Showing 1 - 20 results of 28 for search '"оптическая когерентная томография (ОКТ)"', query time: 0.63s Refine Results
  1. 1
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation grant no. 19-75-10096, Работа выполнена при поддержке гранта РНФ № 19-75-10096

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 2 (2023); 239-249 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 2 (2023); 239-249 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1631/1330; https://www.jnmp.ru/jour/article/view/1631/1379; Palmisano S, Silvestri M, Troian M, Germani P, Giudici F, de Manzini N. Ileocaecal valve syndrome after surgery in adult patients: myth or reality? Color Dis. 2017;19(8):288–295. PMID: 28622448 https://doi.org/10.1111/codi.13778; Hope C, Reilly J, Lund J, Andreyev H. Systematic review: the effect of right hemicolectomy for cancer on postoperative bowel function. Support Care Cancer. 2020; 28(10):4549–4559. PMID: 32430603 https://doi.org/10.1007/s00520-020-05519-5; Massironi S, Cavalcoli F, Rausa E, Invernizzi P, Braga M, Vecchi M. Understanding short bowel syndrome: current status and future perspectives. Dig Liver Dis. 2020;52(3):253–261. PMID: 31892505. https://doi.org/10.1016/j.dld.2019.11.013; Larsen HM, Borre M, Christensen P, Mohr Drewes A, Laurberg S, Krogh K, Fassov J. Clinical evaluation and treatment of chronic bowel symptoms following cancer in the colon and pelvic organs. Acta Oncol. 2019;58(5):776-781. PMID: 30698052 https://doi.org/10.1080/0284186X.2018.1562211; Louis M, Johnston SA, Churilov L, Ma R, Christophi C, Weinberg L. Financial burden of postoperative complications following colonic resection: A systematic review. Medicine (Baltimore). 2021;100(27):e26546. PMID: 34232193 https://doi.org/10.1097/MD.0000000000026546; Yde J, Larsen HM, Laurberg S, Krogh K, Moeller HB. Chronic diarrhoea following surgery for colon cancer-frequency, causes and treatment options. Int J Colorectal Dis. 2018;33(6):683–694. PMID: 29589108 https://doi.org/10.1007/s00384-018-2993-y; Zuvarox T, Belletieri C. Malabsorption Syndromes. 2021 Jul 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 31971746; Васильев С.В., Попов Д.Е., Семенов А.В. Ранняя послеоперационная энтеральная поддержка больных раком толстой кишки. Колопроктология. 2015;S1(51):63–63a.; Gracie DJ, Kane JS, Mumtaz S, Scarsbrook AF, Chowdhury FU, Ford AC. Prevalence of, and predictors of, bile acid malabsorption in outpatients with chronic diarrhea. Neurogastroenterol Motil. 2012;24(11):983–538. PMID: 22765392 https://doi.org/10.1111/j.1365-2982.2012.01953.x; Rao SSC, Tan G, Abdulla H, Yu S, Larion S, Leelasinjaroen P. Does colectomy predispose to small intestinal bacterial (SIBO) and fungal overgrowth (SIFO)? Clin Transl Gastroenterol. 2018;9(4):146. PMID: 29691369 https://doi.org/10.1038/s41424-018-0011-x; Cosnes J, Gendre JP, Le Quintrec Y. Role of the Ileocecal valve and site of intestinal resection in malabsorption after extensive small bowel resection. Digestion. 1978;18(5–6):329–336. PMID: 750260 https://doi.org/10.1159/000198220; Keane C, Wells C, O’Grady G, Bissett IP. Defining low anterior resection syndrome: a systematic review of the literature. Color Dis. 2017;19(8):713–722. PMID: 28612460 https://doi.org/10.1111/codi.13767; Koda K, Yamazaki M, Shuto K, Kosugi C, Mori M, Narushima K, et al. Etiology and management of low anterior resection syndrome based on the normal defecation mechanism. Surg Today. 2019;49(10):803–808. PMID: 30937634 https://doi.org/10.1007/s00595-019-01795-9; Ketelaers SHJ, van Heinsbergen M, Orsini RG, Vogelaar FJ, Konsten JLM, Nieuwenhuijzen GAP, et al. Functional Bowel Complaints and the Impact on Quality of Life After Colorectal Cancer Surgery in the Elderly. Front Oncol. 2022;12:832377. PMID: 35242714 https//doi.org/10.3389/fonc.2022.832377; Silviera ML, Smith BP, Powell J, Sapienza C. Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways. Cancer Prev Res (Phila). 