Εμφανίζονται 1 - 20 Αποτελέσματα από 28 για την αναζήτηση '"оптическая когерентная томография-ангиография"', χρόνος αναζήτησης: 0,61δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: National Journal glaucoma; Том 23, № 2 (2024); 95-106 ; Национальный журнал Глаукома; Том 23, № 2 (2024); 95-106 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/527/470; Quigley HA, Broman AT. The number of people with glaucoma world-wide in 2010 and 2020. Br J Ophthalmol 2006; 90(3):262-267. https://doi.org/10.1136/bjo.2005.081224.; Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013.; Основные показатели первичной инвалидности взрослого населения Российской Федерации за 2021 год. ФГБУ «Центральный научно-исследовательский институт организации и информатизации здравоохранения»: Министерство здравоохранения Российской Федерации; 2022. 100 с.; Национальное руководство по глаукоме для практикующих врачей. Изд. 4-е, испр. и доп. Под ред. Егорова Е.А., Еричева В.П. М: ГЭОТАР-Медиа 2019; 384.; European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol 2021; 105(Suppl 1):1-169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines.; Еричев В.П., Антонов А.А., Витков А.А., Григорян Л.А. Статическая периметрия в диагностике глаукомы. Часть 1. Базовые принципы. Вестник офтальмологии 2021; 137(5-2):281-288. https://doi.org/10.17116/oftalma2021137052281; Еричев В.П., Антонов А.А., Витков А.А., Григорян Л.А. Статическая периметрия в диагностике глаукомы. Часть 2. Протокол исследования, классификации глаукомы, периметрические дефекты через призму структурно-функциональной корреляции. Вестник офтальмологии 2021; 137(5-2):289299. https://doi.org/10.17116/oftalma2021137052289; Антонов А.А., Козлова И.В., Витков А.А. Максимальная медикаментозная терапия глаукомы — что есть в нашем арсенале? Национальный журнал глаукома 2020; 19(2):51-58. https://doi.org/10.25700/NJG.2020.02.06; Еричев В.П., Онищенко А.Л., Куроедов А.В., Петров С.Ю., Брежнев А.Ю., Антонов А.А., Витков А.А., Мураховска Ю.К. Офтальмологические факторы риска развития первичной открытоугольно глаукомы. Российский медицинский журнал. РМЖ Клиническая офтальмология 2019; 2:81-86. https://doi.org/10.323642311772920191928186; Еричев В.П., Петров С.Ю., Козлова И.В., Макарова А.С., Рещикова В.С. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 3. Роль морфофункциональных взаимоотношений в раннем выявлении и мониторинге глаукомы. Национальный журнал глаукома 2016; 15(2):96-101.; Kotowski J, Wollstein G, Ishikawa H, Schuman JS. Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring. Surv Ophthalmol 2014; 59(4):458-467. https://doi.org/10.1016/j.survophthal.2013.04.007.; Агаева Ф.А., Эфендиева М.Э. Гейдельбергская ретинальная томография. Офтальмология 2013; 3(13):93-96; Vessani RM, Moritz R, Batis L, Zagui RB, Bernardoni S, Susanna R. Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma 2009; 18(3):253-261. https://doi.org/10.1097/IJG.0b013e31818153da.; Harasymowycz PJ, Papamatheakis DG, Fansi AK, Gresset J, Lesk MR. Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg Retina Tomagraph II) in high-risk populations: a pilot study. Ophthalmology 2005; 112(12):2164-2171. https://doi.org/10.1016/j.ophtha.2005.09.009.; Betz P. Photographie stéréoscopique et photogrammétrie de l'excavation physiologique de la papille. 1981.; Iester M, Mikelberg FS, Drance SM. The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 1997; 104(3):545-548. https://doi.org/10.1016/s0161-6420(97)30277-2.; Koch EC, Plange N, Fuest M, Schimitzek H, Kuerten D. [Diagnostic Precision of the Confocal Scanning Laser Ophthalmoscopy in the Large Optic Disc with Physiological Excavation — a Long-Term Study]. Klin Monbl Augenheilkd 2019; 236(1):88-95. https://doi.org/10.1055/s-0043-111798.; Healey PR, Lee AJ, Aung T, Wong TY, Mitchell P. Diagnostic accuracy of the Heidelberg Retina Tomograph for glaucoma a population-based assessment. Ophthalmology 2010; 117(9):1667-1673. https://doi.org/10.1016/j.ophtha.2010.07.001.; Zheng Y, Wong TY, Lamoureux E, Mitchell P, Loon SC, Saw SM, Aung T. Diagnostic ability of Heidelberg Retina Tomography in detecting glaucoma in a population setting: the Singapore Malay Eye Study. Ophthalmology 2010; 117(2):290-297. https://doi.org/10.1016/j.ophtha.2009.07.018.; Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 2000; 107(12):2272-2277. https://doi.org/10.1016/s0161-6420(00)00363-8.; Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41(7):1730-1742.; Куроедов А.В., Городничий В.В. Компьютерная ретинотомография (HRT): диагностика, динамика, достоверность. М: 2007; 236.; Danias J, Serle J. Can Visual Field Progression be Predicted by Confocal Scanning Laser Ophthalmoscopic Imaging of the Optic Nerve Head in Glaucoma? (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2015; 113:T4.; Saarela V, Falck A, Airaksinen PJ, Tuulonen A. The sensitivity and specificity of Heidelberg Retina Tomograph parameters to glaucomatous progression in disc photographs. Br J Ophthalmol 2010; 94(1): 68-73. https://doi.org/10.1136/bjo.2009.159251.; Bowd C, Balasubramanian M, Weinreb RN, Vizzeri G, Alencar LM, O'Leary N, Sample PA, Zangwill LM. Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression. Invest Ophthalmol Vis Sci 2009; 50(2): 691-701. https://doi.org/10.1167/iovs.08-2136.; Chauhan BC, Hutchison DM, Artes PH, Caprioli J, Jonas JB, LeBlanc RP, Nicolela MT. Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study. Invest Ophthalmol Vis Sci 2009; 50(4):1682-1691. https://doi.org/10.1167/iovs.08-2457.; Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1):19-28. https://doi.org/10.1016/s0161-6420(92)32018-4.; Weinreb RN, Bowd C, Zangwill LM. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 2003; 121(2):218-224. https://doi.org/10.1001/archopht.121.2.218.; Reus NJ, Lemij HG. Scanning laser polarimetry of the retinal nerve fiber layer in perimetrically unaffected eyes of glaucoma patients. Ophthalmology 2004;111(12):2199-2203. https://doi.org/10.1016/j.ophtha.2004.06.018.; Zheng W, Baohua C, Qun C, Zhi Q, Hong D. Retinal nerve fiber layer images captured by GDx-VCC in early diagnosis of glaucoma. Ophthalmologica 2008; 222(1):17-20. https://doi.org/10.1159/000109273.; Dimopoulos AT, Katsanos A, Mikropoulos DG, Giannopoulos T, Empeslidis T, Teus MA, Hollo G, Konstas AG. Scanning laser polarimetry in eyes with exfoliation syndrome. Eur J Ophthalmol 2013; 23(5): 743-750. https://doi.org/10.5301/ejo.5000247.; Ara M, Ferreras A, Pajarin AB, Calvo P, Figus M, Frezzotti P. Repeatability and Reproducibility of Retinal Nerve Fiber Layer Parameters Measured by Scanning Laser Polarimetry with Enhanced Corneal Compensation in Normal and Glaucomatous Eyes. Biomed Res Int 2015; 2015:729392. https://doi.org/10.1155/2015/729392.; Wang Z, Liu XW, Li XY, Zhang WJ, Dai H. [Detection of the changes of retinal nerve fiber layer thickness by GDx-VCC laser scanning polarimetry in primary open angle glaucoma patients]. Zhonghua Yan Ke Za Zhi 2012; 48(6):497-501.; Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, Zhang MZ. The effect of myopia on retinal nerve fibre layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol 2011; 95(2):255-260. https://doi.org/10.1136/bjo.2009.176768.; Dada T, Aggarwal A, Bali SJ, Sharma A, Shah BM, Angmo D, Panda A. Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC). Nepal J Ophthalmol 2013; 5(1):3-8. https://doi.org/10.3126/nepjoph.v5i1.7814.; Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk. Am J Ophthalmol 2006; 142(3):475-482. https://doi.org/10.1016/j.ajo.2006.04.053.; Bozkurt B, Irkec M, Tatlipinar S, Erdener U, Orhan M, Gedik S, Karaagaoglu E. Retinal nerve fiber layer analysis and interpretation of GDx parameters in patients with tilted disc syndrome. Int Ophthalmol 2001; 24(1):27-31. https://doi.org/10.1023/a:1014490414688.; Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science 1991; 254(5035):1178-1181. https://doi.org/10.1126/science.1957169.; Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, Swanson EA. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995; 6(2):89-95. https://doi.org/10.1097/00055735-199504000-00014.; Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113(5):586-596. https://doi.org/10.1001/archopht.1995.01100050054031.; Стоюхина А.С., Будзинская М.В., Стоюхин С.Г., Асламазова А.Э. Оптическая когерентная томография-ангиография в офтальмоонкологии. Вестник офтальмологии 2019; 135(1):104-111. https://doi.org/ 10.17116/oftalma2019135011104; Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002; 7(3):457-463. https://doi.org/10.1117/1.1482379.; Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 2010; 117(4):738-746. https://doi.org/10.1016/j.ophtha.2009.08.039.; Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009; 93(8):1057-1063. https://doi.org/10.1136/bjo.2009.157875.; Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Jr., Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139(1):44-55. https://doi.org/10.1016/j.ajo.2004.08.069.; Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112(1):3-9. https://doi.org/10.1016/j.ophtha.2004.06.039.; Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005; 46(7):2440-2443. https://doi.org/10.1167/iovs.04-1174.; Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology 2009; 116(12):2294-2299. https://doi.org/10.1016/j.ophtha.2009.06.012.; Vizzeri G, Balasubramanian M, Bowd C, Weinreb RN, Medeiros FA, Zangwill LM. Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. Opt Express 2009; 17(5):4004-4018. https://doi.org/10.1364/oe.17.004004.; Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glauco- ma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009; 127(12):1603-1609. https://doi.org/10.1001/archophthalmol.2009.296.; Hung KC, Wu PC, Poon YC, Chang HW, Lai IC, Tsai JC, Lin PW, Teng MC. Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia. Optom Vis Sci 2016; 93(2):126-135. https://doi.org/10.1097/OPX.0000000000000776.; Chua J, Tan B, Ke M, Schwarzhans F, Vass C, Wong D, Nongpiur ME, Wei Chua MC, Yao X, Cheng CY, Aung T, Schmetterer L. Diagnostic Ability of Individual Macular Layers by Spectral-Domain OCT in Different Stages of Glaucoma. Ophthalmol Glaucoma 2020; 3(5):314-326. https://doi.org/10.1016/j.ogla.2020.04.003.; Morales-Fernandez L, Jimenez-Santos M, Martinez-de-la-Casa JM, Sanchez-Jean R, Nieves M, Saenz-Frances F, Garcia-Saenz S, Perucho L, Gomez-de-Liano R, Garcia-Feijoo J. Diagnostic capacity of SD-OCT segmented ganglion cell complex versus retinal nerve fiber layer analysis for congenital glaucoma. Eye (Lond) 2018; 32(8):1338-1344. https://doi.org/10.1038/s41433-018-0077-4.; Aksoy FE, Altan C, Yilmaz BS, Yilmaz I, Tunc U, Kesim C, Kocamaz M, Pasaoglu I. A comparative evaluation of segmental analysis of macu- lar layers in patients with early glaucoma, ocular hypertension, and healthy eyes. J Fr Ophtalmol 2020; 43(9):869-878. https://doi.org/10.1016/j.jfo.2019.12.020.; Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, Xu G, Fan N, Pang CP, Tse KK, Lam DS. Evaluation of retinal nerve fiber layer pro- gression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51(1):217-222. https://doi.org/10.1167/iovs.09-3468.; Nguyen AT, Greenfield DS, Bhakta AS, Lee J, Feuer WJ. Detecting Glaucoma Progression Using Guided Progression Analysis with OCT and Visual Field Assessment in Eyes Classified by International Classification of Disease Severity Codes. Ophthalmol Glaucoma 2019; 2(1):36-46. https://doi.org/10.1016/j.ogla.2018.11.004.; Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 2012; 119(9):1858-1866. https://doi.org/10.1016/j.ophtha.2012.03.044. 58. Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 2012; 119(2):308-313. https://doi.org/10.1016/j.ophtha.2011.08.022.; Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H, Ghahari E, Manalastas PIC, Proudfoot J, Weinreb RN. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glau- coma. Ophthalmology 2019; 126(7):980-988. https://doi.org/10.1016/j.ophtha.2019.03.003.; Mwanza JC, Sayyad FE, Budenz DL. Choroidal thickness in unilateral advanced glaucoma. Invest Ophthalmol Vis Sci 2012; 53(10):6695-6701. https://doi.org/10.1167/iovs.12-10388.; Li L, Bian A, Zhou Q, Mao J. Peripapillary choroidal thickness in both eyes of glaucoma patients with unilateral visual field loss. Am J Ophthalmol 2013; 156(6):1277-1284 e1271. https://doi.org/10.1016/j.ajo.2013.07.011.; Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, Xin C, Kono R, Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coher- ence tomography-based microangiography. Quant Imaging Med Surg 2016; 6(2):125-133. https://doi.org/10.21037/qims.2016.03.05.; Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudum- bai RC, Johnstone MA, Chen PP, Wang RK. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography. Invest Ophthalmol Vis Sci 2016; 57(9):OCT475-485. https://doi.org/10.1167/iovs.15-18909.; Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients With Central Visual Field Defects. Invest Ophthalmol Vis Sci 2017; 58(3):1637-1645. https://doi.org/10.1167/iovs.16-21079.; Braaf B, Vermeer KA, Vienola KV, de Boer JF. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt Express 2012; 20(18):20516-20534. https://doi.org/10.1364/OE.20.020516.; Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol 2015; 133(9):1045-1052. https://doi.org/10.1001/jamaophthalmol.2015.2225.; Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014; 121(7):1322-1332. https://doi.org/10.1016/j.ophtha.2014.01.021.; Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3(12):3127-3137. https://doi.org/10.1364/BOE.3.003127.; Bojikian KD, Chen CL, Wen JC, Zhang Q, Xin C, Gupta D, Mudumbai RC, Johnstone MA, Wang RK, Chen PP. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS One 2016; 11(5):e0154691. https://doi.org/10.1371/journal.pone.0154691.; Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Invest Ophthalmol Vis Sci 2017; 58(9):3637-3645. https://doi.org/10.1167/iovs.17-21846.; Alnawaiseh M, Lahme L, Muller V, Rosentreter A, Eter N. Correla- tion of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2018; 256(3):589-597. https://doi.org/10.1007/s00417-017-3865-9.; Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci 2016; 57(9):OCT451-459. https://doi.org/10.1167/iovs.15-18944.; Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, Fu H, Lim C, Tay ELT, Loo-Valdez RG, Teo HY, Lim Ph A, Yip LWL. Optical Coherence Tomography Angiography of Optic Disc and Macula Vessel Density in Glaucoma and Healthy Eyes. J Glaucoma 2019; 28(1):80-87. https://doi.org/10.1097/IJG.0000000000001125.; Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, Penteado RC, Weinreb RN. Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glau- coma Suspect, and Healthy Eyes. Am J Ophthalmol 2018; 190:69-77. https://doi.org/10.1016/j.ajo.2018.03.026.; Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Association of Myopia With Peripapillary Perfused Capillary Density in Patients With Glaucoma: An Optical Coherence Tomogra- phy Angiography Study. JAMA Ophthalmol 2018; 136(5):507-513. https://doi.org/10.1001/jamaophthalmol.2018.0776.; Akil H, Chopra V, Al-Sheikh M, Ghasemi Falavarjani K, Huang AS, Sadda SR, Francis BA. Swept-source OCT angiography imaging of the macular capillary network in glaucoma. Br J Ophthalmol 2017; 132(4):515-519. https://doi.org/10.1136/bjophthalmol-2016-309816.; Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, Akagi T, Christopher M, Yarmohammadi A, Moghimi S, Weinreb RN. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glau- coma. J Glaucoma 2018; 27(6):481-489. https://doi.org/10.1097/IJG.0000000000000964.; Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, Webers CAB. Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage. J Glaucoma 2017; 26(10):888-895. https://doi.org/10.1097/IJG.0000000000000758.; Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, Barboni P, Bandello F. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Invest Ophthalmol Vis Sci 2017; 58(13):5713-5722. https://doi.org/10.1167/iovs.17-22865.; Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol 2017; 182:107-117. https://doi.org/10.1016/j.ajo.2017.07.011.; Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, Christopher M, Yarmohammadi A, Manalastas PIC, Shoji T, Bowd C, Weinreb RN. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthal- mology 2018; 125(11):1720-1728. https://doi.org/10.1016/j.ophtha.2018.05.006.; Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2012; 53(8):4519-4530. https://doi.org/10.1167/iovs.11-8362.; Stoor K, Karvonen E, Leiviska I, Liinamaa J, Saarela V. Comparison of imaging parameters between OCT, GDx and HRT in the Northern Finland birth cohort eye study. Acta Ophthalmol 2022; 100(5): e1103-e1111. https://doi.org/10.1111/aos.15046.; Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Cap- rioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol 2007;144(5):724-732. https://doi.org/10.1016/j.ajo.2007.07.010.; Karvonen E, Stoor K, Luodonpaa M, Hagg P, Lintonen T, Liinamaa J, Tuulonen A, Saarela V. Diagnostic performance of modern imaging instruments in glaucoma screening. Br J Ophthalmol 2020; 104(10): 1399-1405. https://doi.org/10.1136/bjophthalmol-2019-314795.; Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 2001; 119(7):985-993. https://doi.org/10.1001/archopht.119.7.985.; Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004; 122(6):827-837. https://doi.org/10.1001/archopht.122.6.827.; Sato S, Hirooka K, Baba T, Shiraga F. Comparison of optic nerve head parameters using Heidelberg Retina Tomograph 3 and spectral-domain optical coherence tomography. Clin Exp Ophthalmol 2012; 40(7):721-726. https://doi.org/10.1111/j.1442-9071.2012.02782.x.; Moreno-Montanes J, Anton A, Garcia N, Olmo N, Morilla A, Fallon M. Comparison of retinal nerve fiber layer thickness values using Stratus Optical Coherence Tomography and Heidelberg Retina Tomograph-III. J Glaucoma 2009; 18(7):528-534. https://doi.org/10.1097/IJG.0b013e318193c29f.; Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 2012; 119(11):2261-2269. https://doi.org/10.1016/j.ophtha.2012.06.009.; Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology 2008; 115(8):1340-1346. https://doi.org/10.1016/j.ophtha.2007.11.008.; Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA, Liebmann JM, Medeiros FA. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci 2010; 51(7):3531-3539. https://doi.org/10.1167/iovs.09-4350.; Kim HG, Heo H, Park SW. Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma. Optom Vis Sci 2011; 88(1):124-129. https://doi.org/10.1097/OPX.0b013e3181fdef9c.; Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand 2006; 84(5):650-655. https://doi.org/10.1111/j.1600-0420.2006.00747.x.; Horn FK, Mardin CY, Laemmer R, Baleanu D, Juenemann AM, Kruse FE, Tornow RP. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest Ophthalmol Vis Sci 2009; 50(5):1971-1977. https://doi.org/10.1167/iovs.08-2405.; Xu G, Weinreb RN, Leung CKS. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology 2013; 120(12):2493-2500. https://doi.org/10.1016/j.ophtha.2013.07.027.; Lever M, Halfwassen C, Unterlauft JD, Bechrakis NE, Manthey A, Bohm MRR. Retinal nerve fibre layer thickness measurements in childhood glaucoma: the role of scanning laser polarimetry and optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2021; 259(12):3777-3786. https://doi.org/10.1007/s00417-021-05276-z.; Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis. Surv Ophthalmol 2017; 62(4): 446-461. https://doi.org/10.1016/j.survophthal.2017.01.001.; https://www.glaucomajournal.ru/jour/article/view/527

