-
1Academic Journal
Συγγραφείς: M. H. Jawad, M. R. Abdulameer, K. A. Aadim
Πηγή: Научно-технический вестник информационных технологий, механики и оптики, Vol 25, Iss 4, Pp 626-634 (2025)
Θεματικοί όροι: сплав al-ni, оптическая спектроскопия плазмы, оэс, свойства плазмы, параметры плазмы, Information technology, T58.5-58.64
Περιγραφή αρχείου: electronic resource
Relation: https://ntv.elpub.ru/jour/article/view/487; https://doaj.org/toc/2226-1494; https://doaj.org/toc/2500-0373
Σύνδεσμος πρόσβασης: https://doaj.org/article/89cad7ebb67746b793debfd4e069532a
-
2Academic Journal
Θεματικοί όροι: оптическая спектроскопия, чистота масел, отработанное масло, оптическая плотность
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/71467
-
3Conference
Συγγραφείς: Yakushova, Nadezhda, Filippov, Ivan, Karmanov, Andrey, Gubich, Ivan, Pronin, Igor
Θεματικοί όροι: оптическая спектроскопия, оптическая ширина запрещенной зоны, optical band gape, наноструктурная инженерия, растровая электронная микроскопия, sol-gel technology, оксид цинка, nanostructure engineering, zinc oxide, золь-гель технология, UV-Vis spectroscopy, scanning electron microscopy
-
4Academic Journal
Θεματικοί όροι: оптическая спектроскопия, фотоэлектронная спектроскопия, светофильтры, силикатные стекла, оксид титана, фотолюминесценция, оксид церия
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69044
-
5Academic Journal
Συγγραφείς: A. A. Krivetskaya, T. A. Savelieva, D. M. Kustov, V. V. Levkin, S. S. Kharnas, V. B. Loschenov, А. А. Кривецкая, Т. А. Савельева, Д. М. Кустов, В. В. Левкин, С. С. Харнас, В. Б. Лощенов
Πηγή: Biomedical Photonics; Том 14, № 2 (2025); 40-54 ; 2413-9432
Θεματικοί όροι: желудочно-кишечный тракт, optical spectroscopy, photosensitizer, hemoglobin, optical properties, gastrointestinal tract, оптическая спектроскопия, фотосенси6илизатор, гемогло6ин, оптические свойства
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/721/489; Sun B., Li W., Liu N. Curative effect of the recent Porfimer sodium photodynamic adjuvant treatment on young patients with ad- vanced colorectal cancer // Oncol Lett. – 2016. – Т. 11. – С. 2071– 2074. https://doi.org/10.3892/ol.2016.4179.; McGarrity T., Peiffer L., Granville D., Carthy C., Levy J., Khandelwal M., Hunt D. Apoptosis associated with esophageal adenocarcinoma: influence of photodynamic therapy // Cancer Lett. – 2001. – Т. 163. – С. 33–41. https://doi.org/10.1016/S0304-3835(00)00663-7.; Wolfsen H.C., Woodward T.A., Raimondo M. Photodynamic thera- py for dysplastic Barrett esophagus and early esophageal adeno- carcinoma // Mayo Clin Proc. – 2002. – Т. 77, № 11. – С. 1176–1181. https://doi.org/10.4065/77.11.1176.; Liu H. Editorial: dosimetry study in photodynamic therapy for di- agnosis, precision treatment and treatment evaluation // Front Phys. – 2020. – Т. 8. https://doi.org/10.3389/fphy.2020.588484.; Overholt B.F., Wang K.K., Burdick J.S. и соавт. Five-year efficacy and safety of photodynamic therapy with Porfimer sodium in Barrett's high-grade dysplasia // Gastrointest Endosc. – 2007. – Т. 66, № 3. – С. 460–468. https://doi.org/10.1016/j.gie.2006.12.037.; Overholt B.F., Panjehpour M., Halberg D.L. Photodynamic therapy for Barrett's esophagus with dysplasia and/or early stage carci- noma: long-term results // Gastrointest Endosc. – 2003. – Т. 58, № 2. – С. 183–188. https://doi.org/10.1067/mge.2003.327.; Wolfsen H.C., Hemminger L.L., Wallace M.B., DeVault K.R. Clinical experience of patients undergoing photodynamic therapy for Bar- rett's dysplasia or cancer // Aliment Pharmacol Ther. – 2004. – Т. 20. – С. 1125–1131. https://doi.org/10.1111/j.1365-2036.2004.02209.x.; Buttar N.S., Wang K.K., Lutzke L.S., Krishnadath K.K., Anderson M.A. Combined endoscopic mucosal resection and photodynamic therapy for esophageal neoplasia within Barrett's esophagus // Gastrointest Endosc. – 2001. – Т. 54, № 6. – С. 682–688. https://doi. org/10.1067/gien.2001.0003.; Yachimski P., Puricelli W.P., Nishioka N.S. Patient predictors of his- topathologic response after photodynamic therapy of Barrett's esophagus with high-grade dysplasia or intramucosal carcinoma // Gastrointest Endosc. – 2009. – Т. 69, № 2. – С. 205–212. https:// doi.org/10.1016/j.gie.2008.05.032.; Dunn J.M., Mackenzie G.D., Banks M.R. и соавт. A randomised controlled trial of ALA vs. Porfimer sodium photodynamic therapy for high-grade dysplasia arising in Barrett’s oesophagus // Lasers Med Sci. – 2013. – Т. 28. – С. 707–715. https://doi.org/10.1007/s10103-012-1132-1.; Mackenzie G.D., Jamieson N.F., Novelli M.R. и соавт. How light dosimetry influences the efficacy of photodynamic therapy with 5-aminolaevulinic acid for ablation of high-grade dysplasia in Barrett's esophagus // Lasers Med Sci. – 2008. – Т. 23, № 2. – С. 203–210. https://doi.org/10.1007/s10103-007-0473-7.; Pech O., Gossner L., May A. и соавт. Long-term results of photody- namic therapy with 5-aminolevulinic acid for superficial Barrett's cancer and high-grade intraepithelial neoplasia // Gastrointest Endosc. – 2005. – Т. 62, № 1. – С. 24–30. https://doi.org/10.1016/ s0016-5107(05)00333-0.; Tan W.C., Fulljames C., Stone N., Dix A.J., Shepherd N., Roberts D.J., Brown S.B., Krasner N., Barr H. Photodynamic therapy using 5-aminolaevulinic acid for oesophageal adenocarcinoma associ- ated with Barrett's metaplasia // Journal of Photochemistry and Photobiology. B, Biology. – 1999. – Т. 53, № 1-3. – С. 75–80. https:// doi.org/10.1016/s1011-1344(99)00129-3.; Kashtan H., Konikoff F., Haddad R., Skornick Y. Photodynamic therapy of cancer of the esophagus using systemic aminolevulinic acid and a non laser light source: a phase I/II study // Gastroin- testinal Endoscopy. – 1999. – Т. 49, № 6. – С. 760–764. https://doi. org/10.1016/s0016-5107(99)70297-x.; Etienne J., Dorme N., Bourg-Heckly G., Raimbert P., Fléjou J.F. Photo- dynamic therapy with green light and m-tetrahydroxyphenyl chlo- rin for intramucosal adenocarcinoma and high-grade dysplasia in Barrett's esophagus // Gastrointestinal Endoscopy. – 2004. – Т. 59, № 7. – С. 880–889. https://doi.org/10.1016/s0016-5107(04)01271-4.; Lovat L.B., Jamieson N.F., Novelli M.R., Mosse C.A., Selvasekar C., Mackenzie G.D., Thorpe S.M., Bown S.G. Photodynamic therapy with m-tetrahydroxyphenyl chlorin for high-grade dysplasia and early cancer in Barrett's columnar lined esophagus // Gastrointes- tinal Endoscopy. – 2005. – Т. 62, № 4. – С. 617–623. https://doi. org/10.1016/j.gie.2005.04.043.; Gossner L., May A., Sroka R., Ell C. A