2012;5(3):374–384. PMID: 22300984 https://doi.org/10.1158/1940-6207.CAPR-11-0336; Toumi W, Ripalti A, Ricciardiello L, Cherif A, Gargouri D, Bouhafa A, et al. Detection of a new JCV strain of genotype A in a subpopulation of colorectal adenocarcinomas in Tunisia. New Microbiol. 2017;40(2):99–106. PMID: 28255604. PMID: 28255604; Coelho TR, Gaspar R, Figueiredo P, Mendonça C, Lazo PA, Almeida L. Human JC polyomavirus in normal colorectal mucosa, hyperplastic polyps, sporadic adenomas, and adenocarcinomas in Portugal. J Med Virol. 2013;85(12):2119–2127. PMID: 24009184 https://doi.org/10.1002/jmv.23705; Злокачественные новообразования ободочной кишки и ректосигмоидного отдела. Клинические рекомендации. 2020. URL: https://legalacts.ru/doc/klinicheskie-rekomendatsii-zlokachestvennye-novoobrazovanija-obodochnoi-kishki-i-rektosigmoidnogo-otdela/ [Дата обращения 27.04.2023]; Lukina MM, Shimolina LE, Kiselev NM, Zagainov VE, Komarov DV, Zagaynova EV, et al. Interrogation of tumor metabolism in tissue samples ex vivo using fluorescence lifetime imaging of NAD(P)H. Methods Appl Fluoresc. 2019;8(1):014002. PMID: 31622964 https://doi.org/10.1088/2050-6120/ab4ed8; Shcheslavskiy VI, Shirmanova MV, Dudenkova VV, Lukyanov KA, Gavrina AI, Shumilova AV, et al. Fluorescence time-resolved macroimaging. Opt Lett. 2018;43(13):3152–3155. PMID: 29957804 https://doi.org/10.1364/OL.43.003152; Gelikonov VM, Romashov VN, Shabanov DV, Ksenofontov SYu, Terpelov DA, Shilyagin PA, et al. Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System. Radiophys Quantum Electronics. 2018;60:897–911. https://doi.org/10.1007/s11141-018-9856-9; Moiseev A, Ksenofontov S, Sirotkina M, Kiseleva E, Gorozhantseva M, Shakhova N, et al. Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use. J Biophotonics. 2018;11(10):e201700292. PMID: 29737042 https://doi.org/10.1002/jbio.201700292; Shirmanova MV, Shcheslavskiy VI, Lukina MM, Becker W, Zagaynova EV. Exploring tumor metabolism with time-resolved fluorescence methods: from single cells to a whole tumor. In: Tuchin V, Popp J, Zakharov V. (eds). Multimodal optical diagnostics of cancer. Chapter 3. Springer; 2020. р. 133–155. https://doi.org/10.1007/978-3-030-44594-2_3; Rück A, Hauser C, Mosch S, Kalinina S. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells. J Biomed Opt. 2014;19(9):96005. PMID: 25202900 https://doi.org/10.1117/1.JBO.19.9.096005; Liu Z, Pouli D, Alonzo CA, Varone A, Karaliota S, Quinn KP, et al. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv. 2018;4(3):eaap9302. PMID: 29536043 https://doi.org/10.1126/sciadv.aap9302; Щеславский В.И., Ширманова М.В., Ельцов A., Беккер В. Люминесцентная микроскопия на основе многопараметрического время-коррелированного счета фотонов. Успехи биологической химии. 2019;59:103–138.; Suarez-Ibarrola R, Braun L, Pohlmann PF, Becker W, Bergmann A, Gratzke C, et al. Metabolic Imaging of Urothelial Carcinoma by Simultaneous Autofluorescence Lifetime Imaging (FLIM) of NAD(P)H and FAD. Clin Genitourin Cancer. 2021;19(1):e31–e36. PMID: 32771335 https://doi.org/10.1016/j.clgc.2020.07.005; Lukina M, Yashin K, Kiseleva E, Alekseeva A, Dudenkova V, Zagaynova EV, et al. Label-Free Macroscopic Fluorescence Lifetime Imaging of Brain Tumors. Front Oncol. 2021;11:666059. PMID: 34109119 https://doi.org/10.3389/fonc.2021.666059; Luo T, Lu Y, Liu S, Lin D, Qu J. Phasor-FLIM as a Screening Tool for the Differential Diagnosis of Actinic Keratosis, Bowen’s Disease, and Basal Cell Carcinoma. Anal Chem. 2017;89(15):8104–8111. PMID: 28661125 https://doi.org/10.1021/acs.analchem.7b01681; Сивохина Т.А., Золотарева Т.Г., Кожина М.В. Опыт применения препарата Резолор у пациенток, перенесших хирургическое лечение по поводу рака сигмовидной кишки. В сб.: Новые технологии в онкологии: сборник материалов науч.-практ. конференции. Самара; 2014. с. 188–189. URL: https://www.elibrary.ru/download/elibrary_25358234_95890786.pdf [Дата обращения 27.04.2023]; https://www.jnmp.ru/jour/article/view/1631