  2. 2
    Academic Journal

    Πηγή: National Journal glaucoma; Том 23, № 2 (2024); 3-10 ; Национальный журнал Глаукома; Том 23, № 2 (2024); 3-10 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/517/460; Grzybowski A., Och M., Kanclerz P. et al. Primary Open Angle Glau- coma and Vascular Risk Factors: A Review of Population Based Studies from 1990 to 2019. J Clin Med 2020; 11;9(3):761. https://doi.org/10.3390/jcm9030761.; Tham Y.-C., Cheng C.-Y. Associations between chronic systemic diseases and primary open angle glaucoma: An epidemiological perspective. Clin Exp Ophthalmol 2016; 45:24-32. https://doi.org/10.1111/ceo.12763.; Mahabadi N., Foris L.A., Tripathy K. Open Angle Glaucoma. Treasure Island (FL): Stat Pearls Publishing 2022.; Zhang N., Wang J., Li Y. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep 2021; 11(13762). https://doi.org/10.1038/s41598-021-92971-w.; Lin M., Hou B., Liu L. Automated diagnosing primary open-angle glaucoma from fundus image by simulating human’s grading with deep learning. Sci Rep 2022; 12(14080). https://doi.org/10.1038/s41598-022-17753-4.; Baba M., Idriss A., Yahya T. et al. Primary Open Angle Glaucoma: Epi- demiological, Clinical and Therapeutic Aspects of 63 Cases at National Hospital Center in Mauritania. Open J Ophthalmol 2020; 10: 229-240. https://doi.org/10.4236/ojoph.2020.103025.; Курышева Н.И., Маслова Е.В., Трубилина А.В., Фомин А.В. ОКТангиография и цветовое допплеровское картирование в исследовании гемоперфузии сетчатки и зрительного нерва при глаукоме. Офтальмология 2016; 13(2):102-110. https://doi.org/10.18008/1816-5095-2016-2-102-110.; Herbort C.P., Takeuchi M., Papasavvas I. et al. Optical Coherence Tomography Angiography (OCT-A) in Uveitis: A Literature Review and a Reassessment of Its Real Role. Diagnostics. 2023; 13:601. https://doi.org/10.3390/diagnostics13040601.; Жукова С.И., Юрьева Т.Н., Микова О.И. и соавт. ОКТ-ангиография в оценке хориоретинального кровотока при колебании внутри- глазного давления у больных первичной открытоугольной глаукомой. РМЖ Клиническая офтальмология 2016; 16(2):98-103 https://doi.org/10.21689/2311-7729-2016-16-2-98-103.; Lykkebirk L., Lindberg A.S.W., Karlesand I. et al. Peripapillary Ves- sel Density in Relation to Optic Disc Drusen: A Multimodal Optical Coherence Tomography Study. Journal of Neuroophthalmology 2023; 43(2):185-190. https://doi.org/10.1097/wno.0000000000001667.; Bilici S., Duman R. The current clinical role of optical coherence tomography angiography in neuro-ophthalmological diseases. Taiwan Journal of Ophthalmology 2022; 12(3):264-272. https://doi.org/10.4103/tjo.tjo_55_21.; Курышева Н.И. ОКТ-ангиография и ее роль в исследовании ретинальной микроциркуляции при глаукоме (часть первая). Российский офтальмологический журнал. 2018; 11(2): 82-86. https://doi.org/10.21516/2072-0076-2018-11-2-82-86.; Yan Y., Liao Y.J. Updates on ophthalmic imaging features of optic disc drusen, papilledema, and optic disc edema. Current Opinion in Neurology 2021; 34(1):108-115. https://doi.org/10.1097/WCO.0000000000000881.; Maidenko K. Primary open angle glaucoma: mechanisms of pathogenesis and genetic predisposition. Review. Medical Science of Ukraine (MSU) 2022; 18(2):89-102. https://doi.org/10.32345/2664-4738.2.2022.11.; Liu L., Jia Y., Takusagawa H.L. et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthal- mol 2015; 133(9):1045-1052. https://doi.org/10.1001/jamaophthalmol.2015.2225.; Wang Y., Fawzi A.A., Varma R. et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2011; 52(2):840-845. https://doi.org/10.1167/iovs.10-5985.; Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 2015; 35(11):2196-2203. https://doi.org/10.1097/IAE.0000000000000635.; Tabl A.A., Tabl M.A. Correlation between OCT-angiography and photopic negative response in patients with primary open angle glaucoma. Int Ophthalmol 2023; 43:1889-1901. https://doi.org/10.1007/s10792-022-02588-9.; Курышева Н.И., Маслова Е.В. Оптическая когерентная томография с функцией ангиографии в диагностике глаукомы. Вестник офтальмологии 2016; 132(5):98-102. https://doi.org/10.17116/oftalma2016132598-102.; https://www.glaucomajournal.ru/jour/article/view/517