new long-range through-the- scope balloon applicator for photodynamic therapy in the esoph- agus and cardia // Endoscopy. – 1999. – Т. 31, № 5. – С. 370–376. https://doi.org/10.1055/s-1999-31.; Javaid B., Watt P., Krasner N. Photodynamic therapy (PDT) for oesopha- geal dysplasia and early carcinoma with mTHPC (m-tetrahydroxyphe- nyl chlorin): a preliminary study // Lasers in Medical Science. – 2002. – Т. 17, № 1. – С. 51–56. https://doi.org/10.1007/s10103-002-8266-5.; Yano T., Muto M., Minashi K., Ohtsu A., Yoshida S. Photodynamic therapy as salvage treatment for local failures after definitive chemoradiotherapy for esophageal cancer // Gastrointestinal En- doscopy. – 2005. – Т. 62, № 1. – С. 31–36. https://doi.org/10.1016/ s0016-5107(05)00545-6.; Minamide T., Yoda Y., Hori K., Shinmura K., Oono Y., Ikematsu H., Yano T. Advantages of salvage photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer // Surgical Endoscopy. – 2020. – Т. 34, № 2. – С. 899–906. https://doi.org/10.1007/s00464-019-06846-3.; Ishida N., Osawa S., Miyazu T., Kaneko M., Tamura S., Tani S., Ya- made M., Iwaizumi M., Hamaya Y., Furuta T., Sugimoto K. Photo- dynamic Therapy Using Talaporfin Sodium for Local Failure after Chemoradiotherapy or Radiotherapy for Esophageal Cancer: A Single Center Experience // Journal of Clinical Medicine. – 2020. – Т. 9, № 5. – С. 1509. https://doi.org/10.3390/jcm9051509.; Nava H.R., Allamaneni S.S., Dougherty T.J., Cooper M.T., Tan W., Wilding G., Henderson B.W. Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with Barrett's esophagus // Lasers in Surgery and Medicine. – 2011. – Т. 43. – С. 705–712. https://doi.org/10.1002/lsm.21112.; Tanaka T., Matono S., Nagano T., Murata K., Sueyoshi S., Yamana H., Shirouzu K., Fujita H. Photodynamic therapy for large superfi- cial squamous cell carcinoma of the esophagus // Gastrointestinal Endoscopy. – 2011. – Т. 73, № 1. – С. 1–6. https://doi.org/10.1016/j. gie.2010.08.049.; Yano T., Muto M., Minashi K., Iwasaki J., Kojima T., Fuse N., Doi T., Kaneko K., Ohtsu A. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esopha- geal squamous cell carcinoma: A phase II study // International Journal of Cancer. – 2012. – Т. 131. – С. 1228–1234. https://doi. org/10.1002/ijc.27320.; Yano T., Muto M., Yoshimura K. и соавт. Phase I study of photodynam- ic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer // Radiation Oncol- ogy. – 2012. – Т. 7. – С. 113. https://doi.org/10.1186/1748-717X-7-113.; Lindenmann J., Matzi V., Neuboeck N., Anegg U., Baumgartner E., Maier A., Smolle J., Smolle-Juettner F.M. Individualized, multimod- al palliative treatment of inoperable esophageal cancer: Clinical impact of photodynamic therapy resulting in prolonged survival // Lasers in Surgery and Medicine. – 2012. – Т. 44. – С. 189–198. https://doi.org/10.1002/lsm.22006.; Yano T., Kasai H., Horimatsu T., Yoshimura K., Teramukai S., Morita S., Tada H.,YamamotoY., Kataoka H., Kakushima N., Ishihara R., Isomoto H., Muto M. и др. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer // Oncotarget. – 2017. – Т. 8. – С. 22135–22144.; Foroulis Ch.N., Thorpe J.A.C. Photodynamic therapy (PDT) in Bar- rett's esophagus with dysplasia or early cancer // European Jour- nal of Cardio-Thoracic Surgery. – 2006. – Т. 29, № 1. – С. 30–34. https://doi.org/10.1016/j.ejcts.2005.10.033.; Gray J., Fullarton G.M. Long term efficacy of photodynamic therapy (PDT) as an ablative therapy of high grade dysplasia in Barrett's oe- sophagus // Photodiagnosis and Photodynamic Therapy. – 2013. – Т. 10, № 4. – С. 561–565. https://doi.org/10.1016/j.pdpdt.2013.06.002.; Pacifico R.J., Wang K.K., Wongkeesong L.M., Buttar N.S., Lutzke L.S. Combined endoscopic mucosal resection and photodynamic therapy versus esophagectomy for management of early adeno- carcinoma in Barrett's esophagus // Clinical Gastroenterology and Hepatology. – 2003. – Т. 1, № 4. – С. 252–257.; Hatogai K., Yano T., Kojima T., Onozawa M., Daiko H., Nomura S., Yoda Y., Doi T., Kaneko K., Ohtsu A. Salvage photodynamic therapy for local failure after chemoradiotherapy for esopha- geal squamous cell carcinoma // Gastrointestinal Endoscopy. – 2016. – Т. 83, № 6. – С. 1130–1139.e3. https://doi.org/10.1016/j. gie.2015.11.016.; Lightdale C.J., Heier S.K., Marcon N.E., McCaughan J.S. Jr, Gerdes H., Overholt B.F., Sivak M.V. Jr, Stiegmann G.V., Nava H.R. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter ran- domized trial // Gastrointestinal Endoscopy. – 1995. – Т. 42, № 6. – С. 507–512. https://doi.org/10.1016/s0016-5107(95)70002-1.; Litle V.R., Luketich J.D., Christie N.A., Buenaventura P.O., Alvelo- Rivera M., McCaughan J.S., Nguyen N.T., Fernando H.C. Photody-namic therapy as palliation for esophageal cancer: experience in 215 patients // Annals of Thoracic Surgery. – 2003. – Т. 76, № 5. – С. 1687–1693. https://doi.org/10.1016/s0003-4975(03)01299-2.; Prasad G.A., Wang K.K., Buttar N.S., Wongkeesong L.M., Lutzke L.S., Borkenhagen L.S. Predictors of stricture formation after photo- dynamic therapy for high-grade dysplasia in Barrett's esophagus // Gastrointestinal Endoscopy. – 2007. – Т. 65, № 1. – С. 60–66. https://doi.org/10.1016/j.gie.2006.04.028.; Nakamura T., Oinuma T. Usefulness of photodynamic diagnosis and therapy using talaporfin sodium for an advanced-aged pa- tient with inoperable gastric cancer // Laser Therapy. – 2014. – Т. 23, № 3. – С. 201–210. https://doi.org/10.5978/islsm.14-OR-16.; Pogue B.W., Sheng C., Benevides J., Forcione D., Puricelli B., Nish- ioka N., Hasan T. Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus // Journal of Biomedical Optics. – 2008. – Т. 13, № 3. – С. 034009. https://doi.org/10.1117/1.2937476.; Loshchenov M., Levkin V., Kalyagina N., Linkov K., Kharnas S., Efendiev K., Kharnas P., Loschenov V. Laser-induced fluorescence diagnosis of stomach tumor // Lasers in Medical Science. – 2020. – Т. 35. https://doi.org/10.1007/s10103-020-02963-x.; Wang H.-W., Zhu T.C., Putt M.P., Solonenko M.G., Metz J.M., Di- mofte A., Miles J.D., Fraker D.L., Glatstein E., Hahn S.M., Yodh A.G. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy // J. Biomed. Opt. – 2005. – Т. 10, № 1. – С. 014004. https:// doi.org/10.1117/1.1854679.; Pfefer T.J., Schomacker K.T., Nishioka N.S. Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus // Photochemistry and photobiology. – 2001. – Т. 73, № 6. – С. 664–668. https://doi.org/10.1562/0031-8655(2001)0732.0.co;2.; Masayuki PhD, Yoda Y., Yamamoto Y., Sunakawa H., Minamide T., Hori K., Ikematsu H., Yano T. Oxygen saturation imaging as a use- ful tool for visualizing the mode of action of photodynamic ther- apy for esophageal cancer // VideoGIE. – 2020. – Т. 5. https://doi. org/10.1016/j.vgie.2020.07.003.; Ortner M.A., Ebert B., Hein E., Zumbusch K., Nolte D., Sukowski U., Weber-Eibel J., Fleige B., Dietel M., Stolte M., Oberhuber G., Porschen R., Klump B., Hörtnagl H., Lochs H., Rinneberg H. Time gated fluorescence spectroscopy in Barrett's oesophagus // Gut. – 2003. – Т. 52, № 1. – С. 28–33. https://doi.org/10.1136/gut.52.1.28.; Standish B.A., Yang V.X., Munce N.R., Wong Kee Song L.M., Gar- diner G., Lin A., Mao Y.I., Vitkin A., Marcon N.E., Wilson B.C. Dop- pler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus // Gastrointestinal endoscopy. – 2007. – Т. 66, № 2. – С. 326–333. https://doi.org/10.1016/j.gie.2007.02.040.; van Veen R.L., Aalders M.C., Pasma K.L., Siersema P.D., Haringsma J., van de Vrie W., Gabeler E.E., Robinson D.J., Sterenborg H.J. In situ light dosimetry during photodynamic therapy of Barrett's esopha- gus with 5-aminolevulinic acid // Lasers in surgery and medicine. – 2002. – Т. 31, № 5. – С. 299–304. https://doi.org/10.1002/lsm.10129.; Stone N. Standardizing dosimetry in esophageal PDT: an argu- ment for use of centering devices and removal of misleading units // Technology in Cancer Research & Treatment. – 2003. – Т. 2, № 4. – С. 333–338. https://doi.org/10.1177/153303460300200408.; Veen R., Robinson D., Siersema P., Sterenborg H. The importance of in situ dosimetry during photodynamic therapy of Barrett's esophagus // Gastrointestinal endoscopy. – 2006. – Т. 64. – С. 786– 788. https://doi.org/10.1016/j.gie.2006.06.056.; Wang S., Dai X.Y., Ji S., Saeidi T., Schwiegelshohn F., Yassine A.A., Lilge L., Betz V. Scalable and accessible personalized photody- namic therapy optimization with FullMonte and PDT-SPACE // J Biomed Opt. – 2022. – Т. 27, № 8. – С. 083006.; Tran A.P., Jacques S. Modeling voxel-based Monte Carlo light trans- port with curved and oblique boundary surfaces // J Biomed Opt. – 2020. – Т. 25, № 2. – С. 1–13.; Guo S., Kang J.U. Convolutional neural network-based common- path optical coherence tomography A-scan boundary-tracking training and validation using a parallel Monte Carlo synthetic da- taset // Opt Express. – 2022. – Т. 30, № 14. – С. 25876–25890.; Cassidy J., Nouri A., Betz V., Lilge L. High-performance, robustly verified Monte Carlo simulation with FullMonte // J Biomed Opt. – 2018. – Т. 23, № 8. – С. 1–11.; Woodhams J.H., Macrobert A.J., Bown S.G. The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry // Photochem Photobiol Sci. – 2007. – Т. 6, № 12. – С. 1246–1256.; Efendiev K., Alekseeva P., Linkov K., Shiryaev A., Pisareva T., Gily- adova A., Reshetov I., Voitova A., Loschenov V. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer // Photodiagnosis and Photodynamic Therapy. – 2024. – Т. 45. – С. 103969.; Gkigkitzis I., Feng Y., Yang C., Lu J.Q., Hu X. Modeling of Oxygen Transport and Cell Killing in Type-II Photodynamic Therapy // Pho- tochemistry and Photobiology. – 2012. – Т. 88.; Porter J.R., Andrews B.W., Iglesias P.A. A framework for designing and analyzing binary decision-making strategies in cellular sys- tems // Integr Biol (Camb). – 2012. – Т. 4, № 3. – С. 310–317.; Странадко E.Ф., Баранов A.B., Дуванский B.A., Ло6аков A.И., Морохотов B.A., Ря6ов М.B. Фотодинамическая терапия рака 6ольшого дуоденального сосочка и внепеченочных желчных протоков // Biomedical Photonics. – 2020. – Т. 9, № 2. – С. 18–28. https://doi.org/10.24931/2413-9432-2020-9-2-18-28.; Wang H., Ewetse M.P., Ma C., Pu W., Xu B., He P., Wang Y., Zhu J., Chen H. The “Light Knife” for Gastric Cancer: Photodynamic Therapy // Pharmaceutics. – 2023. – Т. 15, № 1. – С. 101. https:// doi.org/10.3390/pharmaceutics15010101.; Цеймах A.E., Митшенко A.Н., Куртуков B.A., Шойхет И.Н., Кулешова И.B. Эффективность паллиативной фотодинамической терапии при нерезекта6ельном раке желчных путей. Систематический о6зор и метаанализ // Biomedical Photonics. – 2024. – Т. 13, № 2. – С. 34–42. https://doi.org/10.24931/2413-9432-2024-13-2-34-42.; Celli J., Spring B., Rizvi I., Evans C., Samkoe K., Verma S., Pogue B., Hasan T. Imaging and photodynamic therapy: mechanisms, moni- toring, and optimization // Chemical Reviews. – 2010. – Т. 110. – С. 2795–2838. https://doi.org/10.1021/cr900300p.; Jarvi M.T., Niedre M.J., Patterson M.S., Wilson B.C. Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Cur- rent Status, Challenges and Future Prospects // Photochemistry and Photobiology. – 2006. – Т. 82. – С. 1198–1210. https://doi. org/10.1562/2006-05-03-IR-891.; Ong Y.H., Sheng T., Busch T.M., Zhu T.C. Reactive oxygen species explicit dosimetry for the evaluations of treatment efficiency of single and fractionated ALA-mediated photodynamic therapy // Proc. SPIE 11220, Optical Methods for Tumor Treatment and De- tection: Mechanisms and Techniques in Photodynamic Therapy XXIX. – 2020. – 112200R. https://doi.org/10.1117/12.2546425.; Penjweini R., Liu B., Kim M.M., Zhu T.C. Explicit dosimetry for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy: macroscopic singlet oxygen modeling // Journal of Biomedical Optics. – 2015. – Т. 20, № 12. – С. 128003. https://doi.org/10.1117/1.JBO.20.12.128003.; Jarvi M.T., Patterson M.S., Wilson B.C. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements // Bio- physical Journal. – 2012. – Т. 102, № 3. – С. 661–671. https://doi. org/10.1016/j.bpj.2011.12.043.; Georgakoudi I., Foster T.H. Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry // Photochemistry and Photobiology. – 1998. – Т. 67, № 6. – С. 612–625.; James N.S., Cheruku R.R., Missert J.R., Sunar U., Pandey R.K. Measurement of cyanine dye photobleaching in photosensi- tizer cyanine dye conjugates could help in optimizing light do- simetry for improved photodynamic therapy of cancer // Mol- ecules. – 2018. – Т. 23, № 8. – С. 1842. https://doi.org/10.3390/ molecules23081842.; Alekseeva P., Makarov V., Efendiev K., Shiryaev A., Reshetov I., Losche- nov V. Devices and methods for dosimetry of personalized photody- namic therapy of tumors: a review on recent trends // Cancers. – 2024. – Т. 16, № 13. – С. 2484. https://doi.org/10.3390/cancers16132484; Сироткина М.A., Матвеев Л.A., Ширманова М.B. и др. Монито- ринг фотодинамической терапии с помощью оптической коге- рентной ангиографии // Sci Rep. – 2017. – Т. 7. – С. 41506. https:// doi.org/10.1038/srep41506.; Yang W., Rastogi V., Sun H., Sharma D., Wilson B.C., Hadfield R.H., Zhu T.C. Multispectral singlet oxygen luminescent dosimetry (MSOLD) for Porfimer sodium-mediated photodynamic therapy // Proceedings of SPIE. – 2023. – Т. 12359. – С. 1235908. https://doi. org/10.1117/12.2652590.; Романишкин И.