  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Ophthalmology in Russia; Том 18, № 3 (2021); 442-450 ; Офтальмология; Том 18, № 3 (2021); 442-450 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-3

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1599/851; Costen M.T.J., Williams C.P.R., Asteriades S. Luff A.J. An unusal maculopathy after routine cataract surgery. Nature Eye. 2007;21:1416–1418. DOI:10.11038/sj.eye.6702587; Gaas J.M. Müller. Сell cone, an overlooked part of the anatomy of the fovea centralis. Hypotheses concerning its role in the pathogenesis of macular hole and foveomacular retinoschisis. Arch Ophthalmol. 1999 June;117:821–823. DOI:10.1001/archopht.117.6.821; Lujan B.J., Roorda A., Croskrey J.A., Dubis A.M., Cooper R.F., Babayo J., Duncan J.L., Bhavna J.A., Carroll J. Directional optical coherence tomography provides accurate outer nuclear layer and Henle fiber layer measurements. Retina. 2015 August;35(8):1511–1520. DOI:10.1097/IAE.0000000000000527; Kishi S., Kamei Y., Shimizu K. Tractional elevation of Henle’s fiber layer in idiopathic macular holes. Am J Ophthalmol. 1995;120(4):486–496 DOI:10.1016/S00029394(14)72663-7; Matet A., Savastano M.C., Rispoli M., Bergin C., Moulin A., Crisanti P., BeharCohen F. En face optical coherence tomography of foveal microstructure in fullthickness macular hole: a model to study perifoveal Müller cells. Am J Ophthalmol. 2015;159(6):1142–1151. DOI:10.1016/j.ajo.2015.02.013; Yaman A., Karahan E., Arikan G., Aydin R., Saatci A.O., Durak I. Acute vitreomacular traction syndrome after uneventful phacoemulsification. Ann Ophthalmol. 2008;40(1):15–18.; Panagiotidis D., Karagiannis D., Theodossiadis P., Alonistiotis D., Charonis A., Tsoumbris I., Vergados I. Cataract-related acute vitreomacular traction syndrome. Eur J Ophthalmol. 2010;21(1):20–23. DOI:10.5301/ejo.2010.521; Jaffe N.S. Vitreous traction at the posterior pole of the fundus due to alterations in the vitreous posterior. Trans Am Acad Ophthalmol Otolaryngol. 1967;71(4):642–652.; Reese A.B., Jones I.S., Cooper W.C. Vitreomacular traction syndrome confirmed histologically. Am J Ophthalmol. 1970;69(6):975–977. DOI:10.1016/0002-9394(70)91041-x; Kusaka S., Saito Y., Okada A.A., Sasamoto M., Hayashi A., Ohji M., Tano Y. Optical coherence tomography in spontaneously resolving vitreomacular traction syndrome. Ophthalmologica. 2001;215(2):139–141. DOI:10.1159/000050847; Levy J., Belfair N., Rogozin A., Klemperer I. Rapid spontaneous resolution of vitreomacular traction syndrome documented by optical coherence tomography. Int Ophthalmol. 2004;25(4):247–251. DOI:10.1007/s10792-005-8249-1; Theodossiadis G.P., Grigoropoulos V.G., Theodoropoulou S., Datseris I., Theodossiadis P.G. Spontaneous resolution of vitreomacular traction demonstrated by spectral-domain optical coherence tomography. Am J Ophthalmol. 2014;157(4):842–851. DOI: :10.1016/j.ajo.2014.01.011; Patterson J.A., Ezra E., Gregor Z.J. Acute full-thickness macular hole after uncomplicated phacoemulsification cataract surgery. Am J Ophthalmol. 2001;131:799–800. DOI:10.1016/s0002-9394(00)00906-5; Ameli N., Lashkari K. Macular hole following cataract extraction. Semin Ophthalmol. 2002;17:196–198. DOI:10.1076/soph.17.3.196.14775; Falcone P.M. Vitreomacular traction syndrome confused with pseudophakic cystoid macular edema. Ophthalmic Surg Lasers. 1996;27:392–394.; Scarpa G. Bilateral cystoid macular edema after cataract surgery resolved by vitrectomy. Eur J Ophthalmol. 