  3. 3
  4. 4
  5. 5
    Academic Journal

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 15, № 2 (2023); 188-199 ; Трансплантология; Том 15, № 2 (2023); 188-199 ; 2542-0909 ; 2074-0506

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/773/777; https://www.jtransplantologiya.ru/jour/article/view/773/795; Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8(3):226–238. PMID: 31999944 https://doi.org/10.1016/S2213-8587(19)30412-7; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759; Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021:1497449. https://doi.org/10.1155/2021/1497449; Cao Y, Liu X, Lan X, Ni K, Li L, Fu Y. Simultaneous pancreas and kidney transplantation for end-stage kidney disease patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Langenbecks Arch Surg. 2022;407(3):909–925. PMID: 34279713 https://doi.org/10.1007/s00423-021-02249-y; Scheuermann U, Rademacher S, Jahn N, Sucher E, Seehofer D, Sucher R, et al. Impact of pre-transplant dialysis modality on the outcome and healthrelated quality of life of patients after simultaneous pancreas-kidney transplantation. Health Qual Life Outcomes. 2020;18(1):303. PMID: 32912255 https://doi.org/10.1186/s12955-020-01545-3; Kal A, Kal O, Eroglu FC, Öner O, Kucukerdonmez C, Yılmaz G. Evaluation of choroidal and retinal thickness measurements in adult hemodialysis patients using spectral-domain optical coherence tomography. Arq Bras Oftalmol. 2016;79(4):229-232. PMID: 27626146 https://doi.org/10.5935/0004-2749.20160066; Chen H, Zhang X, Shen X. Ocular changes during hemodialysis in patients with end-stage renal disease. BMC Ophthalmol. 2018;18(1):208. PMID: 30139333 https://doi.org/10.1186/s12886-018-0885-0; Chang IB, Lee JH, Kim JS. Changes in choroidal thickness in and outside the macula after hemodialysis in patients with end-stage renal disease. Retina. 2017;37(5):896-905. PMID: 27557086 https://doi.org/10.1097/IAE.0000000000001262; Shin YU, Lee DE, Kang MH, Seong M, Yi J-H, Han S-W, et al. Optical coherence tomography angiography analysis of changes in the retina and the choroid after haemodialysis. Sci Rep. 2018;8(1):17184. PMID: 30464196 https://doi.org/10.1038/s41598-018-35562-6; Hwang H, Chae JB, Kim JY, Moon BG, Kim DY. Changes in optical coherence tomography findings in patients with chronic renal failure undergoing dialysis for the first time. Retina. 2019;39(12):2360–2368. PMID: 30180144 https://doi.org/10.1097/IAE.0000000000002312; Takamura Y, Matsumura T, Ohkoshi K, Takei T, Ishikawa K, Shimura M, et al. Functional and anatomical changes in diabetic macular edema after hemodialysis initiation: one-year follow-up multicenter study. Sci Rep. 2020;10(1):7788. PMID: 32385333 https://doi.org/10.1038/s41598-020-64798-4; Porta M, Kohner E. Screening for diabetic retinopathy in Europe. Diabet Med. 1991;8(3):197–198. PMID: 1828731 https://doi.org/10.1111/j.1464-5491.1991.tb01571.x; Гацу М.В., Байбородов Я.В. Клинико-топографическая классификация диабетических макулопатий. Сахарный диабет. 2008; 11(3):20–22. https://doi.org/10.14341/2072-0351-5353; Yang X, Yu X-W, Zhang D-D, Fan Z-G. Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases. Chin Med J (Engl). 2020;133(21):2586-2594. PMID: 32852382. https://doi.org/10.1097/CM9.0000000000001015; Forrester JV, Kuffova L, Delibegovic M. The Role of inflammation in Diabetic Retinopathy. Front Immunol. 2020;11:583687. PMID: 33240272 https://doi.org/10.3389/fimmu.2020.583687; Reiner A, Fitzgerald MEC, Del Mar N, Li C. Neural control of choroidal blood flow. Prog Retin Eye Res. 2018;64:96–130. PMID: 29229444 https://doi.org/10.1016/j.preteyeres.2017.12.001; https://www.jtransplantologiya.ru/jour/article/view/773

  6. 6
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 20, № 1 (2023); 88-94 ; Офтальмология; Том 20, № 1 (2023); 88-94 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2023-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2046/1075; World Health Organization: Blindness and vision impairment. Fact sheets. World Health Organization, 2021. Доступно по: https://www.who.int. Ссылка активна на 12.09.2022.; Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патологии витреомакулярного интерфейса. Обзор литературы в вопросах и ответах. Офтальмохирургия. 2015;2:80–85. DOI:10.25276/0235-4160-2015-2-80-86; Kim SH, Kim HK, Yang JY, Lee SC, Kim SS. Visual Recovery after Macular Hole Surgery and Related Prognostic Factors. Korean Journal of Ophthalmology. 2018;32(2):140–146. DOI:10.3341/kjo.2017.0085; Шамрей Д.В., Куликов А.Н., Бойко Э.В., Чурашов С.В., Кольбин А.А. Современные возможности микроинвазивной витреоретинальной хирургии в реабилитации пациентов с постравматической субатрофией глазного яблока. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2021;16(1):118–123. DOI:10.25881/BPNMSC.2021.18.96.022. — EDN XEVVZI; Попов Е.М., Куликов А.Н., Чурашов С.В., Гаврилюк И.О., Егорова Е.Н., Аббасова А.И. Сравнение показателей получаемой разными способами аутоплазмы, используемой для лечения пациентов с макулярным разрывом. Офтальмологические ведомости. 2021;14(4):27–34. DOI:10.17816/OV89413; Байбородов, Я.В. Анатомические и функциональные результаты применения различных вариантов техники хирургического закрытия макулярных разрывов. Современные технологии в офтальмологии. 2015;1:22–24. Доступно по: https://www.eyepress.ru/article.aspx?16343. Ссылка активна на 12.09.2022.; Gaudric A, Tadayoni R. Macular Hole. Ryan’s Retina, 6th Edition. 2017:121. Доступно по: https://www.elsevier.ca/ca/product.jsp?isbn=9780323401982. Ссылка активна на 12.09.2022.; Байбородов Я.В., Жоголев К.С., Хижняк И.В. Темпы восстановления остроты зрения после хирургического лечения макулярных разрывов с интраоперационным применением оптической когерентной томографии и различных методов визуализации внутренней пограничной мембраны. Вестник офтальмологии. 2017;133(6):90–98. DOI:10.17116/oftalma2017133690-98; Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Функциональные результаты хирургического лечения идиопатических макулярных разрывов. Вестник офтальмологии. 2016;132(2):14–20. DOI:10.17116/oftalma2016132214-20; Javid CG, Lou PL. Complications of macular hole surgery. International ophthalmology clinics. 2000;40(1):225–232. DOI:10.1097/00004397-200001000-00021; Yu Y, Qi B, Liang X, Wang Z, Wang J, Liu W. Intraoperative iatrogenic retinal breaks in 23 gauge vitrectomy for stage 3 and stage 4 idiopathic macular holes. British Journal of Ophthalmology. 2021;105(1):93–96. DOI:10.1136/bjophthalmol-2019-315579; Mester U, Becker M. Prognosefaktoren bie der Makulalochchirurgie Prognostic factors in surgery of macular holes. Ophthalmologe. 1998;95(3):158–162. DOI:10.1007/s003470050255; Poon WK, Ong GL, Ripley LG, Casswell AG. Chromatic contrast thresholds as a prognostic test for visual improvement after macular hole surgery: color vision and macular hole surgery outcome. Retina. 2001;21(6):619–626. DOI:10.1097/00006982-200112000-00009; Larsson J, Holm K, Lövestam Adrian M. The presence of an operculum verified by optical coherence tomography and other prognostic factors in macular hole surgery. Acta Ophthalmol Scand. 2006;84(3):301–304. DOI:10.1111/j.1600-0420.2006.00672.x; Ruiz-Moreno JM, Staicu C, Piñero DP, Montero J, Lugo F, Amat P. Optical coherence tomography predictive factors for macular hole surgery outcome. British Journal of Ophthalmology. 2008;92(5):640–644. DOI:10.1136/bjo.2007.136176; Chen Q, Liu ZX. Idiopathic Macular Hole: A Comprehensive Review of Its Pathogenesis and of Advanced Studies on Metamorphopsia. Journal of Ophthalmology. 2019;23:7294952. DOI:10.1155/2019/7294952; Shpak AA, Shkvorchenko DO, Sharafetdinov IKh, Yukhanova OA. Predicting anatomical results of surgical treatment of idiopathic macular hole. Int J Ophthalmol. 2016;9(2):253–257. DOI:10.18240/ijo.2016.02.13; Boiko EV, Maltsev DS. Quantitative optical coherence tomography analysis of retinal degenerative changes in diabetic macular edema and neovascular agerelated macular degeneration. Retina. 2018;38(7):1324–1330. DOI:10.1097/iae.0000000000001696; Armegioiu M. Pathogenesis of idiopathic macular hole — trend, opinions, discussions. Oftalmologia. 2003;56(1):6–10.; Файзрахманов Р.Р., Зайнуллин Р.М., Насырова Д.Р., Усманова Г.М. Определение оптической плотности макулярного пигмента и выявление особенностей интерфейса центральной зоны сетчатки у пациентов с диабетическим макулярным отеком. Точка зрения. Восток — Запад. 2015;2:83–86.; https://www.ophthalmojournal.com/opht/article/view/2046

  7. 7
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 19, № 4 (2022); 917-922 ; Офтальмология; Том 19, № 4 (2022); 917-922 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2005/1061; Chan C.M., Chim T.M., Leung K.C., Tong C.H., Wong T.F., Leung G.K. Simultaneous ancreas and kidney transplantation as the standard surgical treatment for diabetes mellitus patients with end stage renal disease. Hong Kong Med J. 2016;22(1):62–69. DOI:10.12809/hkmj154613; Giannarelli R., Coppelli A., Sartini M.S., Aragona M., Boggi U., Mosca F., Nardi M., Del Prato S., Marchetti P. Early improvement of unstable diabetic retinopathy after solitary pancreas transplantation. Diabetes Care. 2002;25(12):2358–2359. DOI:10.2337/diacare.25.12.2358; Giannarelli R., Coppelli A., Sartini M.S., Del Chiaro M., Vistoli F., Rizzo G., Barsotti M., Del Prato S., Mosca F., Boggi U., Marchetti P. Pancreas transplant alone has beneficial effects on retinopathy in type 1 diabetic patients. Diabetologia. 2006;49(12):2977–2982. DOI:10.1007/s00125-006-0463-5; Königsrainer A., Miller K., Steurer W., Kieselbach G., Aichberger C., Ofner D., Margreiter R. Does pancreas transplantation influence the course of diabetic retinopathy? Diabetologia. 1991;34(1):86–88. DOI:10.1007/BF00587627; Schmidt D., Kirste G., Schrader W. Progressive proliferative diabetic retinopathy after transplantation of the pancreas. A case and a review of the topic. Acta Ophthalmol (Copenh). 1994;72(6):743–751. DOI:10.1111/j.1755-3768.1994.tb04693.x; Bandello F., Vigano C., Secchi A., Martinenghi S., Caldara R., Di Carlo V., Pozza G., Brancato R. Effect of pancreas transplantation on diabetic retinopathy: a 20 case report. Diabetologia. 1991;34(1):92–94. DOI:10.1007/BF00587629; Scheider A., Meyer Schwickerath E., Nusser J., Land W., Landgraf R. Diabetic retinopathy and pancreas transplantation: a 3 year follow up. Diabetologia. 1991;34(1):95–96. DOI:10.1007/BF00587630; Friberg T.R., Tzakis A.G., Carroll P.B., Starzl T.E. Visual improvement after longterm success of pancreatic transplantation. Am J Ophthalmol. 1990;110(5):564–565. DOI:10.1016/s0002-9394(14)77882-1; Tsai F.Y., Lau L.I., Li A.F., Chen S.J., Wang S.E., Lee F.L, Liu C.J, Shyr Y.M. Acute macular edema and peripapillary soft exudate after pancreas transplantation with accelerated progression of diabetic retinopathy. J Chin Med Assoc. 2017;80(5):319-325. DOI:10.1016/j.jcma.2017.01.004; Ramsay R.C., Goetz F.C., Sutherland D.E., Mauer S.M., Robison L.L., Cantrill H.L., Knobloch W.H., Najarian J.S. Progression of diabetic retinopathy after pancreas transplantation for insulin dependent diabetes mellitus. N Engl J Med. 1988;318(4):208–214. DOI:10.1056/NEJM198801283180403; https://www.ophthalmojournal.com/opht/article/view/2005

