doi:10.21873/anticanres.15229.; Yu X., Zhang Q., Zhang X., Han Q., Li H., Mao Y., Wang X., Guo H., Irwin D.M., Niu G., Tan H. Exosomes from Macrophages Exposed to Apoptotic Breast Cancer Cells Promote Breast Cancer Proliferation and Metastasis. J Cancer. 2019; 10(13): 2892–2906. doi:10.7150/jca.31241.; Wu D.M., Wen X., Han X.R., Wang S., Wang Y.J., Shen M., Fan S.H., Zhang Z.F., Shan Q., Li M.Q., Hu B., Lu J., Chen G.Q., Zheng Y.L. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126 -3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. Mol Ther Nucleic Acids. 2019; 16: 229–45. doi:10.1016/j.omtn.2019.02.022. Retraction in: Mol Ther Nucleic Acids. 2022; 29: 617.; Zhao K., Wang Z., Hackert T., Pitzer C., Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res. 2018; 37(1): 312. doi:10.1186/s13046-018-0961-6.; Xiao D., Dong Z., Zhen L., Xia G., Huang X., Wang T., Guo H., Yang B., Xu C., Wu W., Zhao X., Xu H. Combined Exosomal GPC1, CD82, and Serum CA19-9 as Multiplex Targets: A Specifc, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer. Mol Cancer Res. 2020; 18(2): 300–10. doi:10.1158/1541-7786.MCR-19-0588.; Yunusova N.V., Zambalova E.A., Patysheva M.R., Kolegova E.S., Afanas’ev S.G., Cheremisina O.V., Grigor’eva A.E., Tamkovich S.N., Kondakova I.V. Exosomal Protease Cargo as Prognostic Biomarker in Colorectal Cancer. Asian Pac J Cancer Prev. 2021; 22(3): 861–9. doi:10.31557/APJCP.2021.22.3.861.; https://www.siboncoj.ru/jour/article/view/2376

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    Πηγή: Вестник Томского государственного университета. Биология. 2022. № 57. С. 109-130

    Περιγραφή αρχείου: application/pdf

  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: Работа поддержана грантом Российского научного фонда №14-15-00350.