Д., Oспанов A., Савельева Т.A., Шугай С.B., Го- ряйнов С.A., Павлова Г.B., Пронин И.Н., Лощенов B.Б. Мульти- модальный метод дифференциации тканей в нейроонкологии с использованием спектроскопии ком6инационного рассе- яния, флуоресценции и диффузного отражения // Bопросы нейрохирургии имени Н.Н. Бурденко. – 2022. – Т. 86. – С. 5–12. https://doi.org/10.17116/neiro202286055.; Fang S., Wu S., Chen Z., He C., Lin L.L., Ye J. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review // TrAC Trends in Analytical Chemistry. – 2024. – Т. 172. https://doi.org/10.1016/j. trac.2024.117578.; Hamdoon Z., Jerjes W., Rashed D., Kawas S., Sattar A.A., Samsu- din R., Hopper C. In vivo optical coherence tomography-guided photodynamic therapy for skin pre-cancer and cancer // Photo- diagnosis and photodynamic therapy. – 2021. – Т. 36. – С. 102520. https://doi.org/10.1016/j.pdpdt.2021.102520.; Zhao Y., Moritz T., Hinds M.F., Gunn J.R., Shell J.R., Pogue B.W., Da- vis S.J. // J. Biophotonics. – 2021. – Т. 14, № 11. – С. e202100088. https://doi.org/10.1002/jbio.202100088.; Karakullukcu B., Kanick S.C., Aans J.B., Sterenborg H.J., Tan I.B., Ame- link A., Robinson D.J. Clinical feasibility of monitoring m-THPC medi- ated photodynamic therapy by means of fluorescence differential path-length spectroscopy // Journal of biophotonics. – 2011. – Т. 4, № 10. – С. 740–751. https://doi.org/10.1002/jbio.201100051.; Sun H., Ong Y., Yang W., Sourvanos D., Dimofte A., Busch T.M., Singhal S., Cengel K.A., Zhu T.C. Clinical PDT dose dosimetry for pleural Porfimer sodium-mediated photodynamic therapy // J. Biomed. Opt. – 2024. – Т. 29, № 1. – С. 018001. https://doi.org/10.1117/1.JBO.29.1.018001.; Schaberle F.A. Assessment of the actual light dose in photodynam- ic therapy // Photodiagnosis and photodynamic therapy. – 2018. – Т. 23. – С. 75–77. https://doi.org/10.1016/j.pdpdt.2018.06.009.; Kamel B., El-Daher M., Bachir W., Aljalali S. Effect of tissue optical properties on the fluorescence of BODIPY derivative as a pho- tosensitizer for photodynamic therapy // Spectroscopy. – 2024. https://doi.org/10.56530/spectroscopy.ye4569u1.; Clancy N.T., Arya S., Stoyanov D., Singh M., Hanna G.B., Elson D.S. Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope // Biomed. Opt. Express. – 2015. – Т. 6. – С. 4179–4190.; Jacques S.L. Optical properties of biological tissues: a review // Physics in medicine and biology. – 2013. – Т. 58, № 11. – С. R37– R61. https://doi.org/10.1088/0031-9155/58/11/R37.; Pilon L., Bhowmik A., Heng R.-L., Yudovsky D. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer ab- sorbing and scattering media: erratum // Appl. Opt. – 2015. – Т. 54. – С. 6116–6117.; Bahl A., Segaud S., Xie Y., Shapey J., Bergholt M.S., Vercauteren T. A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin-based phantoms and Monte Carlo experiments // J. Biophotonics. – 2024. – Т. 17, № 6. – С. e202300536. https://doi.org/10.1002/jbio.202300536.; Nishimura T., Takai Y., Shimojo Y. и др. Determination of optical properties in double integrating sphere measurement by artifi- cial neural network based method // Opt Rev. – 2021. – Т. 28. – С. 42–47. https://doi.org/10.1007/s10043-020-00632-6.; Simpson C.R., Kohl M., Essenpreis M., Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique // Phys. Med. Biol. – 1998. – Т. 43. – С. 2465–2478. https://doi.org/10.1088/0031-9155/43/9/003.; Palmer G.M., Ramanujam N. Monte Carlo based inverse model for calculating tissue optical properties. Part 1, theory and valida- tion on synthetic phantoms // Appl. Opt. – 2006. – Т. 45, № 5. – С. 1062–1071. https://doi.org/10.1364/AO.45.001062.; Rajaram N., Nguyen T.H., Tunnell J.W. A lookup-table based in- verse model for measuring optical properties of turbid media // J. Biomed. Opt. – 2008. – T. 13, № 5. – C. 050501. https://doi. org/10.1117/1.2981797.; Tseng S.H., Grant A., Durkin A.J. In vivo determination of skin near-infrared optical properties using diffuse optical spectros- copy // J. Biomed. Opt. – 2008. – T. 13. – C. 014016. https://doi. org/10.1117/1.2829772.; Wisotzky E.L., Arens P., Dommerich S., Hilsmann A., Eisert P., Uecker F.C. Determination of the optical properties of cholesteatoma in the spectral range of 250 to 800 nm // Biomed. Opt. Express. – 2020. – T. 11. – C. 1489–1500.; Shapey J., Xie Y., Nabavi E., Ebner M., Saeed S.R., Kitchen N., Dor- ward N., Grieve J., McEvoy A.W., Miserocchi A., Grover P., Bradford R., Lim Y.-M., Ourselin S., Brandner S., Jaunmuktane Z., Vercauteren T. J. Biophotonics. – 2022. – T. 15, № 4. – C. e202100072. https:// doi.org/10.1002/jbio.202100072.; Sweer J.A., Chen M.T., Salimian K.J., Battafarano R.J., Durr N.J. Wide- field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging // Journal of biophotonics. – 2019. – T. 12, № 9. – C. e201900005. https://doi. org/10.1002/jbio.201900005.; Bashkatov A., Genina E., Kochubey V., Gavrilova A., Kapralov S., Grishaev V., Tuchin V. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: Prognosis for gastroen- terology // Medical Laser Application. – 2007. – T. 22. – C. 95–104.; Krivetskaya A.A., Savelieva T.A., Kustov D.M. и др. Method for As- sessing the Optical Properties of Multilayer Tissues of the Gas- trointestinal Tract ex Vivo // Phys. Atom. Nuclei. – 2024. – T. 87. – C. 1727–1729. https://doi.org/10.1134/S1063778824100247.; Bashkatov A., Genina E., Kochubey V., Rubtsov V., Kolesnikova E., Tuchin V. Optical properties of human colon tissues in the 350– 2500 nm spectral range // Quantum Electronics. – 2014. – T. 44. – C. 77.; Ben LaRiviere N., Ferguson L., Garman K.S., Fisher D.A., Jokerst N.M. Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film sili- con photodetector arrays // Biomed. Opt. Express. – 2019. – T. 10. – C. 5703–5715.; Zhu T.C., Sun H., Ong Y.H. и др. Real-time PDT Dose Dosimetry for Pleural Photodynamic Therapy // Proc SPIE Int Soc Opt Eng. – 2022. – T. 11940. – C. 1194002. https://doi.org/10.1117/12.2612188.; Ong Y.H., Kim M.M., Finlay J.C. и др. PDT dose dosimetry for Por- fimer sodium-mediated pleural photodynamic therapy (pPDT) // Phys Med Biol. – 2017. – T. 63, № 1. – C. 015031. https://doi. org/10.1088/1361-6560/aa9874.; Lilge L., Wu J., Xu Y., Manalac A., Molehuis D., Schwiegelshohn F., Vesselov L., Embree W., Nesbit M., Betz V., Mandel A., Jewett M., Kulkarni G. Minimal required PDT light dosimetry for nonmuscle invasive bladder cancer // Journal of Biomedical Optics. – 2020. – T. 25, № 6. – C. 068001. https://doi.org/10.1117/1.JBO.25.6.068001.; Saager R.B., Cuccia D.J., Durkin A.J. Determination of optical prop- erties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy // Journal of biomedical optics. – 2010. – T. 15, № 1. – C. 017012. https://doi. org/10.1117/1.3299322.; Jones L.R., Preyer N.W. Jr., Davis M.A., Grimes C., Edling K., Hold- gate N., Wallace M.B., Wolfsen H.C. Light dosimetry calculations for esophageal photodynamic therapy using porfimer sodium // Proc. SPIE 6139, Optical Methods for Tumor Treatment and Detec- tion: Mechanisms and Techniques in Photodynamic Therapy XV. – 2006. – C. 61391D. https://doi.org/10.1117/12.660155.; Sun H., Yang W., Zhu T.C. Real-time photosensitizer dosimetry for photodynamic therapy // Proc. SPIE 13299, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXXIII. – 2025. – C. 1329909. https://doi. org/10.1117/12.3044770.; Mousavi M., Moriyama L.T., Grecco C., Saito Nogueira M., Svanberg K., Kurachi C., Andersson-Engels S. Photodynamic therapy dosim- etry using multiexcitation multiemission wavelength: toward re- al-time prediction of treatment outcome // Journal of biomedical optics. – 2020. – T. 25, № 6. – C. 063812. https://doi.org/10.1117/1. JBO.25.6.063812.; Yassine A.-A., Lilge L., Betz V. Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimu- lation-based study // Biomedical Optics Express. – 2021. – T. 12. – C. 5401–5422. https://doi.org/10.1364/BOE.431310.
-
6Academic Journal
Θεματικοί όροι: географическое происхождение продукции, методы анализа спектров, оптическая спектроскопия поглощения, спирто-водяные настойки лекарственного сырья, спектры оптической плотности, методы многопараметрического анализа
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/67614
-
7Conference
Θεματικοί όροι: БИС(2-ФЕНИЛЭТИЛ)ДИСЕЛЕНОФОСФИНАТ НАТРИЯ, ДИНАМИЧЕСКОЕ РАССЕЯНИЕ СВЕТА, ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ, НАНОЧАСТИЦЫ СЕЛЕНА
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/135358
-
8Academic Journal
Συγγραφείς: I. D. Romanishkin, T. A. Savelieva, A. Ospanov, N. A. Kalyagina, A. A. Krivetskaya, A. M. Udeneev, K. G. Linkov, S. A. Goryajnov, S. V. Shugay, G. V. Pavlova, I. N. Pronin, V. B. Loschenov, И. Д. Романишкин, Т. А. Савельева, А. Оспанов, Н. А. Калягина, А. А. Кривецкая, А. М. Уденеев, К. Г. Линьков, С. А. Горяйнов, С. В. Шугай, Г. В. Павлова, И. Н. Пронин, В. Б. Лощенов
Συνεισφορές: This work was nancially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement № 075-15-2021-1343 dated October 4, 2021).
Πηγή: Biomedical Photonics; Том 13, № 4 (2024); 4-12 ; 2413-9432
Θεματικοί όροι: Монте-Карло моделирование, optical spectroscopy, scattering, mathematical modeling, Monte Carlo simulation, оптическая спектроскопия, рассеяние, математическое моделирование
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/676/473; Vasevi F., MacKinnon N., Farkas D. L. et al. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics // Neurophotonics. – 2016. – Vol. 4. – Vol 1. – P. 011010. doi:10.1117/1.NPh.4.1.011010.; Goryaynov S. A., Okhlopkov V. A., Golbin D. A. et al. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases // Frontiers in Oncology. – 2019. – Vol. 9. – P. 830. doi:10.3389/fonc.2019.00830.; Goryaynov S. A., Buklina S. B., Khapov I. V. et al. 5-ALA-guided tumor resection during awake speech mapping in gliomas located in eloquent speech areas: Single-center experience // Frontiers in Oncology. – 2022. – Vol. 12. – P. 940951. doi:10.3389/fonc.2022.940951.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma // Biomedical Photonics. – 2021. – Vol. 10. – № 4. – P. 35–43. doi:10.24931/2413-9432-2021-10-4-35-43.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Results of microsurgical resection of glioblastomas under endoscopic and fluorescent control // Biomedical Photonics. – 2024. – Vol. 13. – № 3. – P. 20–30. doi:10.24931/2413-9432-2024-13-3-20-30.; Udeneev A. M., Kalyagina N. A., Reps V. F. et al. Photo and spectral fluorescence analysis of the spinal cord injury area in animal models // Biomedical Photonics. – 2023. – Vol. 12. – № 3. – P. 15–20. doi:10.24931/2413-9432-2023-12-3-16-20.; Liu Y.-X., Yang Y.-S. Using Diаffuse Reflectance Spectroscopy to Classify Tumor Tissue in Upper Gastrointestinal Cancers // JAMA Surgery. – 2023. – Vol. 158. – № 7. – P. 772. doi:10.1001/jamasurg.2022.8430.; Baltussen E. J. M., Brouwer De Koning S. G., Sanders J. et al. Using Diffuse Reflectance Spectroscopy to Distinguish Tumor Tissue From Fibrosis in Rectal Cancer Patients as a Guide to Surgery // Lasers in Surgery and Medicine. – 2020. – Vol. 52. – № 7. – P. 604–611. doi:10.1002/lsm.23196.; Grosenick D., Wabnitz H., Macdonald R. Diffuse near-infrared imaging of tissue with picosecond time resolution // Biomedical Engineering / Biomedizinische Technik. – 2018. – Vol. 63. – № 5. – P. 511–518. doi:10.1515/bmt-2017-0067.; Rejmstad P., Johansson J. D., Haj-Hosseini N. et al. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy // Journal of Biophotonics. – 2017. – Vol. 10. – № 3. – P. 446–455. doi:10.1002/jbio.201500334.; Skyrman S., Burström G., Lai M. et al. Diffuse reflectance spectroscopy sensor to differentiate between glial tumor and healthy brain tissue: a proof-of-concept study // Biomedical Optics Express. – 2022. – Vol. 13. – № 12. – P. 6470. doi:10.1364/BOE.474344.; Li K., Wu Q., Feng S. et al. In situ detection of human glioma based on tissue optical properties using diffuse reflectance spectroscopy // Journal of Biophotonics. – 2023. – Vol. 16. – № 11. – P. e202300195. doi:10.1002/jbio.202300195.; Potapov A. A., Goriainov S. A., Loshchenov V. B. et al. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas // Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. – 2013. – Vol. 77. – № 2. – P. 3–10.; Romanishkin I., Savelieva T., Kosyrkova A. et al. Differentiation of glioblastoma tissues using spontaneous Raman scattering with dimensionality reduction and data classification // Frontiers in Oncology. – 2022. – Vol. 12. – P. 944210. doi:10.3389/fonc.2022.944210.; Ospanov A., Romanishkin I., Savelieva T. et al. Optical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods // International Journal of Molecular Sciences. – 2023. – Vol. 24. – № 19. – P. 14432. doi:10.3390/ijms241914432.; Romanishkin I. D., Savelieva T. A., Ospanov A. et al. Classification of intracranial tumors based on optical-spectral analysis // Biomedical Photonics. – 2023. – Vol. 12. – № 3. – P. 4–10. doi:10.24931/2413-9432-2023-12-3-4-10.; Stratonnikov A. A., Meerovich G. A., Ryabova A. V. et al. Application of backward diffuse reflection spectroscopy for monitoring the state of tissues in photodynamic therapy // Quantum Electronics. – 2006. – Vol. 36. – № 12. – P. 1103–1110. doi:10.1070/QE2006v036n12ABEH013331.; Pominova D. V., Ryabova A. V., Skobeltsin A. S. et al. Spectroscopic study of methylene blue in vivo: effects on tissue oxygenation and tumor metabolism // Biomedical Photonics. – 2023. – Vol. 12. – № 1. – P. 4–13. doi:10.24931/2413-9432-2023-12-1-4-13.; Jacques S. L., Pogue B. W. Tutorial on diffuse light transport // Journal of Biomedical Optics. – 2008. – Vol. 13. – № 4. – P. 041302. doi:10.1117/1.2967535.; Bohren C. F., Huffman D. R. Absorption and Scattering of Light by Small Particles / C. F. Bohren, D. R. Huffman, 1., Wiley, 1998. doi:10.1002/9783527618156.; Wang L., Jacques S. L., Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues // Computer Methods and Programs in Biomedicine. – 1995. – Vol. 47. – № 2. – P. 131–146. doi:10.1016/0169-2607(95)01640-F.; Evolution of the Molecular Biology of Brain Tumors and the Therapeutic Implications ed. T. Lichtor, InTech, 2013. doi:10.5772/50198.; Giese A., Bjerkvig R., Berens M. E. et al. Cost of Migration: Invasion of Malignant Gliomas and Implications for Treatment // Journal of Clinical Oncology. – 2003. – Vol. 21. – № 8. – P. 1624–1636. doi:10.1200/JCO.2003.05.063.; Wang S., Meng M., Zhang X. et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest // Oncology Letters. – 2018. doi:10.3892/ol.2018.8232.; Brunberg J. A., Chenevert T. L., McKeever P. E. et al. In vivo MR determination of water diffusion coeffcients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres // AJNR. American journal of neuroradiology. – 1995. – Vol. 16. – № 2. – P. 361–371.; Sinha S., Bastin M. E., Whittle I. R. et al. Diffusion tensor MR imaging of high-grade cerebral gliomas, AJNR. American journal of neuroradiology, 2002, vol. 23(4), pp. 520–527.; Johansen-Berg H., Behrens T. E. J. Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy / H. Johansen-Berg, T. E. J. Behrens, 1st ed ed., Amsterdam Boston: Elsevier/Academic Press, 2009.; Basic neurochemistry: principles of molecular, cellular, and medical neurobiology ed. S. T. Brady, G. J. Siegel, R. W. Albers et al., 8th ed ed., Amsterdam: Academic Press, 2012. 1 c.; Le Bihan D., Mangin J., Poupon C. et al. Diffusion tensor imaging: Concepts and applications, Journal of Magnetic Resonance Imaging, 2001, vol. 13(4), pp. 534–546. doi:10.1002/jmri.1076.; Lu S., Ahn D., Johnson G. et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors, AJNR. American journal of neuroradiology, 2003, vol. 24(5), pp. 937–941.; Goebell E., Paustenbach S., Vaeterlein O. et al. Low-Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Diffusion-Tensor MR Imaging, Radiology, 2006, vol. 239(1), pp. 217–222. doi:10.1148/radiol.2383050059.; Cotter D., Mackay D., Landau S. et al. Reduced Glial Cell Density and Neuronal Size in the Anterior Cingulate Cortex in Major Depressive Disorder, Archives of General Psychiatry, 2001, vol. 58(6), pp. 545. doi:10.1001/archpsyc.58.6.545.; Spacek J. Atlas of Ultrastructural Neurocytology at SynapseWeb [Website]. URL: https://synapseweb.clm.utexas.edu/atlas (accessed: 18.11.2024).; Cruz-Sánchez F. F., Ferreres J. C., Figols J. et al. Prognostic analysis of astrocytic gliomas correlating histological parameters with the proliferating cell nuclear antigen labelling index (PCNA-LI), Histology and Histopathology, 1997, vol. 12(1), pp. 43–49.; Nafe R., Schlote W. Densitometric Analysis of Tumor Cell Nuclei in lowgrade and high-grade Astrocytomas, Electronic Journal of Pathology and Histology, 2002, vol. 8(3).; Candolfi M., Curtin J. F., Nichols W. S. et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological chara-cterization and tumor progression, Journal of Neuro-Oncology, 2007, vol. 85(2), pp. 133–148. doi:10.1007/s11060-007-9400-9.; Nafe R., Herminghaus S., Pilatus U. et al. Morphology of proliferating and non-proliferating tumor cell nuclei in glioblastomas correlates with preoperative data from proton-MR-spectroscopy, Neuropathology, 2004, vol. 24(3), pp. 172–182. doi:10.1111/j.1440-1789.2004.00547.x.; Schiffer Astrocytic Tumors I Berlin/Heidelberg: Springer-Verlag, 2006.p. 27–58. doi:10.1007/1-4020-3998-0_5.; Sarkar C., Jain A., Suri V. Current concepts in the pathology and genetics of gliomas, Indian Journal of Cancer, 2009, vol. 46(2), pp. 108. doi:10.4103/0019-509X.49148.; Pysh J. J., Khan T. Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: An electron microscopic study, Brain Research, 1972, vol. 36(1), pp. 1–18. doi:10.1016/0006-8993(72)90762-7.; Beauvoit B., Evans S. M., Jenkins T. W. et al. Correlation Between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent Tumors, Analytical Biochemistry, 1995, vol. 226(1), pp. 167–174. doi:10.1006/abio.1995.1205.; Beauvoit B., Kitai T., Chance B. Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach, Biophysical Journal, 1994, vol. 67(6), pp. 2501–2510. doi:10.1016/S0006-3495(94)80740-4.; Beauvoit B., Chance B. Time-Resolved Spectroscopy of mitochondria, cells and tissues under normal and pathological conditions, Molecular and Cellular Biochemistry, 1998, vol. 184(1/2), pp. 445–455. doi:10.1023/A:1006855716742.; Schmitt J. M., Kumar G. Turbulent nature of refractive-index variations in biological tissue, Optics Letters, 1996, vol. 21(16), pp. 1310. doi:10.1364/OL.21.001310.
-
9Academic Journal
Πηγή: Сверхкритические Флюиды: Теория и Практика. 16:52-59
Θεματικοί όροι: оптическая спектроскопия, PDLLA, спектроскопия электронного парамагнитного резонанса, сверхкритический диоксид углерода, спиновый зонд 2,2,5,5-тетраметил-4-фенил-3-имидазодин-1-оксил
-
10Conference
Συγγραφείς: Maksimova, Alina, Uvarov, Alexander, Vyacheslavova, Ekaterina, Pozdeev, Vyacheslav, Gudovskikh, Alexander, Kirilenko, Demid, Baranov, Artem
Θεματικοί όροι: плазмохимическое осаждение, оптическая спектроскопия, boron phosphide, PECVD, фосфид бора, plasma enhanced chemical vapor deposition, optical spectroscopy, 7. Clean energy
-
11Academic Journal
Συγγραφείς: Shportko, Kostiantyn V., Venger, Evgen F.