  8. 8
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 19, № 3 (2022); 638-646 ; Офтальмология; Том 19, № 3 (2022); 638-646 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1934/1025; Tham Y.C., Li X., Wong T.Y. Global prevalence of glaucoma and projections of glau coma burden through 2040: a systematic review and metaanalysis. Ophthalmology. 2014;121(11);2081–2090. DOI:10.1016/j.ophtha.2014.05.013; Holden B.A., Fricke T.R., Wilson D.A. Global prevalence of myopia and high maopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5);1036– 1042. DOI:10.1016/j.ophtha.2016.01.006; Jonas J.B., Weber P., Nagaoka N., OhnoMatsui K. Glaucoma in high myopia and parapapillary delta zone. PLoS One. 2017;12(4):e0175120. DOI:10.1371/journal.pone.0175120/; Haarman A.E.G., Enthoven C.A., Tidelman J.W.L. The complications of myopia: a review and metaanalysis. Invest Ophthalmol Vis Sci. 2020;61(4):49. DOI:10.1167/iovs.61.4.49; Miki A., Ikuno Y., Weinreb R.N. Measurements of the parapapillary atrophy zones in en face optical coherence tomography images. PLos One. 2017;12(4):e0175347. DOI:10.1371/journal.pone.0175347; Jonas J.B., Weber P, Nagaoka N., OhnoMatsui K. Glaucoma in high myopia and parapapillary delta zone. PLoS One. 2017;12(4):e0175120. DOI:10.1371/journal.pone.0175120; Казакова А.В., Эскина Э.Н. Диагностика глаукомы при осевой миопии. Вестник Оренбургского государственного университета 2015;12(173):152–155.; Казакова А.В., Эскина Э.Н. Диагностика глаукомы у пациентов с близорукостью. Национальный журнал глаукома. 2015;14(3):87–100.; Шпак А.А., Коробкова М.В. Оптическая когерентная томография у пациентов с аномалиями рефракции. Сообщение 3: Толщина слоя ганглиозных клеток сетчатки. Офтальмохирургия. 2018;2:58–62.; Wang W.W., Wang H.Z., Liu J.R. Diagnostic ability of ganglion cell complex thickness to detect glaucoma in high myopia eyes by Fourier domain optical coherence tomography. Int J Ophthalmol. 2018;11(5):791–796. DOI:10.18240/ijo.2018.05.12; Rolle T., Bonetti B, Mazzucco A, Dallorto L. Diagnostic ability og OCT parameters and retinal ganglion cells count in identification of glaucoma in myopic preperimetric eyes. BMC Ophthalmol. 2020;20(1):373. DOI:10.1186/s12886020016165; Malakar M., Askari S.N., Ashraf H. Optical coherence tomography assisted retinal nerve fibre layer thickness profile in high myopia. J Clin Diagn Res. 2015;9(2):NC013. DOI:10.7860/JCDR/2015/9054.5565; Singh D., Mishra S.K., Agarwal E. Assessment of Retinal Nerve Fiber Layer Changes by Cirrus Highdefinition Optical Coherence Tomography in Myopia. J Curr Glaucoma Pract. 2017;11(2):52–57. DOI:10.5005/jpjournals100281223; Harb E., Hyman L., Gwiazda J. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort. Am J Ophthalmol. 2015;160(1):62–71. DOI:10.1016/j.ajo.2015.04.018; Курышева Н.И., Арджевнишвили Т.Д., Киселева Т.Н., Фомин А.В. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Глаукома. 2013;3:73–83.; Курышева Н.И., Арджевнишвили Т.Д., Фомин А.В. Хориоидея при глаукоме. Национальный журнал Глаукома. 2014;13(1):60–67.; Usui S., Ikuno Y., Miki A. Evaluation of the choroidal thickness using highpenetration optical coherence tomography with long wavelength in highly myopic normaltension glaucoma. Am J Ophthalmol. 2012; 153(1):106.e1. DOI:10.1016/j.ajo.2011.05.037; Эскина Э.Н., Зыкова А.В. Морфометрический анализ параметров сетчат ки и зрительного нерва у пациентов с осевой миопией. Российская детская офтальмология. 2014;1:21–24.; Курышева Н.И., Маслова Е.В., Трубилина А.В. Особенности макулярного кровотока при глаукоме. Вестник офтальмологии. 2017;2:29–37. DOI:10.17116/oftalma201713322937; Rao H.L., Pradhan Z.S., Suh M.H. Optical Coherence Tomography Angiography in Glaucoma. Glaucoma. 2020;29(4):312–321. DOI:10.1097/IJG.0000000000001463; Курышева Н.И., Маслова Е.В., Трубилина А.В. Снижение перипапиллярного кровотока как фактор развития и прогрессирования первичной открытоугольной глаукомы. Российский офтальмологический журнал. 2016;9(3):34–41. DOI:10.21516/207200762016933441; Lee K., Maeng K.J., Kim J.Y. Diagnostic ability of vessel density measured by spectraldomain optical coherence tomography angiography for glaucoma in patients with high myopia. Sci Rep. 2020;10(1):3027. DOI:10.1038/s41598020600510; Chang P.Y., Wang J.Y., Wang J.K. Optical coherence tomography angiography compared with optical coherence tomography for detection of early glaucoma with high myopia. Front Med (Lausanne). 2022;8:793786. DOI:10.3389/fmed.2021.793786; Национальное руководство по глаукоме / Под ред. проф. Е.А. Егорова, проф. Ю.С. Астахова, проф. В.П. Еричева. М.: Гэотармедиа, 2015. 456 с.; Pechauer A.D., Jia Y., Liu L. Optical coherence tomography angiography of peri papillary retinal blood flow response to hyperoxia. Invest. Ophthalmol. Vis. Sci. 2015;56(5):3287–3291. DOI:10.1167/iovs.1516655; Liu L., Jia Y., Takusagawa H.L. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045–1052. DOI:10.1001/jamaophthalmol.2015.2225; Ucak T., Icel E., Yilmaz H. Alterations in optical coherence tomography angiography findings in patients with high myopia. Eye (Lond.) 2020;34:1129–1135. DOI:10.1038/s4143302008241; Yang Y., Wang J., Jiang H., Yang X., Feng L., Hu L., Wang L., Lü F., Shen M. Retinal Microvasculature Alteration in High Myopia. Investig. Opthalmol. Vis. Sci. 2016;57:6020–6030. DOI:10.1167/iovs.1619542; Milani P., Montesano G., Rossetti L., Bergamini F., Pece A. Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on OCT angiography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018;256:1419–1427. DOI:10.1007/s004170184012y; Min C.H., AlQattan H.M., Lee J.Y., Kim J.G., Yoon Y.H., Kim Y.J. Macular Micro vasculature in High Myopia without Pathologic Changes: An Optical Coherence Tomography Angiography Study. Korean J. Ophthalmol. 2020;34:106–112. DOI:10.3341/kjo.2019.0113; Zhu Q., Chen C., Yao J. Vessel Density and Retinal Thickness from Optical Coherence Tomography Angiography as New Indexes in Adolescent Myopia. J Ophthal mol. 2021:6069833. DOI:10.1155/2021/6069833; Sung M.S., Lee T.H., Heo H., Park S.W. Clinical features of superficial and deep peripapillary microvascular density in healthy myopic eyes. PLoS ONE. 2017;12:e0187160. DOI:10.1371/journal.pone.0187160; Rao H.L., Pradhan Z.S., Weinreb RN. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Am J Ophthalmol 2016;171:75–83. DOI:10.1016/j.ajo.2016.08.030; Rao H.L., Pradhan Z.S., Weinreb R.N. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One 2017;12:e0173930. DOI:10.1371/journal. pone.0173930; Takusagawa H.L., Liu L, Ma K.N. ProjectionResolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology 2017;124:1589–1599. DOI:10.1016/j.ophtha.2017.06.002; Flammer J., Orgül S., Costa V.P. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002;21:359–393. DOI:10.1016/S13509462(02)000083; Mansouri K. Optical coherence tomography angiography and glaucoma: Searching for the missing link. Expert Rev. Med. Devices. 2016;13:879–880. DOI:10.1080/17434440.2016.1230014; https://www.ophthalmojournal.com/opht/article/view/1934

  9. 9
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 18, № 3 (2021); 601-608 ; Офтальмология; Том 18, № 3 (2021); 601-608 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1619/871; Ament C.S. Predictors of visual outcome and choroidal neovascular membrane formation after traumatic choroidal rupture. Archives of ophthalmology. 2006;124(7):957–966. DOI:10.1001/archopht.124.7.957; Бойко Э.В., Сосновский С.В., Березин Р.Д., Коскин С.А., Ян А.В., Куликов А.Н., Мальцев Д.А., Бутикова О.В., Давыдова В.В., Жукова К.Е. Антиангиогенная терапия в офтальмологии. СПб.: ВМедА им. С.М. Кирова; 2013. С. 113–121.; Liggett P.E., Pince K.J., Barlow W., Ragen M., Ryan S.J. Ocular trauma in an urban population. Review of 1132 cases. Ophthalmology. 1990;97(5):581–584. DOI:10.1016/S0161-6420(90)32539-3; Mehta H.B., Shanmugam M.P. Photodynamic therapy of a posttraumatic choroidal neovascular membrane. Indian journal of Ophthalmology. 2005;53:131–132. DOI:10.4103/0301-4738.16180; Harissi-Dagher M., Sebag M., Gauthier D., Marcil G., Labelle P., Arbour J.D. Photodynamic therapy in young patients with choroidal neovascularization following traumatic choroidal rupture. American journal of ophthalmology. 2005;139(4):726–728. DOI:10.1016/j.ajo.2004.10.009; Mennel S., Hausmann N., Meyer C.H., Peter S. Photodynamic therapy and indocyanine green guided feeder vessel photocoagulation of choroidal neovascularization secondary to choroid rupture after blunt trauma. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2005;243(1):68–71. DOI:10.1007/s00417-0040964-1; Abdul-Salim I., Embong Z., Khairy-Shamel S.T., Raja-Azmi M.N. Intravitreal ranibizumab in treating extensive traumatic submacular hemorrhage. Clinical ophthalmology. 2013;7:703–706. DOI:10.2147/OPTH.S42208; Moon K., Kim K. S., Kimb Y. C., A Case of Expansion of Traumatic Choroidal Rupture with Delayed-Developed Outer Retinal Changes. Case Reports in Ophthalmology. 2013;4(2):70–75. DOI:10.1159/000354197; Prasad A., Patel C., Puklin J. Intravitreal bevacizumab in the treatment of choroidal neovascularization from a traumatic choroidal rupturein a 9-yearold child. Retinal Cases & Brief Reports. 2009;3(2):125–127. DOI:10.1097/ICB.0b013e31815e9903; Rishi P., Shroff D., Rishi E. Intravitreal bevacizumab in the management of posttraumatic choroidal neovascular membrane. Retinal Cases & Brief Reports. 2008;2(3):236–238. DOI:10.1097/ICB.0b013e31815e9419; White M.F., Morris R., Feist R.M., Witherspoon C.D., Helms H.A., John G.R. Eye injury: prevalence and prognosis by setting. Southern Medical Journal. 1989;82(2):151–158. DOI:10.3928/1542-8877-19920601-10; Wong T.Y., Ohno-Matsui K., Leveziel N., Holz F.G., Lai T.Y., Yu H.G., Lanzetta P., Chen Y., Tufail A. Myopic choroidal neovascularisation: current concepts and update on clinical management. British Journal of Ophthalmology. 2015;99(3):289–296. DOI:10.1136/bjophthalmol-2014-305131; https://www.ophthalmojournal.com/opht/article/view/1619