    Πηγή: Bulletin of Siberian Medicine; Том 16, № 4 (2017); 61-74 ; Бюллетень сибирской медицины; Том 16, № 4 (2017); 61-74 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2017-16-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1024/745; Nowell P.C. The clonal evolution of tumor cell populations // Science. 1976; 194 (4260): 23–28. DOI:10.1126/ science.959840.; Greaves M., Maley C.C. Clonal evolution in cancer // Nature. 2012; 481 (7381): 306–313. DOI:10.1038/nature10762.; Bhatia S., Frangioni J.V., Hoffman R.M., Iafrate A.J., Polyak K. The challenges posed by cancer heterogeneity // Nat. Biotechnol. 2012; 30 (7): 604–610. DOI:10.1038/ nbt.2294.; Mantovani A., Germano G., Marchesi F., Locatelli M., Biswas S.K. Cancer-promotin tumor-associated macrophages: new vistas and open questions // Eur. J. Immuno. 2011; 41 (9): 2522–2525. DOI:10.1002/eji.201141894.; Pollard J.W. Tumour-educated macrophages promote tumour progression and metastasis // Nature Reviews Cancer. 2004; 4: 71–78. DOI:10.1038/nrc1256.; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis // Cell. 2010; 141: 39– 51. DOI:10.1016/j.cell.2010.03.014.; Ferlay J., Shin H.R., Bray F., Forman D., Mathers C., Parkin D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 // Int. J. Cancer. 2010; 127 (12): 2893–2917. DOI:10.1002/ijc.25516.; Thomas F., Fisher D., Fort P. et al. Applying ecological and evolutionary theory to cancer: a long and winding road // Evol. Appl. 2013; 6 (1): 1–10. DOI:10.1111/ eva.12021.; Keogh B. Era of Personalized Medicine May Herald End of Soaring Cancer Costs // Oxford J. Medicine & Health JNCI. J. Natl. Cancer Inst. 2012; 104 (1): 12–17.; Напалков Н.П. Рак и демографический переход // Вопросы онкологии. 2004; 50 (2): 127–144. Napalkov N.P. Rak I demographicheskii perekhod [Cancer and demographic transition] // Voprosy onkologii. 2004; 50 (2): 127–144 (in Russian).; Кжышковска Ю.Г., Митрофанова И.В., Завьяло- ва М.В., Слонимская Е.М., Чердынцева Н.В. Опухо- леассоциированные макрофаги. М.: Наука, 2017: 224. Kzhyshkowska J.G., Mitrofanova I.V., Zavyalova M.V., Slonimskaya E.M., Cherdyntseva N.V. Opucholeassociirovannye makrofagi [Tumor-associated macrophages]. Moscow: Nauka Publ.: 224.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation // Cell. 2011; 144: 646–674. DOI:10.1016/j. cell.2011.02.013.; Loeb L.A. Human cancers express mutator phenotypes: origin, consequences and targeting // Nat. Rev. Cancer. 2011; 11 (6): 450–57. DOI:10.1038/nrc3063.; Weisenberger D.J., Siegmund K.D., Campan M., Young J., Long T.I., Faasse M.A. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer // Nat. Genet. 2006; 38 (7): 787–793. DOI:10.1038/ng1834.; Gatenby R.A., Silva A.S., Gillies R.J., Frieden B.R. Adaptive Therapy // Cancer Res. 2009; 69 (11): 4894–4903. DOI:10.1158/0008-5472.CAN-08-3658.; Galon J., Mlecnik B., Bindea G., Angell H.K., Berger A., Lagorce C. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours // J. Pathol. 2014; 232 (2): 199–209. DOI:10.1002/path.4287.; Gilbert L.A., Hemann M.T. DNA damage-mediated induction of a chemoresistant niche // Cell. 2010; 143 (3): 355–366. DOI:10.1016/j.cell.2010.09.043.; Yang J., Li X., Liu X., Liu Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis // Int. J. Clin. Exp. Pathol. 2015; 8 (6): 6656–6664.; Place A.E., Jin Huh S., Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment // Breast Cancer Res. 2011. 13 (6): 227. DOI:10.1186/bcr2912.; Pollard J.W. 2008. Macrophages define the invasive microenvironment in breast cancer // J. Leukoc. Biol. 2008; 84 (3): 623–630. DOI:10.1189/jlb.1107762.; Correia A.L., Bissell M.J. The tumor microenvironment is a dominant force in multidrug resistance // Drug. Resist. Updat. 2012; 15 (0): 39–49. DOI:10.1016/j.drup.2012.01.006.; Nakasone E.S., Askautrud H.A., Kees T. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance // Cancer Cell. 2012. 21 (4): 488–503. DOI:10.1016/j.ccr.2012.02.017.; Pontiggia O., Sampayo R., Raffo D. et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin // Breast. Cancer Res. Treat. 2012; 133(2): 459–471. DOI:10.1007/s10549-011-1766-x.; Bissell M.J., Hines W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression // Nat. Med. 2011. 17 (3): 320–329. DOI:10.1038/nm.2328.; Bissell M.J., Radisky D. Putting tumours in context // Nat. Rev. Cancer. 2001; 1 (1): 46–54. DOI:10.1038/35094059.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy // Immunity. 2014; 41: 49–61. DOI:10.1016/j.immuni.2014.06.010.; Riabov V., Gudima A., Wang N., Mickley A., Orekhov A., Kzhyshkowska J., Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis // Front. Physiol. 2014; 5: 75. DOI:10.3389/fphys.2014.00075.; Obeid E., Nanda R., Fu Y.X., Olopade O.I. The role of tumor-associated macrophages in breast cancer progression // Int. J. Oncol. 2013; 43 (1): 5–12. DOI:10.3892/ ijo.2013.1938.; Tsou C.L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites // J. Clin. Invest. 2007; 117 (4): 902–909. DOI:10.1172/JCI29919.; Allavena P., Sica A., Garlanda C., Mantovani A. The yinyang of tumor-associated macrophages in neoplastic progression and immune surveillance // Immunol. Rev. 2008; 222: 155–161. DOI:10.1111/j.1600-065X.2008.00607.x.; Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm // J. Immunol. 