Πηγή: KPI Science News, Iss 1 (2020)
Наукові вісті КПІ; № 1 (2020); 61-66
KPI Science News; № 1 (2020); 61-66
Научные вести КПИ; № 1 (2020); 61-66Θεματικοί όροι: 0301 basic medicine, Chalcogenides, Optical spectroscopy, Dielectric function, Disorder, Crystal lattice, Халькогениды, Оптическая спектроскопия, Диэлектрическая проницаемость, Беспорядок, Кристаллическая решетка, Кристалічна ґратка, 7. Clean energy, 01 natural sciences, Діелектрична проникність, 03 medical and health sciences, Невпорядкування, 0103 physical sciences, T1-995, Оптична спектроскопія, Technology (General), Халькогеніди
Περιγραφή αρχείου: application/pdf
-
12Academic Journal
Συγγραφείς: M. A. Borik, A. V. Kulebyakin, E. E. Lomonova, F. O. Milovich, V. A. Myzina, P. A. Ryabochkin, N. V. Sidorova, N. Yu. Tabachkova, A. S. Chislov, М. А. Борик, А. В. Кулебякин, Е. Е. Ломонова, Ф. О. Милович, В. А. Мызина, П. А. Рябочкина, Н. В. Сидорова, Н. Ю. Табачкова, А. С. Числов
Συνεισφορές: The work was financially supported by Russian Science Foundation Grant No. 22-29-01220., Работа выполнена при финансовой поддержке гранта РНФ 22-29-01220.
Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023); 320-331 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023); 320-331 ; 2413-6387 ; 1609-3577
Θεματικοί όροι: спектроскопия комбинационного рассеяния света, ZrO2–Sm2O3, crystal growth, microhardness, fracture toughness, optical spectroscopy, Raman scattering, ZrO2—Sm2O3, рост кристаллов, микротвердость, вязкость разрушения, оптическая спектроскопия
Περιγραφή αρχείου: application/pdf
Relation: https://met.misis.ru/jour/article/view/562/473; https://met.misis.ru/jour/article/downloadSuppFile/562/199; https://met.misis.ru/jour/article/downloadSuppFile/562/201; https://met.misis.ru/jour/article/downloadSuppFile/562/202; https://met.misis.ru/jour/article/downloadSuppFile/562/203; https://met.misis.ru/jour/article/downloadSuppFile/562/204; https://met.misis.ru/jour/article/downloadSuppFile/562/205; Basu R.N. Materials for solid oxide fuel cells. In: Basu S. (Eds). Recent trends in fuel cell science and technology. New York, NY: Springer; 2007. P. 286—331. https://doi.org/10.1007/978-0-387-68815-2_12; Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012; 37(10): 891—898. https://doi.org/10.1557/mrs.2012.232; Yildirim H., Pachter R. Extrinsic dopant effects on oxygen vacancy formation energies in ZrO2 with implication for memristive device performance. ACS Applied Electronic Materials. 2019; 1(4): 467—477. https://doi.org/10.1021/acsaelm.8b00090; Hongsong Z., Jianguo L., Gang L., Zheng Z., Xinli W. Investigation about thermophysical properties of Ln2Ce2O7 (Ln = Sm, Er and Yb) oxides for thermal barrier coatings. Materials Research Bulletin. 2012; 47(12): 4181—4186. https://doi.org/10.1016/j.materresbull.2012.08.074; Guo L., Guo H., Ma G., Gong S., Xu H. Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln = Nd and Sm) ceramics. Ceramics International. 2013; 39(6): 6743—6749. https://doi.org/10.1016/j.ceramint.2013.02.003; Wei X., Hou G., An Y., Yang P., Zhao X., Zhou H., Chen J. Effect of doping CeO2 and Sc2O3 on structure, thermal properties and sintering resistance of YSZ. Ceramics International. 2021; 47(5): 6875—6883. https://doi.org/10.1016/j.ceramint.2020.11.032; Liu X.Y., Wang X.Z., Javed A., Zhu C., Liang G.Y. The effect of sintering temperature on the microstructure and phase transformation in tetragonal YSZ and LZ/YSZ composites. Ceramics International. 2016; 42(2): 2456—2465. https://doi.org/10.1016/j.ceramint.2015.10.046; Evans A.G., Mumm D.R., Hutchinson J.W., Meier G.H., Pettit F.S. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science. 2001; 46(5): 505—553. https://doi.org/10.1016/S0079-6425(00)00020-7; Vaßen R., Jarligo M.O., Steinke T., Mack D.E., Stöver D. Overview on advanced thermal barrier coatings. Surface and Coatings Technology. 2010; 205(4): 938—942. https://doi.org/10.1016/j.surfcoat.2010.08.151; Bahamirian M., Hadavi S.M.M., Farvizi M., Rahimipour M.R., Keyvani A. Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications. Ceramics International. 2019; 45(6): 7344—7350. https://doi.org/10.1016/j.ceramint.2019.01.018; Bobzin K., Zhao L., Öte M., Königstein T. A highly porous thermal barrier coating based on Gd2O3–Yb2O3 co-doped YSZ. Surface and Coatings Technology. 2019; 366: 349—354. https://doi.org/10.1016/j.surfcoat.2019.03.064; Shi Q., Yuan W., Chao X., Zhu Z. Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. Journal of Sol-Gel Science and Technology. 2017; 84(1): 341—348. https://doi.org/10.1007/s10971-017-4483-z; Chen D., Wang Q., Liu Y., Ning X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surface and Coatings Technology. 2020; 403:v126387. https://doi.org/10.1016/j.surfcoat.2020.126387; Sharma A., Witz G., Howell P.C., Hitchman N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2021; 41(6): 3706—3716. https://doi.org/10.1016/j.jeurceramsoc.2020.10.062; Bisson J.F., Fournier D., Poulain M., Lavigne O., Mévrel R. Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography. Journal of the American Ceramic Society. 2000; 83(8): 1993—1998. https://doi.org/10.1111/j.1151-2916.2000.tb01502.x; Fan W., Wang Z.Z., Bai Y., Che J.W., Wang R.J., Ma F., Tao W.Z., Liang G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. Journal of the European Ceramic Society. 2018; 38(13): 4502—4511. https://doi.org/10.1016/j.jeurceramsoc.2018.06.002; Raghavan S., Wang H., Porter W.D., Dinwiddie R.B, Mayo M.J. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scripta Materialia. 1998; 39(8): 1119—1125.; Loganathan A., Gandhi A.S. Toughness evolution in Gd-and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. Journal of Materials Science. 2017; 52: 7199—7206. https://doi.org/10.1007/s10853-017-0956-2; Ponnuchamy M.B., Gandhi A.S. Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. Journal of the European Ceramic Society. 2015; 35(6): 1879—1887. https://doi.org/10.1016/j.jeurceramsoc.2014.12.027; Rebollo N.R., Gandhi A.S., Levi C.G. Phase stability issues in emerging TBC systems. High Temperature Corrosion and Materials Chemistry IV. 2003: 431—442.; Borik M.A., Chislov A., Kulebyakin A., Lomonova E., Milovich F., Myzina V., Ryabochkina P., Sidorova N., Tabachkova N. Phase composition and mechanical properties of Sm2O3 partially stabilized zirconia crystals. Crystals. 2022; 12(11): 1630. https://doi.org/10.3390/cryst12111630; Niihara K.A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of Materials Science Letters. 1983; 2: 221—223. https://doi.org/10.1007/BF00725625; Chien F.R., Ubic F.J., Prakash V., Heuer A.H. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals. Acta Materialia. 1998; 46(6): 2151—2171. https://doi.org/10.1016/S1359-6454(97)00444-8; https://met.misis.ru/jour/article/view/562
-
13Academic Journal
Συγγραφείς: Shapoval, O. G., Mikerov, A. N., Tuchin, Valery V., Selifonov, A. A.