  10. 10
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 18, № 1 (2021); 5-11 ; Офтальмология; Том 18, № 1 (2021); 5-11 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1429/791; Сидоренко Е.И., Гусева М.Р., Маркова Е.Ю., Асташева И.Б. Флюоресцентная ангиография в диагностике патологии глазного дна у детей. Вестник офтальмологии. 2003;119(2):15–17.; Зайцев Н.А., Сомов Е.Е. Характер возможных осложнений при проведении флюоресцентной ангиографии у детей различного возраста. Офтальмологические ведомости. 2010;3(3):14–17.; Аникина М.А., Матненко Т.Ю., Лебедев О.И. Оптическая когерентная томография-ангиография: перспективный метод в офтальмологической диагностике. Практическая медицина. 2018;114(3):7–10.; Mezu-Ndubuisi O.J., Taylor L.K., Schoephoerster J.A. Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity. J Ophthalmol. 2017;2017:9620876. DOI:10.1155/2017/9620876; Gołębiewska J., Olechowski A., Wysocka-Mincewicz M., Odrobina D., BaszyńskaWilk M., Groszek A., Szalecki M., Hautz W. Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS One. 2017 Oct 20;12(10):e0186479. DOI:10.1371; Inanc M., Tekin K., Kiziltoprak H., Ozalkak S., Doguizi S., Aycan Z. Changes in Retinal Microcirculation Precede the Clinical Onset of Diabetic Retinopathy in Children with Type 1 Diabetes Mellitus. Am J Ophthalmol. 2019 Apr 19. PII: S00029394(19)30186-2. DOI:10.1016/j.ajo.2019.04.011; Roemer S., Bergin C., Kaeser P.F., Ambresin A. Assessment of macular vasculature of children with sickle cell disease compared to that of healthy controls using optical coherence tomography angiography. Retina. 2018 Oct 16. DOI:10.1097/IAE.0000000000002321; Lonngi M., Velez F.G., Tsui I., Davila J.P., Rahimi M., Chan C., Sarraf D., Demer J.L., Pineles S.L. Spectral-Domain Optical Coherence Tomographic Angiography in Children With Amblyopia. JAMA Ophthalmol. 2017 Oct 1;135(10):1086–1091. DOI:10.1001/jamaophthalmol.2017.3423; Sobral I., Rodrigues T.M., Soares M., Seara M., Monteiro M., Paiva C., Castela R. OCT angiography findings in children with amblyopia. J AAPOS. 2018 Aug;22(4):286–289.e2. DOI:10.1016/j.jaapos.2018.03.009; Borrelli E., Lonngi M., Balasubramanian S., Tepelus T.C., Baghdasaryan E., Pineles S.L., Velez F.G., Sarraf D., Sadda S.R., Tsui I. Increased choriocapillaris vessel density in amblyopic children: a case-control study. J AAPOS. 2018;22(5):366– 370. DOI:10.1016/j.jaapos.2018.04.005; Hautz W., Gołębiewska J., Czeszyk-Piotrowicz A. Optical Coherence TomographyBased Angiography in Retinal Artery Occlusion in Children. Ophthalmic Res. 2018;59(4):177–181. DOI:10.1159/000484351; Rabiolo A., Marchese A., Sacconi R., Cicinelli M.V., Grosso A., Querques L., Querques G., Bandello F. Refining Coats’ disease by ultra-widefield imaging and optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2017;255(10):1881–1890. DOI:10.1007/s00417-017-3794-7; Vinekar A., Chidambara L., Jayadev C., Sivakumar M., Webers C.A., Shetty B. Monitoring neovascularization in aggressive posterior retinopathy of prematurity using optical coherence tomography angiography. J AAPOS. 2016;20(3):271–274. DOI:10.1016/j.jaapos.2016.01.013; Campbell J.P., Nudleman E., Yang J., Tan O., Chan R.V.P., Chiang M.F., Huang D., Liu G. Handheld Optical Coherence Tomography Angiography and Ultra-WideField Optical Coherence Tomography in Retinopathy of Prematurity. JAMA Ophthalmol. 2017;135(9):977–981. DOI:10.1001/jamaophthalmol.2017.2481; Bowl W., Bowl M., Schweinfurth S., Holve K., Knobloch R., Stieger K., AndrassiDarida M., Lorenz B. OCT Angiography in Young Children with a History of Retinopathy of Prematurity. Ophthalmol Retina. 2018;2(9):972–978. DOI:10.1016/j.oret.2018.02.004; Chen Y.C., Chen Y.T., Chen S.N. Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):23–30. DOI:10.1007/s00417-018-4162-y; https://www.ophthalmojournal.com/opht/article/view/1429

  11. 11
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 18, № 3 (2021); 459-469 ; Офтальмология; Том 18, № 3 (2021); 459-469 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1601/853; Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. DOI:10.1016/j.diabres.2018.02.023; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Сахарный диабет в Российской Федерации: распространенность, заболеваемость, смертность, параметры углеводного обмена и структура сахароснижающей терапии по данным Федерального регистра сахарного диабета, статус 2017 г. Сахарный диабет. 2018;21(3):144–159. DOI:10.14341/DM9686; Khan M.A.B., Hashim M.J., King J.K., Govender R.D., Mustafa H., Al Kaabi J. Epidemiology of Type 2 Diabetes — Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10(1):107–111. DOI:10.2991/jegh.k.191028.001; Tóth G., Szabó D., Sándor G.L., Nagy Z.Z., Karadeniz S., Limburg H., Németh J. Diabetes and blindness in people with diabetes in Hungary. Eur J Ophthalmol. 2019;29(2):141–147. DOI:10.1177/1120672118811738; Lutski M., Shohat T., Mery N., Zucker I. Incidence and Risk Factors for Blindness in Adults with Diabetes: The Israeli National Diabetes Registry (INDR). Am J Ophthalmol. 2019;200:57–64. DOI:10.1016/j.ajo.2018.12.008; Bandello F., Battaglia Parodi M., Lanzetta P., Loewenstein A., Massin P., Menchini F., Veritti D. Diabetic Macular Edema. Dev Ophthalmol. 2017;58:102–138. DOI:10.1159/000455277; Sasongko M.B., Wardhana F.S., Febryanto G.A., Agni A.N., Supanji S., Indrayanti S.R., Widayanti T.W., Widyaputri F., Widhasari I.A., Lestari Y.D., Adriono G.A., Sovani I., Kartasasmita A.S. The estimated healthcare cost of diabetic retinopathy in Indonesia and its projection for 2025. Br J Ophthalmol. 2020;104(4):487–492. DOI:10.1136/bjophthalmol-2019-313997; Szadkowska A., Czyżewska K., Pietrzak I., Mianowska B., Jarosz-Chobot P., Myśliwiec M. Hypoglycaemia unawareness in patients with type 1 diabetes. Pediatr Endocrinol Diabetes Metab. 2018;2018(3):126–134. DOI:10.5114/pedm.2018.80994; Lablanche S., Vantyghem M.C., Kessler L., Wojtusciszyn A., Borot S., Thivolet C., Girerd S., Bosco D., Bosson J.L., Colin C., Tetaz R., Logerot S., Kerr-Conte J., Renard E., Penfornis A., Morelon E., Buron F., Skaare K., Grguric G., Camillo-Brault C., Egelhofer H., Benomar K., Badet L., Berney T., Pattou F., Benhamou P.Y. TRIMECO trial investigators. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(7):527–537. DOI:10.1016/S2213-8587(18)30078-0; Wat N., Wong R.L., Wong I.Y. Associations between diabetic retinopathy and systemic risk factors. Hong Kong Med J. 2016;22(6):589–599. DOI:10.12809/hkmj164869; Ghamdi A.H.A. Clinical Predictors of Diabetic Retinopathy Progression; A Systematic Review. Curr Diabetes Rev. 2020;16(3):242–247. DOI:10.2174/1573399815666190215120435; Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci (Lond). 2017;131(9):833–846. DOI:10.1042/CS20160998; Pescosolido N., Campagna O., Barbato A. Diabetic retinopathy and pregnancy. Int Ophthalmol. 2014;34(4):989–997. DOI:10.1007/s10792-014-9906-z; Eid S., Sas K.M., Abcouwer S.F., Feldman E.L., Gardner T.W., Pennathur S., Fort P.E. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;62(9):1539–1549. DOI:10.1007/s00125-019-4959-1; Benarous R., Sasongko M.B., Qureshi S., Fenwick E., Dirani M., Wong T.Y., Lamoureux E.L. Differential association of serum lipids with diabetic retinopathy and diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(10):7464–7469. DOI:10.1167/iovs.11-7598; Moosaie F., Davatgari R.M., Firouzabadi F.D., Esteghamati S., Deravi N., Meysamie A., Khaloo P., Nakhjavani M., Esteghamati A. Lipoprotein(a) and Apolipo‑ proteins as Predictors for Diabetic Retinopathy and Its Severity in Adults With Type 2 Diabetes: A Case-Cohort Study. Can J Diabetes. 2020;44(5):414–421. DOI:10.1016/j.jcjd.2020.01.007; Chong Y.H., Fan Q., Tham Y.C., Gan A., Tan S.P., Tan G., Wang J.J., Mitchell P., Wong T.Y., Cheng C.Y. Type 2 Diabetes Genetic Variants and Risk of Diabetic Retinopathy. Ophthalmology. 2017;124(3):336–342. DOI:10.1016/j.ophtha.2016.11.016; Lima V.C., Cavalieri G.C., Lima M.C., Nazario N.O., Lima G.C. Risk factors for diabetic retinopathy: a case-control study. Int J Retina Vitreous. 2016;2:21. DOI:10.1186/s40942-016-0047-6; Zhu W., Wu Y., Meng Y.F., Xing Q., Tao J.J., Lu J. Association of obesity and risk of diabetic retinopathy in diabetes patients: A meta-analysis of prospective cohort studies. Medicine (Baltimore). 2018;97(32):11807. DOI:10.1097/MD.0000000000011807; Wang J., Xin X., Luo W., Wang R., Wang X., Si S., Mo M., Shao B., Wang S., Shen Y., Chen X., Yu Y. Anemia and Diabetic Kidney Disease Had Joint Effect on Diabetic Retinopathy Among Patients With Type 2 Diabetes. Invest Ophthalmol Vis Sci. 2020;61(14):25. DOI:10.1167/iovs.61.14.25; Jeng C.J., Hsieh Y.T., Yang C.M., Yang C.H., Lin C.L., Wang I.J. Development of diabetic retinopathy after cataract surgery. PLoS One. 2018;13(8):0202347. DOI:10.1371/journal.pone.0202347; Costagliola C., Romano V., De Tollis M., Aceto F., dell’Omo R., Romano M.R., Pedicino C., Semeraro F. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm. 2013;2013:629529. DOI:10.1155/2013/629529; Raczyńska D., Lisowska K.A., Pietruczuk K., Borucka J., Ślizień M., Raczyńska K., Glasner L., Witkowski J.M. The Level of Cytokines in the Vitreous Body of Severe Proliferative Diabetic Retinopathy Patients Undergoing Posterior Vitrectomy. Curr Pharm Des. 2018;24(27):3276–3281. DOI:10.2174/1381612824666180926110704; Nalini M., Raghavulu B.V., Annapurna A., Avinash P., Chandi V., Swathi N., Wasim. Correlation of various serum biomarkers with the severity of diabetic retinopathy. Diabetes Metab Syndr. 2017;11(l):451–454. DOI:10.1016/j.dsx.2017.03.034; Vujosevic S., Micera A., Bini S., Berton M., Esposito G., Midena E. Aqueous Humor Biomarkers of Müller Cell Activation in Diabetic Eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3913–3918. DOI:10.1167/iovs.15-16554; Vujosevic S., Micera A., Bini S., Berton M., Esposito G., Midena E. Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol. 2016;94(1):56–64. DOI:10.1111/aos.12812; Boss J.D., Singh P.K., Pandya H.K., Tosi J., Kim C., Tewari A., Juzych M.S., Abrams G.W., Kumar A. Assessment of Neurotrophins and Inflammatory Mediators in Vitreous of Patients With Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2017;58(12):5594–5603. DOI:10.1167/iovs.17-21973; Rusnak S., Vrzalova J., Sobotova M., Hecova L., Ricarova R., Topolcan O. The Measurement of Intraocular Biomarkers in Various Stages of Proliferative Diabetic Retinopathy Using Multiplex xMAP Technology. J Ophthalmol. 2015;2015:424783. DOI:10.1155/2015/424783; Wong T.Y., Sun J., Kawasaki R., Ruamviboonsuk P., Gupta N., Lansingh V.C., Maia M., Mathenge W., Moreker S., Muqit M.M.K., Resnikoff S., Verdaguer J., Zhao P., Ferris F., Aiello L.P., Taylor H.R. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology. 2018;125(10):1608–1622. DOI:10.1016/j.ophtha.2018.04.007; Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. 8-й выпуск. М.: УП ПРИНТ; 2017.; Tran K., Pakzad-Vaezi K. Multimodal imaging of diabetic retinopathy. Curr Opin Ophthalmol. 2018;29(6):566–575. DOI:10.1097/ICU.0000000000000524; Cennamo G., Romano M.R., Nicoletti G., Velotti N., de Crecchio G. Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopathy. Acta Ophthalmol. 2017;95(1):36–42. DOI:10.1111/aos.13159; Fan W., Nittala M.G., Fleming A., Robertson G., Uji A., Wykoff C.C., Brown D.M., van Hemert J., Ip M., Wang K., Falavarjani K.G., Singer M., Sagong M., Sadda S.R. Relationship Between Retinal Fractal Dimension and Nonperfusion in Diabetic Retinopathy on Ultrawide-Field Fluorescein Angiography. Am J Ophthalmol. 2020;209:99–106. DOI:10.1016/j.ajo.2019.08.015; Wanek J., Blair N.P., Chau F.Y., Lim J.I., Leiderman Y.I., Shahidi M. Alterations in Retinal Layer Thickness and Reflectance at Different Stages of Diabetic Retinopathy by En Face Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2016;57(9):341–347. DOI:10.1167/iovs.15-18715; Cho Y.J., Lee D.H., Kim M. Optical coherence tomography findings predictive of response to treatment in diabetic macular edema. J Int Med Res. 2018;46(11):4455–4464. DOI:10.1177/0300060518798503; Zur D., Iglicki M., Busch C., Invernizzi A., Mariussi M., Loewenstein A., International Retina Group. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology. 2018;125(2):267–275. DOI:10.1016/j.ophtha.2017.08.031; Kashani A.H., Chen C.L., Gahm J.K., Zheng F., Richter G.M., Rosenfeld P.J., Shi Y., Wang R.K. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. DOI:10.1016/j.preteyeres.2017.07.002; Zhang A., Zhang Q., Chen C.L., Wang R.K. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901. DOI:10.1117/1.JBO.20.10.100901; Spaide R.F., Klancnik J.M. Jr., Cooney M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. DOI:10.1001/jamaophthalmol.2014.3616; Nesper P.L., Soetikno B.T., Zhang H.F., Fawzi A.A. OCT angiography and visiblelight OCT in diabetic retinopathy. Vision Res. 2017;139:191–203. DOI:10.1016/j.visres.2017.05.006; Li A., You J., Du C., Pan Y. Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression. Biomed Opt Express. 2017;8(12):5604–5616. DOI:10.1364/BOE.8.005604; Chua J., Sim R., Tan B., Wong D., Yao X., Liu X., Ting D.S.W., Schmidl D., Ang M., Garhöfer G., Schmetterer L. Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy. J Clin Med. 2020;9(6):1723. DOI:10.3390/jcm9061723; OCT-Angiography Option for Mirante and RS-3000 Advance 2 AngioScan. Nidek-intl.com; 2016 [updated on February 8, 2016; cited 2021 May 22]. URL: https://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_retina/angioscan.html; Dhanireddy KK. Pancreas transplantation. Gastroenterol Clin North Am. 2012;41(1):133–142. DOI:10.1016/j.gtc.2011.12.002; Maffi P., Secchi A. Islet Transplantation Alone Versus Solitary Pancreas Transplantation: an Outcome-Driven Choice? Curr Diab Rep. 2019;19(5):26. DOI:10.1007/s11892-019-1145-2; Ramsay R.C., Goetz F.C., Sutherland D.E., Mauer S.M., Robison L.L., Cantrill H.L., Knobloch W.H., Najarian J.S. Progression of diabetic retinopathy after pancreas transplantation for insulin-dependent diabetes mellitus. N Engl J Med. 1988;318(4):208–214. DOI:10.1056/NEJM198801283180403; Giannarelli R., Coppelli A., Sartini M.S., Aragona M., Boggi U., Mosca F., Nardi M., Del Prato S., Marchetti P. Early improvement of unstable diabetic retinopathy after solitary pancreas transplantation. Diabetes Care. 2002;25(12):2358–2359. DOI:10.2337/diacare.25.12.2358; Giannarelli R., Coppelli A., Sartini M.S., Del Chiaro M., Vistoli F., Rizzo G., Barsotti M., Del Prato S., Mosca F., Boggi U., Marchetti P. Pancreas transplant alone has beneficial effects on retinopathy in type 1 diabetic patients. Diabetologia. 2006;49(12):2977–2982. DOI:10.1007/s00125-006-0463-5; Tsai F.Y., Lau L.I., Li A.F., Chen S.J., Wang S.E., Lee F.L., Liu C.J., Shyr Y.M. Acute macular edema and peripapillary soft exudate after pancreas transplantation with accelerated progression of diabetic retinopathy. J Chin Med Assoc. 2017;80(5):319–325. DOI:10.1016/j.jcma.2017.01.004; Kim Y.J., Shin S., Han D.J., Kim Y.H., Lee J.Y., Yoon Y.H., Kim J.G. Long-term Effects of Pancreas Transplantation on Diabetic Retinopathy and Incidence and Predictive Risk Factors for Early Worsening. Transplantation. 2018;102(1):30–38. DOI:10.1097/TP.0000000000001958; https://www.ophthalmojournal.com/opht/article/view/1601