2000; 164 (12): 6166–6173.; Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T. Macrophage activation and polarization: nomenclature and experimental guidelines // Immunity. 2014; 41: 14–20. DOI:10.1016/j.immuni.2014.06.008.; Wang R., Zhang J., Chen S., Lu M., Luo X., Yao S. et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression // Lung Cancer. 2011; 74 (2): 188–196. DOI:10.1016/j.lungcan.2011.04.009.; Franklin R.A., Liao W., Sarkar A., Kim M.V., Bivona M.R., Liu K., Pamer E.G., Li M.O. The cellular and molecular origin of tumor-associated macrophages // Science. 2014; 344 (6186): 921–925. DOI:10.1126/science.1252510.; Laoui D., Movahedi K., Van Overmeire E., Van den Bossche J., Schouppe E., Mommer C., Nikolaou A., Morias Y., De Baetselier P., Van Ginderachter J.A. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions // Int. J. Dev. Biol. 2011; 55: 861–867. DOI:10.1387/ijdb.113371dl.; Fu X.T., Dai Z., Song K., Zhang Z.J., Zhou Z.J., Zhou S.L., Zhao Y.M., Xiao Y.S., Sun Q.M., Ding Z.B., Fan J. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway // Int. J. Oncol. 2015; 46 (2): 587–596. DOI:10.3892/ijo.2014.2761.; Chitu V., Stanley E.R. Colony-stimulating factor-1 in immunity and inflammation // Curr. Opin. Immunol. 2006; 18 (1): 39-48. DOI:10.1016/j.coi.2005.11.006.; Smith H.O., Stephens N.D., Qualls C.R., Fligelman T., Wang T., Lin C.Y., Burton E., Griffith J.K., Pollard J.W. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma // Mol. Oncol. 2013; 7: 41–54. DOI:10.1016/j.molonc. 2012.07.002.; Wyckoff J.B., Wang Y., Lin E.Y., Li J.F., Goswami S., Stanley E.R., Segall J.E., Pollard J.W., Condeelis J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors // Cancer. Res. 2007; 67: 2649–2656. DOI:10.1158/0008-5472.CAN-06-1823.; Abraham D., Zins K., Sioud M. Lucas T., Schäfer R., Stanley E.R., Aharinejad S. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma // Int. J. Cancer. 2010; 126: 1339–1352. DOI:10.1002/ijc.24859.; Linde N., Lederle W., Depner S., van Rooijen N., Gutschalk C.M., Mueller M.M. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages // J. Pathol. 2012; 227:17–28. DOI:10.1002/path.3989.; Brown D., Trowsdale J., Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease // Tissue antigens. 2004; 64: 215–225. DOI:10.1111/j.0001-2815.2004.00290.x.; Loke P., Allison J.P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells // Proc. Natl. Acad. Sci. USA. 2003; 100: 5336–5341. DOI:10.1073/ pnas.0931259100.; Belai E.B., de Oliveira C.E., Gasparoto T.H., Ramos R.N., Torres S.A., Garlet G.P., Cavassani K.A., Silva J.S., Campanelli A.P. PD-1 blockage delays murine squamous cell carcinoma development // Carcinogenesis. 2014; 35: 424–431. DOI:10.1093/carcin/bgt305.; Simpson T.R., Li F., Montalvo-Ortiz W., Sepulveda M.A., Bergerhoff K., Arce F., Roddie C., Henry J.Y., Yagita H., Wolchok J.D., Peggs K.S., Ravetch J.V., Allison J.P., Quezada S.A. Fc-dependent depletion of tumor-infiltrating regulatory T cells codefines the efficacy of anti– CTLA-4 therapy against melanoma // J. Exp. Med. 2013; 210: 1695–1710. DOI:10.1084/jem.20130579.; Oh S.A., Li M.O. TGF-β: guardian of T cell function // J. Immunol. 2013; 191 (8): 3973–3979. DOI:10.4049/ jimmunol.1301843.; Ng T.H., Britton G.J., Hill E.V., Verhagen J., Burton B.R., Wraith D.C. Regulation of adaptive immunity; the role of interleukin-10 // Front. Immunol. 2013; 4: 129. DOI:10.3389/fimmu.2013.00129.; Adeegbe D.O., Nishikawa H. Natural and induced T regulatory cells in cancer // Frontiers in immunology. 2013; 4: 190. DOI:10.3389/fimmu.2013.00190.; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumors. Nature reviews // Immunology. 2012; 12: 253–268. DOI:10.1038/ nri3175.; Sainz J.B., Mart´ın B., Tatari M., Heeschen C., Guerra S., ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells // Cancer Research. 2014; 74 (24): 7309–7320, 2014. DOI:10.18632/oncotarget.9383.; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis // Nature reviews. Cancer. 2009; 9: 239– 252. DOI:10.1038/nrc2618.; Rohan T.E., Xue X., Lin H.M., D’Alfonso T.M., Ginter P.S., Oktay M.H., Robinson B.D., Ginsberg M., Gertler F.B., Glass A.G., Sparano J.A., Condeelis J.S., Jones J.G. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer // J. Natl. Cancer Inst. 2014; 106 (8): dju136. DOI:10.1093/jnci/dju136.; Qian B.Z., Li J., Zhang H. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis // Nature. 2011; 475 (7355): 222–5. DOI:10.1038/nature10138.; Qian B., Deng Y., Im J.H., Muschel R.J., Zou Y., Li J., Lang R.A., Pollard J.W. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth // PloS one. 2009; 4: e6562. DOI:10.1371/journal.pone.0006562.; Gao D., Vahdat L.T., Wong S. Chang J.C., Mittal V. Microenvironmental regulation of epithelialmesenchymal transitions in cancer // Cancer. Res. 2012; 72 (19): 4883–9. doi:10.1158/0008-5472.CAN-12-1223.; Перельмутер В.М., Манских В.Н. Прениша как от- сутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование зло- качественных опухолей и форму метастатической болезни // Биохимия. 2012; 77 (1): 130–139. Perelmuter V.M., Manskih V.N. Prenisha kak otsutstvuuyschee zveno koncepcii metastaticheskih nish, ob`yasnyayuschee izbiratelnoe metastazirovanie zlokachestvennyh opukholei i formu metastaticheskoi bolezni [Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease] // Biokhimiya – Biochemistry. 