Πηγή: Optics and spectroscopy. 2019. Vol. 126, № 6. P. 758-768
Θεματικοί όροι: оптическая спектроскопия, 03 medical and health sciences, метиленовый синий, краситель, фотодинамическое действие, 0302 clinical medicine, антибактериальная активность, лазерное излучение, 3. Good health
Συνδεδεμένο Πλήρες ΚείμενοΣύνδεσμος πρόσβασης: http://ui.adsabs.harvard.edu/abs/2019OptSp.126..758S/abstract
https://link.springer.com/article/10.1134/S0030400X19060213
https://link.springer.com/content/pdf/10.1134/S0030400X19060213.pdf
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000672256 -
14Academic Journal
Συγγραφείς: D. Metlenkin A., N. Kiselev V., B. Khaidarov B., T. Khaidarov B., I. Burmistrov N., Yu. Platov T., Д. Метленкин А., Н. Киселев В., Б. Хайдаров Б., Т. Хайдаров Б., И. Бурмистров Н., Ю. Платов Т.
Συνεισφορές: Работа выполнена при финансовой поддержке ФГБОУ ВО «РЭУ имени Г. В. Плеханова»
Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 2 (2022); 51-55 ; Новые огнеупоры; № 2 (2022); 51-55 ; 1683-4518 ; 10.17073/1683-4518-2022-2
Θεματικοί όροι: metallurgical slag, optical spectroscopy, methods of multidimensional analysis, method of main components, металлургический шлак, оптическая спектроскопия, методы многомерного анализа, метод главных компонент
Περιγραφή αρχείου: application/pdf
Relation: https://newogneup.elpub.ru/jour/article/view/1732/1455; Gaskell, D. R. The determination of phase diagrams for slag systems / D. R. Gaskell // Methods for Phase Diagram Determination. ― Elsevier Science Ltd, 2007. ― P. 442‒458.; Goncharova, M. Application of slag from ferrous metal industry in asphalt concrete / M. Goncharova // Proceeding of International Conference in «Modernisation and Researches in Transport System», Perm., 2014.; Kozhukhova, N. Reasonability of application of slags from metallurgy industry in road construction / N. Kozhukhova, N. Kadyshev, A. Cherevatova [et al.] // Energy Management of Municipal Transportation Facilities and Transport. ― Springer, Cham, 2017. ― P. 776‒782.; Stumpe, B. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin / B. Stumpe, T. Engel, B. Steinweg [et al.] // Environmental Science & Technology. ― 2012. ― Vol. 46, № 7. ― P. 3964‒3972.; Rovnaník, P. Characterization of alkali activated slag paste after exposure to high temperatures / P. Rovnaník, P. Bayer, P. Rovnaníková // Construction and Building Materials. ― 2013. ― Vol. 47. ― P. 1479‒1487.; Lodeiro, I. G. Effect of alkalis on fresh C–S–H gels. FTIR analysis / I. G. Lodeiro, D. E. Macphee, A. Palomo [et al.] // Cement and Concrete Research. ― 2009. ― Vol. 39, № 3. ― P. 147‒153.; García-Lodeiro, I. FTIR study of the sol–gel synthesis of cementitious gels: C‒S‒H and N‒A‒S‒H / I. GarcíaLodeiro, A. Fernández-Jiménez, M. T. Blanco [et al.] // Journal of Sol-Gel Science and Technology. ― 2008. ― Vol. 45, № 1. ― P. 63‒72.; Puertas, F. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes / F. Puertas, A. Fernández-Jiménez // Cement and Concrete Composites. ― 2003. ― Vol. 25, № 3. ― P. 287‒292.; Puertas, F. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate / F. Puertas, A. FernándezJiménez, M. T. Blanco-Varela // Cement and Concrete Research. ― 2004. ― Vol. 34, № 1. ― P. 139‒148.; Sowmya, T. Spectroscopic analysis of slags-preliminary observations / T. Sowmya, S. R. Sankaranarayanan // VII International Conference on Molten Slags, Fluxes and Salts, The South African Institute of Mining and Metallurgy, South Africa. ― 2004. ― P. 693‒697.; Mohassab, Y. Analysis of slag chemistry by FTIR‒ RAS and Raman spectroscopy: effect of water vapor content in H2‒H2O‒CO‒CO2 mixtures relevant to a novel green ironmaking technology / Y. Mohassab, H. Y. Sohn // Steel Research International. ― 2015. ― Vol. 86, № 7. ― P. 740‒752.; Bitay, E. Spectroscopic characterization of iron slags from the archaeological sites of Brâncoveneşti, Călugăreni and Vătava located on the mureş county (Romania) sector of the Roman limes / E. Bitay, I. Kacsó, C. Tănăselia [et al.] // Applied Sciences. ― 2020. ― Vol. 10, № 15. ― Article 5373.; Коровкин, М. В. Инфракрасная спектроскопия карбонатных минералов : уч. пособие / М. В. Коровкин. ― Томск : Изд-во Томского политехнического университета, 2016. ― 96 с.; Платов, Ю. Т. Использование декомпозации ИКспектров при анализе структурно-фазовых превращений каолинита / Ю. Т. Платов, Р. А. Платова, П. Г. Молодкина // Журнал прикладной спектроскопии. ― 2020. ― Т. 87, № 6. ― С. 897‒904.; Ptáček, P. Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin / P. Ptáček, F. Šoukal, T. Opravil [et al.] // Journal of Solid State Chemistry. ― 2011. ― Vol. 184, № 10. ― P. 2661‒2667.; https://newogneup.elpub.ru/jour/article/view/1732
-
15Academic Journal
Συγγραφείς: Ананьев С. A.
Συνεισφορές: Институт физики, Казанский федеральный университет
Πηγή: Журнал структурной химии. 65:127721
Θεματικοί όροι: оптическая спектроскопия, рентгеноструктурный анализ, шпинель, Химия, кристаллохимия, Геология, ташелгит, мессбауэровская спектроскопия
-
16Academic Journal
Πηγή: Известия высших учебных заведений. Физика. 2022. Т. 65, № 11. С. 11-18
Θεματικοί όροι: разряды атмосферного давления, оптическая спектроскопия, экспериментальные исследования, плазма газоразрядная
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000925445
-
17Conference
Συγγραφείς: Сиделёв, Дмитрий Владимирович
Θεματικοί όροι: функциональные покрытия, алюминиевые покрытия, магнетронное распыление, источники питания, металлические покрытия, оптическая спектроскопия, плазма
Περιγραφή αρχείου: application/pdf
Relation: info:eu-repo/grantAgreement/RFBR//18-3800676; Физико-технические проблемы в науке, промышленности и медицине. Российский и международный опыт подготовки кадров : сборник научных трудов X Международной научно-практической конференции, г. Томск, 09 – 11 сентября 2020 г.; http://earchive.tpu.ru/handle/11683/63209
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/63209
-
18Academic Journal
Πηγή: Приборы и системы. Управление, контроль, диагностика.
Θεματικοί όροι: multichannel spectrometer, углеводородный газ, многоканальный спектрометр, diagnostic device, hydrocarbon gas, spectroscopic informative properties, спектроскопические информативные признаки, оптическая спектроскопия, процессы горения, узкополосный оптический фильтр, narrow-band optical filter, прибор диагностики, optical spectroscopy, combustion processes
-
19
-
20Conference
Θεματικοί όροι: плазма, оптическая спектроскопия, алюминиевые покрытия, функциональные покрытия, магнетронное распыление, источники питания, металлические покрытия
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/63209