  12. 12
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 18, № 1 (2021); 96-102 ; Офтальмология; Том 18, № 1 (2021); 96-102 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1441/803; Бровкина А. Ф., Панова И. Е., Саакян С.В. Офтальмоонкология: новое за последние два десятилетия. Вестник офтальмологии. 2014;130(6):13–19.; Singh A.D., Turell M.E., Topham A.K. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118:1881–1885. DOI:10.1016/j.ophtha.2011.01.040; Damato B.E., Heimann H., Kalirai H., Coupland S.E. Age, survival predictors, and metastatic death in patients with choroidal melanoma: tentative evidence of a therapeutic effect on survival. JAMA Ophthalmol. 2014;132(5):605–613. DOI:10.1001/jamaophthalmol.2014.77; Бровкина А.Ф. Органосохранное лечение внутриглазных опухолей (тенденции развития). Вестник офтальмологии. 2003;1:22–25.; Mashayekhi A., Shields C.L., Rishi P., Atalay H.T., Pellegrini M., McLaughlin J.P., Patrick K.A., Morton S.J., Remmer M.H., Parendo A., Schlitt M.A., Shields J.A. Primary transpupillary thermotherapy for choroidal melanoma in 391 cases: importance of risk factors in tumor control. Ophthalmology. 2015;122(3):600–609. DOI:10.1016/j.ophtha.2014.09.029; Kiratli H., Bilgic S. Choriovitreal neovascularization following transpupillary thermotherapy for choroidal melanoma. Eye. 2003;17:437–438.; Midena E., Pilotto E., De Belvis V., Zaltron S., Doro D., Segato T., Piermarocchi S. Choroidal Vascular Changes after Transpupillary Thermotherapy for Choroidal Melanoma. Ophthalmology. 2003;110(11):2216–2222. DOI:10.1016/S01616420(03)00715-2; Давыдов М.И., Ганцев Ш.Х. Онкология. М.: ГЭОТАР-Медиа, 2010. 920 с.; Саакян С.В., Мякошина Е.Б., Юровская Н.Н. Спектральная оптическая когерентная томография в оценке эффективности транспупиллярной термотерапии начальной меланомы хориоидеи. Вестник офтальмологии. 2013;129(3):32–37.; Нероев В.В., Саакян С.В., Амирян А.Г., Вальский В.В. Клинико-эхографические факторы прогноза эффективности брахитерапии увеальной меланомы. Russian Electronic Journal of Radiology. 2018;8(1):40–51. DOI:10.21569/2222-7415-2018-8-1-40-51; Jia Y., Tan O., Tokayer J., Potsaid B., Wang Y., Liu J.J., Kraus M.F., Subhash H., Fujimoto J.G., Hornegger J., Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710. DOI:10.1364/OE.20.004710; Neroev V., Saakyan S., Myakoshina E. OCT Angiography in the diagnosis of small choroidal tumors. Journal of Global Pharma Technology. 2018;10(5):249–256.; Нероев В.В., Саакян С.В., Мякошина Е.Б., Охоцимская Т.Д., Фадеева В.А. Оптическая когерентная томография-ангиография в диагностике начальной меланомы и отграниченной гемангиомы хориоидеи. Вестник офтальмологии. 2018;134(3):4–18. DOI:10.17116/oftalma201813434; Sellam A., Coscas F., Dendale R., Lupidi M., Coscas G., Desjardins L., Cassoux N. Optical Coherence Tomography Angiography of Macular Features After Proton Beam Radiotherapy for Small Choroidal Melanoma. American Journal of Ophthalmology. 2017;181:12–19. DOI:10.1016/j.ajo.2017.06.008; Shields C.L., Say E.A., Samara W.A., Khoo C.T., Mashayekhi A., Shields J.A. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: Comparison of Irradiated Versus Nonirradiated Eyes in 65 Patients. Retina. 2016;36(8):1493–1505. DOI:10.1097/IAE.0000000000001021; Say E.A., Samara W.A., Khoo C.T., Magrath G.N., Sharma P., Ferenczy S., Shields C.L. Parafoveal capillary density after plaque radiotherapy for choroidal melanoma: Analysis of Eyes Without Radiation Maculopathy. Retina. 2016;36(9):1670–1678. DOI:10.1097/IAE.0000000000001085; Skalet A.H., Liu L., Binder C., Miller A.K., Wang J., Wilson D.J.,Crilly R., Thomas C.R., Jr., Hung A.Y., Huang D., Jia Y. Quantitative OCT Angiography Evaluation of Peripapillary Retinal Circulation after Plaque Brachytherapy. Ophthalmology. 2018;125(4):466–470. DOI:10.1016/j.oret.2017.06.005; Randerson E.L., Warren C., Linderman R.E., Strampe M.R., Sparks I., Russell H., McKenney K., Carroll J., Wirostko W. Optical Coherence Tomography Angiography (OCTA) after Plaque and Proton Beam Radiotherapy for Uveal Melanoma. Investigative Ophthalmology & Visual Science.2017;58(8):1691.; Gündüz A.K. Swept-source optical coherence tomography and angiography findings in intraocular tumors and changes after treatment. 2019. SSOCT-2019. https://www.issoct.com/swept-source-optical-coherence-tomography-and-angiographyfindings-in-intraocular-tumors-and-changes-after-treatment-889/; https://www.ophthalmojournal.com/opht/article/view/1441

  13. 13
  14. 14
    Academic Journal

    Συνεισφορές: Авторы статьи выражают благодарность Шаимовой Венере Айратовне, доктору медицинских наук, главному врачу ООО «Центр зрения», г. Челябинск.