2012; 77 (1): 130–139 (in Russia).; Zitvogel L., Galluzzi L., Smyth M.J., Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance // Immunity. 2013; 39 (1): 74–88. DOI:10.1016/j.immuni.2013.06.014.; Bracci L., Schiavoni G., Sistigu A., Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer // Cell. Death. and Differentiation. 2014. 21: 15–25. DOI:10.1038/ cdd.2013.67.; Gampenrieder S.P., Rinnerthaler G., Greil R. Neoadjuvant chemotherapy and targeted therapy in breast cancer: past, present, and future // J. Oncol. 2013; 2013:732047. DOI:10.1155/2013/732047.; Thompson A.M., Moulder-Thompson S.L. 2012. Neoadjuvant treatment of breast cancer // Ann. Oncol. 23 Suppl. 10, x231. DOI:10.1093/annonc/mds324.; De Palma M., Lewis C.E. Cancer: Macrophages limit chemotherapy // Nature. 2011; 472 (7343): 303–304. DOI:10.1038/472303a.; Hughes R., Qian B.Z., Rowan C., Muthana M., Keklikoglou I., Olson O.C., Tazzyman S., Danson S., Addison C., Clemons M., Gonzalez-Angulo A.M., Joyce J.A., De Palma M., Pollard J.W., Lewis C.E. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy // Cancer Res. 2015; 75 (17): 3479–3491. DOI:10.1158/0008-5472.CAN-14-3587.; Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F. Role of macrophage targeting in the antitumor activity of trabectedin // Cancer Cell. 2013; 23: 249–262. DOI:10.1016/j.ccr.2013.01.008.; Srivastava K., Hu J., Korn C., Savant S., Teichert M., Kapel S.S., Jugold M., Besemfelder E., Thomas M., Pasparakis M., Augustin H.G. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth // Cancer Cell. 2014; 26: 880–895. DOI:10.1016/j.ccell.2014.11.005.; Mantovani A., Allavena P. The interaction of anticancer therapies with tumor-associated macrophages // J. Exp. Med. 2015; 212 (4): 435–445. DOI:10.1084/jem.20150295. 66. De Palma, M., Lewis C.E. 2013. Macrophage regulation of tumor responses to anticancer therapies // Cancer Cell. 23: 277–286. DOI:10.1016/j.ccr.2013.02.013.; Zavyalova M.V., Denisov E.V., Tashireva L.A., Gerashchenko T.S., Litviakov N.V., Skryabin N.A., Vtorushin S.V., Telegina N.S., Slonimskaya E.M., Cherdyntseva N.V., Perelmuter V.M. Phenotypic drift as a cause for intratumoral morphological heterogeneity of invasive ductal breast carcinoma not otherwise specified // Biores. Open Access. 2013; 2 (2): 148-54. DOI:10.1089/ biores.2012.0278.; Tashireva L.A., Denisov E.V., Gerashchenko T.S., Pautova D.N., Buldakov M.A., Zavyalova M.V., Kzhyshkowska J., Cherdyntseva N.V., Perelmuter V.M. Intratumoral heterogeneity of macrophages and fibroblasts in breast cancer is associated with the morphological diversity of tumor cells and contributes to lymph node metastasis // Immunobiology. 2017; 222 (4): 631–640. DOI:10.1016/j. imbio.2016.11.012.; Denisov E.V., Skryabin N.A., Gerashchenko T.S., Tashireva L.A., Wilhelm J., Buldakov M.A., Sleptcov A.A., Lebedev I.N., Vtorushin S.V., Zavyalova M.V., Cherdyntseva N.V., Perelmuter V.M. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness // Oncotarget. 2017. DOI:10.18632/oncotarget.18022.; Gerashchenko T.S., Denisov E.V., Litviakov N.V., Zavyalova M.V., Vtorushin S.V., Tsyganov M.M., Perelmuter V.M., Cherdyntseva N.V. Intratumor heterogeneity: nature and biological significance // Biochemistry (Mosc). 2013; 78: 1201. DOI:10.1134/S0006297913110011.; Buldakov M., Zavyalova M., Krakhmal N., Telegina N., Vtorushin S., Mitrofanova I., Riabov V., Yin S., Song B., Cherdyntseva N., Kzhyshkowska J. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer // Immunobiology. 2015; 222 (1): 31–38. DOI:10.1016/j.imbio.2015.09.011.; Mitrofanova I., Zavyalova M., Telegina N., Buldakov M., Riabov V., Cherdyntseva N., Kzhyshkowska J. Tumor-associated macrophages in human breast cancer parenchyma negatively correlate with lymphatic metastasis after neoadjuvant chemotherapy // Immunobiology. 2017; 222 (1): 101–109. DOI:10.1016/j.imbio.2016.08.001.; Shao R., Hamel K., Petersen L., Cao Q.J., Arenas R.B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis // Oncogene. 2009; 28 (50): 4456-68. DOI:10.1038/onc.2009.292.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer // Biol. Chem. 2016; 397 (3): 231–247. DOI:10.1515/hsz-2015-0269.; Kzhyshkowska J., Gratchev A., Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer // Biomark Insights. 2007; 2: 128–246.; Biggar R.J., Johansen J.S., Smedby K.E., Rostgaard K., Chang E.T., Adami H.O., Glimelius B., Molin D., Hamilton-Dutoit S., Melbye M., Hjalgrim H. Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma // Clin. Cancer Res. 2008; 14 (21): 6974-6978. DOI:10.1158/1078- 0432.CCR-08-1026.; Kzhyshkowska J., Mamidi S., Gratchev A., Kremmer E., Schmuttermaier C., Krusell L., Haus G., Utikal J., Schledzewski K., Scholtze J., Goerdt S. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway // Blood. 2006; 107: 3221–3228. DOI:10.1182/blood-2005-07-2843.; Faneyte I.F., Schrama J.G., Peterse J.L., Remijnse P.L., Rodenhuis S., van de Vijver M.J. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome // Br. J. Cancer 2003; 88 (3): 406–412. DOI:10.1038/sj.bjc.6600749.; Casazza A., Laoui D., Wenes M., Rizzolio S., Bassani N., Mambretti M., Deschoemaeker S., Van Ginderachter J.A., Tamagnone L., Mazzone M. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity // Cancer Cell. 2013; 24: 695–709. DOI: http://dx.doi.org/10.1016/j.ccr.2013.11.007.; https://bulletin.tomsk.ru/jour/article/view/1024