2011;21(5):677–679. DOI:10.5301/EJO2011.6506; Biro Z., Balla Z., Kovacs B. Change of foveal and perifoveal thickness measured by OCT after phacoemulsification and IOL implantation. Eye. 2008;22(1):8–12. DOI:10.1038/sj.eye.6702460; Perente I., Utine C.A., Ozturker C., Cakir M., Kaya V., Eren H., Kapran Z., Yilmaz O.F. Evaluation of macular changes after uncomplicated phacoemulsification surgery by optical coherence tomography. Curr Eye Res 2007; 32(3):241–247. doi:10.1080/02713680601160610; Cagini C., Fiore T., Iaccheri B., Piccineli F., Ricci M.A., Fruttini D. Macular thickness measured by optical coherence tomography in a healthy population before and after uncomplicated cataract phacoemulsification surgery. Curr Eye Res. 2009;34:1036–1041. DOI:10.3109/02713680903288937; Irvine A.R. A newly defined vitreous syndrome following cataract surgery, interpreted according to recent concepts of the structure of the vitreous. Am J Ophthalmol. 1953;(36):599–619. DOI:10.1016/0002-9394(53)90302-x; Gass J.D., Norton E.W. Cystoid Macular edema and papilledema following cataract extraction: a fluorescein fundoscopic and angiographic study. Arch Ophthalmol. 1966;(76):646–661. DOI:10.1001/archopht.1966.03850010648005; Chu C.J., Johnston R.L., Buscombe C., Sallam A.B., Mohamed Q., Yang Y.C, Risk factors and incidence of macular edema after cataract surgery. United Kingdom Pseudophakic Macular Edema Study Group. Ophthalmology. 2016;123(2):316–323. DOI: 10/1016/j.ophtha.2015.10.001; Gulkilik G., Kocabora S., Taskaili M., Engin G. Cystoid macular edema after phaco‑emulsification: risk factors and effect on visual acuity. Canadian Journal of Ophthalmology. 2006;41(6):699–703. DOI:10.3129/i06-062; Packer M., Lowe J., Fine H. Incidence of acute postoperative cystoid macular edema in clinical practice. J Cataract Refract Surg. 2012;38(12):2108–2111. DOI:10.1016/j.jcrs.2012.07.029; Han J.V., Patel D.V., Squirrell D., McGee C.N.J. Cystoid macular oedema following cataract surgery: a review. Clin.Experiment. Ophthalmol. 2019;47:346–356. DOI:10.1111/ceo13513; Lobo C. Pseudophakic cystoid macular edema. Ophthalmologica. 2012;227:61–67. DOI:10.1159/000331277; Mentes J., Erakgun T., Afrashi F., Kerci G. Incidence of cystoid macular edema after uncomplicated phacoemulsification. Ophthalmologica. 2003;217:408–412. DOI:10.1159/000073070; Creese K., Ong D., Sandhu S.S., Ware D., Harper C.A., Al-Qureshi S.H., Wickre‑masinghe S.S. Paracentral acute middle maculopathy as a finding in patients with severe vision loss following phacoemulsification cataract surgery. Clin. Experiment. Ophthalmol. 2017;45(6):565–567. DOI:10.1111/ceo.12945; Иошин И.Э. Послеоперационный или артифакичный (псевдофакичный) макулярный отек. Российский офтальмологический журнал 2020;13(4):64–69. DOI:10.21516/2072-0076-2020-13-4-64-69; Kraff M.C., Lieberman H.L., Jampol L.M., Sanders D.R. Effect of a papillary light occluder on cystoid macular edema. J. Cataract Refract Surg. 1989;15:658–660.; Worst J.G.F. Cisternal systems of the fully developed vitreous body in the young adult. Trans Ophthalmol Soc UK. 1977; 97(4):550–554.; Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–881.; Bringmann A., Grosche J., Pannickle T., Francke M. Müller cells in the healthy and diseased retina. Prog Ret Eye Res. 2006;25(4):397–424. DOI:10.1016/j.pretey‑eres.2006.05.003; https://www.ophthalmojournal.com/opht/article/view/1599

  5. 5
  6. 6
    Academic Journal

    Source: National Journal glaucoma; Том 18, № 4 (2019); 15-34 ; Национальный журнал Глаукома; Том 18, № 4 (2019); 15-34 ; 2311-6862 ; 2078-4104

    File Description: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/239/247; Hood D.C., Anderson S.C., Wall M., Kardon R.H., Raza A.S. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurement. Invest Ophthalmol Vis Sci. 2009; 50:4254-4255. https://doi. org/10.1167/iovs.08-2697; Ojima T., Tanabe T., Hangai M., Yu.S., Morishita S., Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Japan J Ophthalmol. 2007; 51:197-203. https://doi.org/10.1007/ s10384-006-0433-y; Nakatani Y., Higashide T., Ohkubo S., Hisashi T.H., Sugiya K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. Glaucoma. 2011; 20:252-259. https://doi. org/10.1097/IJG.0b013e3181e079ed; Kurysheva N.I., Parshunina O.A., Shatalova E.O., Kiseleva T.N., Lagutin M.B., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. 