    Πηγή: Acta Biomedica Scientifica; Том 6, № 6-1 (2021); 128-135 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3119/2258; Либман Е.С., Калеева Э.В., Рязанов Д.П. Комплексная характеристика инвалидности вследствие офтальмологии в Российской Федерации. Российская офтальмология онлайн. 2012; 5: 24-26.; Ikuno Y. Overview of the complications of high myopia. Retina. 2017; 37(12): 2347-2351. doi:10.1097/IAE.0000000000001489; Аветисов С.Э., Будзинская М.В., Жабина О.А., Андреева И.В., Плюхова А.А., Кобзова М.В., и др. Анализ изменений центральной зоны глазного дна при миопии по данным флюоресцентной ангиографии и оптической когерентной томографии. Вестник офтальмологии. 2015; 131(4): 38-48. doi:10.17116/oftalma2015131438-48; Зайцева Н.В., Щуко А.Г., Юрьева Т.Н., Шевела Е.Я., Григорьева А.В. Прогностические признаки эффективности антиангиогенной терапии у пациентов с миопической хориоидальной неоваскуляризацией. Современные технологии в офтальмологии. 2017; 1(14): 89-91.; Панова И.Е., Шаимов Т.Б., Шаимова В.А. Неинвазивная диагностика полипоидной хориоидальной васкулопатии как варианта течения возрастной макулярной дегенерации. Офтальмология. 2018; 15(2S): 273-280. doi:10.18008/1816-5095-2018-2S-273-280; Будзинская М.В., Педанова Е.К. Современные подходы к диагностике и ведению пациентов с влажной формой возрастной макулярной дегенерации. Эффективная фармакотерапия. Офтальмология. 2018; 2(22): 26-30.; Нероев В.В., Охоцимская Т.Д., Фадеева В.А. Оценка микрососудистых изменений сетчатки при сахарном диабете методом ОКТ-ангиографии. Российский офтальмологический журнал. 2017; 10(2): 40-47.; Bruyère E, Miere A, Cohen SY, Martiano D, Sikorav A, Popeanga A, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography. Retina. 2017; 37(11): 2095-2101. doi:10.1097/IAE.0000000000001456; Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol. 2017; 95(4): 414-420. doi:10.1111/aos.13364; Faatz H, Farecki ML, Rothaus K, Gunnemann F, Gutfleisch M, Lommatzsch A, et al. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: Evaluation of a new quantitative method. Eye. 2019; 33: 1466-1471. doi:10.1038/s41433-019-0429-8; Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015; 159: 877-883.e7. doi:10.1016/j.ajo.2015.01.022; Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology. 2020; 127(5): 616-636. doi:10.1016/j.ophtha.2019.11.004; Coscas F, Lupidi M, Boulet JF, Sellam A, Cabral D, Serra R, et al. Optical coherence tomography angiography in exudative age-related macular degeneration: A predictive model for treatment decisions. Br J Ophthalmol. 2019; 103(9): 1342-1346. doi:10.1136/bjophthalmol-2018-313065; Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013; 33(9): 1735-1762. doi:10.1097/IAE.0b013e3182993f66; https://www.actabiomedica.ru/jour/article/view/3119

  15. 15
  16. 16
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 17, № 2 (2020); 172-180 ; Офтальмология; Том 17, № 2 (2020); 172-180 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1193/686; Важенин А.В., Панова И.Е. Избранные вопросы офтальмоонкологии. М.: Изд-во РАМН; 2006. [Vazhenin A.V., Panova I.E. Selected issues of ophthalmology. Moscow: Publishing house of RAMS; 2006 (In Russ.)].; Бровкина А.Ф. Офтальмоонкология. М.: Медицина; 2002. [Brovkina A.F. Ophthalmic oncology. Moscow: Medicine; 2002 (In Russ.)].; Shields C.L., Kaliki S., Furuta M., Mashayekhi A. et al. Clinical spectrum and prognosis of uveal melanoma based on age at presentation in 8,033 cases. Retina. 2012;32(7):1363–1372. DOI:10.1097/IAE.0b013e31824d09a8; Бровкина А.Ф., Панова И.Е., Саакян С.В. Офтальмоонкология: новое за последние два десятилетия. Вестник офтальмологии.2014;130(6):13–19. [Brovkina A.F., Panova I.E., Saakyan S.V. Ophthalmooncology: new over the past two decades. Annales of Ophthalmology = Vestnik oftal’mologii. 2014;130(6):13–9 (In Russ.)].; Саакян С.В., Ширина Т.В. Анализ метастазирования и выживаемости больных увеальной меланомой. Опухоли головы и шеи. 2012;2:53–56. [Saakyan S.V., Shirina T.V. Analysis of metastasis and survival of patients with uveal melanoma. Tumors of the head and neck = Opukholi golovy i shei. 2012;2:53–56 (In Russ.)].; Damato B., Eleuteri A., Taktak A.F., Coupland S.E. Estimating prognosis for survival after treatment of choroidal melanoma. Progress in retinal and eye research. 2011;30(5):285–295. DOI:10.1016/j.preteyeres.2011.05.003; Зиангирова Г. Г., Лихванцева В. Г. Опухоли сосудистого тракта глаза. М.: Последнее слово; 2003. [Ziangirova G.G., Likhvantseva V.G. Tumors of the vascular tract of the eye. Moscow: Last word; 2003 (In Russ.)].; Пальцев М.А., Аничков Н.М. Атлас патологии опухолей человека. М.: Медицина; 2005. [Pal’tsev M.A., Anichkov N.M. Atlas of the pathology of human tumors. Moscow: Medicine; 2005 (In Russ.)].; Folberg R., Hendrix M.J.C., Maniotis A.J. Vasculogenic mimicry and tumor angiogenesis. The American journal of pathology.2000;156(2):361–381. DOI:10.1016/ S0002-9440(10)64739-6; Зербино Д.Д., Дмитрук И.М. Внутриопухолевая пролиферация сосудов. Архив патологии.1983;45(4):80–83. [Zerbino D.D., Dmitruk I.M. Intratumoral proliferation of blood vessels. Pathology Archive = Arhiv patologii. 1983;45(4):80–83 (In Russ.)].; Карамышева А.Ф. Ангиогенез опухоли: механизмы, новые подходы к терапии. Канцерогенез. Под ред. Д.Г. Заридзе. М.; 2000:298–309 [Karamysheva A.F. Tumor angiogenesis: mechanisms, new approaches to therapy. Carcinogenesis. Ed. D.G. Zaridze. Moscow; 2000:298–309 (In Russ.)].; Лихтенштейн А.В., Шапот В.С. Опухолевый рост: ткани, клетки, молекулы. Патологическая физиология.1998;3:25–44. [Lichtenstein A.V., Shapot V.S. Tumor growth: tissues, cells, molecules. Pathological physiology = Patologicheskaja fiziologija. 1998;3:25–44 (In Russ.)].; Копнин Б.П. Неопластическая клетка: основные свойства и механизмы их возникновения. Практическая онкология. 2002;3(4):229–235. [Kopnin B.P. Neoplastic cell: basic properties and mechanisms of their occurrence. Practical oncology = Prakticheskaja onkologija. 2002;3(4):229–235 (In Russ.)].; Степанова Е.В., Барышников А.Ю., Личиницер М.Р. Оценка ангиогенеза опухолей человека. Успехи современной биологии. 2000;120(6):599. [Stepanova E.V., Baryshnikov A.Yu., Lichinitser M.R. Evaluation of the angiogenesis of human tumors. Advances in Modern Biology = Uspehi sovremennoj biologii. 2000;120(6):599 (In Russ.)].; Folkman J. Tumor angiogenesis. Advances in cancer research. Academic Press. 1974;(19):331–358. DOI:10.1016/S0065-230X(08)60058-5; Folkman J. Angiogenesis inhibitors generated by tumors. Molecular medicine. 1995;1(2):120–122. DOI:10.1007/BF03401559; Folkman J. Tumors Are Angiogenesis Dependent? Journal of the National Cancer Institute: JNCI. 1990;82(1):4.; Владимирская Е.Б. Биологические основы противоопухолевой терапии. М.: Агат-Мед; 2001:1. [Vladimirskaya E.B. Biological basis of antitumor therapy. Moscow: Agat-Med; 2001:1 (In Russ.)].; Мертвецов Н.П., Стефанович Л.Е. Ангиогенин и механизм ангиогенеза. Новосибирск: Наука; 1997:78. [Mertvetsov N.P., Stefanovich L.E. Angiogenin and the mechanism of angiogenesis. Novosibirsk: Nauka; 1997:78 (In Russ.)].; Folkman J., Haudenschild C. Angiogenesis in vitro. Nature. 1980;288(551):6. DOI:10.1038/288551a0; Thompson W.D., Shiach K.J., Fraser R.A., Mcintosh L.C., et al. Tumors acquire their vasculature by vessel incorporation, not vessel ingrowth. J. Pathol. 1987;(151):323–332. DOI:10.1002/path.1711510413; Shubik P., Warren B.A. Additional literature on ‘vasculogenic mimicry’ not cited. Am. J. Pathol. 2000;156:736. DOI:10.1016/S0002-9440(10)64778-5; Hendrix M.J., Seftor E.A., Meltzer P.S., et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. U. S. A. 2001;98:8018–8023. DOI:10.1073/pnas.131209798; McDonald D.M., Lance Munn, Rakesh K.J. Vasculogenic Mimicry: How Convincing, How Novel, and How Significant? American Journal of Pathology. 2000;156(2):383–388. DOI:10.1016/S0002-9440(10)64740-2; Mueller A.J., Bartsch D.U., Folberg R., et al. Imaging the microvasculature of choroidal melanomas with confocal indocyanine green scanning laser ophthalmoscopy. Arch Ophthalmol. 1998;116:31–33. DOI:10.1001/archopht.116.1.31; Mueller A.J., Freeman W.R., Folberg R., et al. Evaluation of microvascularization pattern visibility in human choroidal melanomas: comparison of confocal fluorescein with indocyanine green angiography. Graefes Arch Clin Exp Ophthalmol. 1999;237:448–456. DOI:10.1007/s004170050260; Schneider U., Gelisken F., Inhoffen W., Kreissig I. Indocyanine-green videoangiography of malignant melanomas of the choroid using the scanning laser ophthalmoscope. Ger J Ophthalmol. 1996;5:6–11.; Alitalo K., Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease.Cancer Cell. 2002;l:219–227. DOI:10.1016/S1535-6108(02)00051-X; Самкович Е.В., Мелихова М.В., Панова И.Е. Комплексная инструментальная диагностика «малых» новообразований хориоидеи. Современные технологии в офтальмологии. 2019;6(31):104–107. [Samkovich E.V., Melikhova M.V., Panova I.E. Complex instrumental diagnostics of “small” neoplasms of the choroid. Modern technologies in ophthalmology = Sovremennye tehnologii v oftal’mologii. 2019;6(31):104–107 (In Russ.)].; Амирян А.Г., Бровкина А.Ф., Лелюк В.Г. Ангиоархитектоника увеальных меланом. Офтальмология. 2005;2(1):37–40. [Amiryan A.G., Brovkina A.F., Lelyuk V.G. Angioarchitectonics of uveal melanomas. Ophthalmology = Oftal’mologija. 2005;2(1):37–40 (In Russ.)].; Катькова Е.А. Диагностический ультразвук. Офтальмология: практическое руководство. М.: ООО «Фирма СТРОМ»: 2002:122. [Katkova E.A. Diagnostic ultrasound. Ophthalmology: a practical guide. Moscow: LLC “Firm STROM”; 2002:122 (In Russ.)].; Лелюк В.Г., Бровкина А.Ф., Амирян А.Г. Комплексное ультразвуковое исследование при увеальной меланоме. Эхография. 2004;5(2):166. [Lelyuk V.G., Brovkina A.F., Amiryan A.G. Integrated ultrasound examination for uveal melanoma. Sonography = Jehografija. 2004;5(2):166 (In Russ.)].; Яровой А.А., Линник Л.Ф., Семикова Т.С., Булгакова Е.С. Малые меланомы хориоидеи: особенности клиники и выбора метода лечения. Новое в офтальмологии. 2004;2:28–37. [Yarovoy A.A., Linnik L.F., Semikova T.S., Bulgakova E.S. Small melanomas of the choroidal: clinical features and the choice of treatment method. New in ophthalmology = Novoe v oftal’mologii. 2004;2:28–37 (In Russ.)].; Wang Z.Y., Yang W.L., Li D.J., Chen W., et al. Ultrasound diagnosis and differential diagnosis of medium and small choroidal melanomas. Chinese journal of ophthalmology. 2018;54(11):843–848. DOI:10.3760/cma.j.issn.0412-4081.2018.11.009; Wolff‐Korman P.G., Kormann B.A., Hasenfratz G.C., et al. Duplex and color Doppler ultrasound in the differential diagnosis of choroidal tumors. Acta Ophthalmologica. 1992;70(204):66–70. DOI:10.1111/j.1755-3768.1992.tb04928.x; Самкович Е.В., Мелихова М.В., Панова И.Е. Возможности идентификации сосудистой сети пигментированных новообразований хориоидеи. Современные технологии в офтальмологии. 2019;4(29):223–227. [Samkovich E.V., Melikhova M.V., Panova I.E. Possibilities of identification of the vasculature of pigmented neoplasms of the choroid. Modern technologies in ophthalmology = Sovremennye tehnologii v oftal’mologii. 2019;4(29):223–227 (In Russ.)]. DOI:10.25276/2312-4911-2019-4-223-227; Нероев В.В., Киселева Т.Н. Ультразвуковые исследования в офтальмологии: Руководство для врачей. 1-е изд. М: ИКАР; 2019:324. [Neroev V.V., Kiseleva T.N. Ultrasound Research in Ophthalmology: A Guide for Physicians. 1st ed. Moscow: IKAR; 2019:324 (In Russ.)].; Рыкун В.С., Катькова Е.А. Особенности сосудистой сети меланомы хориоидеи по результатам триплексного ультразвукового исследования. Вестник офтальмологии. 2001;2:17–18. [Rykun V.S., Katkova E.A. Features of the vascular network of choroid melanoma according to the results of triplex ultrasound. Annales of Ophthalmology = Vestnik oftal’mologii. 2001;2:17–18 (In Russ.)].; Lassau N. New hemodynamic approach to angiogenesis: color and pulsed Doppler ultrasonography. Invest. Radiol. 1999;34(3):194–198.; Proniewska-Skretek E. An application of color Doppler ultrasonography in evaluate of brachytherapy in patients with uveal melanoma. Klin. Oczna. 2007;109(4–6):187–190. DOI:10.1080/02713683.2017.1341534; Shields C.L., Shields J.A., De Potter P. Patterns of indocyanine green videoangiography of choroidal tumours. British journal of ophthalmology. 1995;79(3):237–245. DOI:10.1136/bjo.79.3.237; Atmaca L.S., Batioğlu F., Atmaca P. Fluorescein and indocyanine green videoangiography of choroidal melanomas. Japanese journal of ophthalmology. 1999;43(1):25–30. DOI:10.1016/S0021-5155(98)00059-8; Andersen M.V., Scherfig E., Prause J.U. Differential diagnosis of choroidal melanomas and naevi using scanner laser ophthalmoscopical indocyanine green angiography. Acta Ophthalmologica Scandinavica. 1995;73(5):453–456. DOI:10.1111/j.1600-0420.1995.tb00308.x; Kubicka-Trzaska A., Starzycka M., Romanowska-Dixon B. Indocyanine green angiography in the diagnosis of small choroidal tumours. Ophthalmologica. 2002;216(5):316–319. DOI:10.1159/000066177; Shiraki K., Moriwaki M., Yanagihara N., Kohno T. Indocyanine green angiograms of choroidal nevi: Comparison between confocal and nonconfocal scanning ophthalmoscope and fundus video camera. Japanese journal of ophthalmology. 2001;45(4):368–374. DOI:10.1016/S0021-5155(01)00362-8; Yannuzzi L. Lawrence A. Indocyanine green angiography: a perspective on use in the clinical setting. American journal of ophthalmology. 2011;151(5):745–751. DOI:10.1016/j.ajo.2011.01.043; Frenkel S., Barzel I., Levy J., Lin A.Y. Demonstrating circulation in vasculogenic mimicry patterns of uveal melanoma by confocal indocyanine green angiography. Eye. 2008;22(7):948. DOI:10.1038/sj.eye.6702783; Shields C.L., Furuta M., Berman E.L., Zahler J.D. Choroidal nevus transformation into melanoma. Analysis of 2514 consecutive cases. Archives of Ophthalmology. 2009;127(8):981–987. DOI: :10.1001/archophthalmol.2009.151; Sallet G., Amoaku W.M.K., Lafaut B.A., Brabant P., De Laey J.J. Indocyanine green angiography of choroidal tumors. Graefes Arch Clin Exp Ophthalmol. 1995;233:677–689. DOI:10.1007/BF00164669; Свирин А.В., Кийко Ю.И., Обруч Б.В., Богомолов А.В. Спектральная оптическая когерентная томография: принципы и возможности метода. РМЖ. Клиническая офтальмология. 2009;2:50–53. [Svirin A.V., Kiiko Yu.I., Obruch B.V., Bogomolov A.V. Spectral optic coherent tomography: principles and possibilities (Literary review). Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klinicheskaya oftal’mologiya. 2009;2:50–53 (In Russ.)].; Duker J.S., Waheed N.K., Goldman D.R. Handbook of retinal OCT: optical coherence tomography. Philadelphia: WB Saunders; 2014.; Jia Y., Tan O., Tokayer J. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710. DOI:10.1364/oe.20.004710; Chalam K. V., Sambhav K. Optical coherence tomography angiography in retinal diseases. Journal of ophthalmic & vision research. 2016;11(1):84. DOI:10.4103/2008-322X.180709; Jia Y., Bailey S.T., Hwang T.S., McClintic S.M. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA. 2015;112(18):2395–2402. DOI:10.1073/pnas.1500185112; Coscas G., Lupidi M., Coscas F. Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects. Dev Ophthalmol. 2016;56:1–5. DOI:10.1159/000442768; Shields C.L., Sioufi K., Fuller T., Higgins T. Which tumor, what imaging modality. Retina Today.2016;08:57–64.; Shields C.L., Say E.A., Samara W.A., Khoo C.T. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: Comparison of irradiated versus nonirradiated eyes in 65 patients. Retina. 2016;36(8):1493– 1505. DOI:10.1097/IAE.0000000000001021; Lumbroso B., Huang D., Jia Y., Fujimoto J.A., Rispoli M. Clinical guide to Angio-OCT. Jaypee; 2014.; Valverde-Megías A., Say E.A., Ferenczy S.R., Shields C.L. Differential macular features on optical coherence tomography angiography in eyes with choroidal nevus and melanoma. Retina. 2017 Apr;37(4):731-740. doi:10.1097/IAE.0000000000001233; Нероев В. В., Саакян, С. В., Мякошина, Е. Б. Оптическая когерентная томография-ангиография в диагностике начальной меланомы и отграниченной гемангиомы хориоидеи. Вестник офтальмологии. 2018;134(3):4–18. [Neroev V.V., Sahakyan, S.V., Myakoshina, E. B. Optical coherence tomography-angiography in the diagnosis of initial melanoma and delimited choroid hemangioma. Annales of Ophthalmology = Vestnik oftal’mologii. 2018;134(3):4–18 (In Russ.)]. DOI:10.17116/oftalma201813434; Ghassemi F., Mirshahi R., Fadakar K., Sabour S. Optical coherence tomography angiography in choroidal melanoma and nevus. Clinical ophthalmology (Auckland, NZ). 2018;12:207. DOI:10.2147/OPTH.S148897; Pellegrini M., Corvi F., Invernizzi A., Ravera V. Swept-source optical coherence tomography angiography in choroidal melanoma: an analysis of 22 consecutive cases. Retina. 2019;39(8):1510–1519. DOI:10.1097/IAE.0000000000002205; https://www.ophthalmojournal.com/opht/article/view/1193