  10. 10
    Academic Journal

    Πηγή: Oncoimmunology
    OncoImmunology, Vol 7, Iss 6 (2018)
    OncoImmunology 7:e1436922 (2018)
    OncoImmunology. 2018. Vol. 7, № 6. P. e1436922-1-e1436922-17

    Περιγραφή αρχείου: application/pdf

  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14

    Πηγή: Перспективы развития фундаментальных наук : сборник научных трудов XIX Международной конференции студентов, аспирантов и молодых ученых, 26-29 апреля 2022 г. Томск, 2022. Т. 4 : Биология и фундаментальная медицина. С. 66-68

    Περιγραφή αρχείου: application/pdf

  15. 15

    Πηγή: Перспективы развития фундаментальных наук : сборник научных трудов XVIII Международной конференции студентов, аспирантов и молодых ученых, 27–30 апреля 2021 г. Томск, 2021. Т. 4 : Биология и фундаментальная медицина. С. 43-45

    Περιγραφή αρχείου: application/pdf

  16. 16

    Πηγή: Перспективы развития фундаментальных наук : сборник научных трудов XVIII Международной конференции студентов, аспирантов и молодых ученых, 27–30 апреля 2021 г. Томск, 2021. Т. 4 : Биология и фундаментальная медицина. С. 106-108

    Περιγραφή αρχείου: application/pdf

  17. 17
  18. 18

    Πηγή: Перспективы развития фундаментальных наук : сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, Россия, Томск, 21-24 апреля 2020 г. Томск, 2020. Т. 4 : Биология и фундаментальная медицина. С. 34-36

    Περιγραφή αρχείου: application/pdf

  19. 19

    Πηγή: Перспективы развития фундаментальных наук : сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, Россия, Томск, 21-24 апреля 2020 г. Томск, 2020. Т. 4 : Биология и фундаментальная медицина. С. 91-93

    Περιγραφή αρχείου: application/pdf

  20. 20