  17. 17
    Academic Journal

    Συνεισφορές: Авторы статьи выражают благодарность Шаимовой Венере Айратовне, доктору медицинских наук, главному врачу ООО «Центр зрения», г. Челябинск

    Πηγή: Ophthalmology in Russia; Том 17, № 3 (2020); 382-388 ; Офтальмология; Том 17, № 3 (2020); 382-388 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1278/717; Либман Е.С., Калеева Э.В., Рязанов Д.П. Комплексная характеристика инвалидности вследствие офтальмологии в Российской Федерации. Российская офтальмология онлайн. 2012;5:24–26.; Ikuno Y. Overview of the complications of high myopia. Retina. 2017;37(12):2347– 2351. DOI:10.1097/IAE.0000000000001489; Wong T.Y., Ferreira A., Hughes R., Carter G., Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol. 2014;157(1):9–25.e12. DOI:10.1016/j.ajo.2013.08.010; Gao S.S., Jia Y., Zhang M., Su J.P., Liu G., Hwang T.S., Bailey S.T., Huang D. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT27–36. DOI:10.1167/iovs.15-19043; Панова И.Е., Шаимов Т.Б., Шаимова В.А. Неинвазивная диагностика полипоидной хориоидальной васкулопатии как варианта течения возрастной макулярной дегенерации. Офтальмология. 2018;15(2S):273–280. DOI:10.18008/1816-5095-2018-2S-273-280; Будзинская М.В., Педанова Е.К. Современные подходы к диагностике и ведению пациентов с влажной формой возрастной макулярной дегенерации. Эффективная фармакотерапия. Офтальмология. 2018;2(22):26–30.; Liu B., Bao L., Zhang J. Optical Coherence Tomography Angiography Of Pathological Myopia Sourced and Idiopathic Choroidal Neovascularization With Follow-Up. Medicine. 2016;96(14):e3264. DOI:10.1097/MD.0000000000003264; Dansingani K.K., Tan A.C.S., Gilani F., Phasukkijwatana N., Novais E., Querques L., Waheed N.K., Duker J.S., Querques G., Yannuzzi L.A., Sarraf D., Freund K.B. Subretinal Hyperreflective Material Imaged With Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;169:235–248. DOI:10.1016/j.ajo.2016.06.031; Querques G., Corvi F., Querques L., Souied E.H., Bandello F. Optical Coherence Tomography Angiography of Choroidal Neovascularization Secondary to Pathologic Myopia. Dev Ophthalmol. 2016;56:101–106. DOI:10.1159/000442800; Querques L., Giuffrè C., Corvi F., Zucchiatti I. Carnevali A., De Vitis L.A., Querques G., Bandello F. Optical coherence tomography angiography of myopic choroidal neovascularisation. Br J Офтальмол. 2017;101(5):609–615. DOI:10.1136 /bjophthalmol-2016-309162; Bruyère E., Miere A., Cohen S.Y., Martiano D., Sikorav A., Popeanga A., Semoun O., Querques G., Souied E.H. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography. Retina. 2017;37(11):2095–2101. DOI:10.1097/IAE.0000000000001456; Mo J., Duan A., Chan S., Wang X., Wei W. Vascular flow density in pathological myopia: an optical coherence tomography angiography study. BMJ Open. 2017;7:e013571. DOI:10.1136/bmjopen-2016-013571; Григорьева А.В., Щуко А.Г., Жукова С.И., Самсонов Д.Ю., Юрьева Т.Н., Зайцева Н.В. Дифференциально-диагностические критерии хориоидальной неоваскуляризации при осложненной миопии и экссудативной возрастной макулярной дегенерации. Современные технологии в офтальмологии. 2016;4:69–72.; Lumbroso B., Huang D., Jia Y. Clinical Guide to Angio-OCT-Non Invasive Dyeless OCT Angiography. New Delhi: Jaypee Brothers Medical Publisher, 2015.; Ohno-Matsui K., Kawasaki R., Jonas J.B., Cheung C.M., Saw S.M., Verhoeven V.J., Klaver C.C., Moriyama M., Shinohara K., Kawasaki Y., Yamazaki M., Meuer S., Ishibashi T., Yasuda M., Yamashita H., Sugano A., Wang J.J., Mitchell P., Wong T.Y., META-analysis for Pathologic Myopia (META-PM) Study Group. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015;159(5):877–883.e7. DOI:10.1016/j.ajo.2015.01.022; Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report No 9. Ophthalmology. 1991;98:766–785.; https://www.ophthalmojournal.com/opht/article/view/1278

  18. 18
  19. 19
  20. 20