2016; 24:1-7. https://doi.org/10.1080/02713683.2016.1184281; Hayreh S.S. Blood flow in the optic head and factors that may influence it. Progress in Retinal and Eye Research. 2001; 20(5):595-624. https://doi.org/10.1016/S1350-9462(01)00005-2; Grieshaber M.C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005; 16:79-83. https://doi.org/10.1136/bjo.2006.103010; Kurysheva N.I., Kiseleva T.N., Hodak N.A. The study of bioelectricactivity and regional hemodynamics in glaucoma. Klinicheskaya oftalmologiya. 2012; 3:91-94. https://doi.org/10.1371/journal. pone.0201599; Flammer J., Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Progress in Retinal and Eye Research. 1998; 17:267-289. https:// doi.org/10.21037/qims.2016.03.05; Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998; 39:232-233.; Tobe L.A., Harris A., Hussain R.M., Eckert G., Huck A., Park J., et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fiber layer structure in subjects with open-angle glaucoma over an 18-month period. Brit J Ophthalmol. 2005; 99:609-612. http://dx.doi.org/10.1136/bjophthalmol-2014-305780; Martinez A., Sanchez M. Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 2005; 83:716-722. https://doi. org/10.1111/j.1600-0420.2005.00567.x; Mokbel T.H., Ghanem A.A. Diagnostic value of color doppler imaging and pattern visual evoked potential in primary open-angle glaucoma. J Clin Exper Ophthalmol/ 20112:127. https://doi.org/10.4172/21559570.1000127; Jia Y., Morrison J.C., Tokayer J., Tan O., Lombardi L., Baumann B. et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Optics Exp. 2012; 3:3127-3137. https://doi.org/10.1364/ BOE.3.003127; Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M. et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. https://doi.org/10. 1016/j.ophtha.2014.01.021; Wang X., Jiang C., Ko T., Kong X., Yu X., Min W. et al. Correlation between optic disc perfusion and glaucomatous severity in subjects with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253:15571564. https://doi.org/10.1007/s00417- 015-3095-y; Liu L., Jia Y., Takusagawa H.L., Morrison J.C., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9):1045-1052. https://doi.org/10. 1001/jamaophthalmol.2015.2225; Lee E.J., Lee K.M., Lee S.H., Kim T.W. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:6265-6270. https://doi.org/10.1167/iovs.16-20287 18. Kurysheva N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(5):651-662.; Levêque P.M. Optic disc vascularization in glaucoma: value of spectral domain optical coherence tomography angiography. Ophthalmol. 2016, Article ID 6956717. https://doi.org/10.1155/2016/6956717; Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Manalastas P.I., Fatehee N. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57:451-459. https://doi.org/10.1167/ iovs.15-18944; Rao H.L., Kadambi S.V., Weinreb R.N., Puttaiah N.K., Pradhan Z.S., Rao D.A. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017; 101(8):1066-1070. https://doi.org/10.1136/bjophthalmol-2016- 309377; Hood D. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Progress in Retinal and Eye Research. 2017; 57:46-75. doi:10.1016/j.preteyeres.2016.12.002; Hood D.C., Raza A.S., de Moraes C.G.V., Johnson C.A., Liebmann J.M., Ritch R. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Trans Vis Sci Tech. 2012; 1:1-15. https://doi.org/10.1167/tvst.1.1.3; Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye (Lond). 2011; 25(2):224-232. https://doi.org/10.1038/eye.2010.203; May J.G., Ralston J.V., Reed J.L., Van Dyk H.J.L. Loss in pattern-elicited electroretinograms in optic nerve dysfunction. Am J Ophthalmol. 1982; 93:418-422. https://doi.org/10.1016/0002-9394(82)90131-3 26. Bobak P., Bodis W.I, Harnois C., Maffei L., Mylin L. Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol. 1983; 96:72-83. https://doi. org/10.1016/0002-9394(83)90457-9; Wanger P., Persson H.E. Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci. 1983; 24:749-753. https:// doi.org/10.1007/978-94-009-7275-9_41; Bach M., Hiss P., Ro êver J. Check-size specific changes of pattern electroretinogram in subjects with early open-angle glaucoma. Doc Ophthalmol. 1988; 69:315-322.; Parisi V., Miglior S., Manni G., Centofanti M., Bucci M.G. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology. 2016; 113:216-228. https://doi.org/10.1016/j.ophtha.2005.10.044; Rejdak R., Toczolowski J., Kurkowski J., Kaminski M.L., Rejdak K., Stelmasiak Z. et al. Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit. 2003; 9:124-128.; Tong Y., Wang P., Xia Z., Xia X., Xu X. Color pattern reversal visual evoked potentials in primary open angle and angle closure glaucoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009; 34:771-775.; Mills R.P., Budenz D.L., Lee P.P., Noecker R.J., Walt J.G., Evans S.J. et al. Categorizing the stage of glaucoma from pre-diagnosis to endstage disease. Am J Ophthalmol. 2006; 141:24-30. https://doi. org/10. 1016/j.ajo.2005.07.044; Chang E., Goldberg J. Glaucoma 2.0: Neuroprotection, Neuroregeneration, Neuroenhancement. Ophthalmology. 2012; 119(5):979-986. https://doi.org/10.1016/j.ophtha.2011.11.003; Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 1988; 8(1):96. https://doi.org/10.1177/0333102417738202; Garway-Heath D.F., Poinoosawmy D., Fitzke F.W., Hitchings R.A. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000; 107(10):1809-1815. https://doi. org/10.1016/S0161-6420(00)00284-0; Odom J.V., Bach M., Brigell M., Holder G.E., McCulloch D.L.L., Mizota A. et al. ISCEV standard for clinical visual evoked potentials. Doc Ophthalmol. 2016; 133(1):1-9. https://doi.org/10.1007/s10633-016- 9553-y; Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L. et al. ISCEV standard for clinical pattern electroretinography (PERG) – 2012 update. Doc Ophthalmol. 2013; 126:1-7. https://doi.org/ 10.1007/s10633-012-9353; Ventura L.M., Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology. 2005; 112(1):20-27. https://doi.org/10.1016/j. ophtha.2004.09.002; Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008; 85:386-395. https://doi. org/10.1097/OPX.0b013e318177ebf3; Bach M., Poloschek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013; 353:287-296. https://doi.org/10.1007/s00441-013-1598-6; Bach M., Ramharter-Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc Ophthalmol. 2013; 127:227-238. https://doi.org/10.1007/ s10633- 013-9412-z; Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015; 141:164-170. https://doi.org/10.1016/j. exer.2015.05.008; Bode S.F., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci. 2011; 52:4300-4306. https://doi.org/10.1167/iovs.10-6381 44. Porciatti V., Bosse B., Parekh P.K., Shuf O.A., Feuer W.J., Venture L.M. Adaptation of the Steady-state PERG in early glaucoma. J Glaucoma. 2014; 23(8):494-500. https://doi.org/10.1097/IJG. 0b013e318285fd95; Pfeiffer N., Tillmon B., Bach M. Predictive value of the pattern electroretinogram in high risk ocular hypertension. Invest Ophthalmol Vis Sci. 1993; 34:1710-1715; He Z.J. The qualitative and quantitative diagnostic significance of P-VEP in the evaluation of glaucomatous visual function damage. Zhonghua Yan KeZaZhi. 1991; 27(1):25-29.; Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001; 20:531-561. https://doi.org/10.1016/S1350-9462(00)00030-6; Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000; 41:2797-2810.; Luo X., Frishman L. Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci. 2011; 52(12):8571-8584. https://doi.org/10.1167/iovs.11-8376; Xu H., Yu J., Kong X., Sun X., Jiang C. Macular microvasculature alterations in subjects with primary open-angle glaucoma. Medicine (Baltimore). 2016; 95(33):e434. https://doi.org/10.1097/ MD.0000000000004341; Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Likhvantseva V.G., Lagutin M.B. OCT angiography and color doppler imaging in glaucoma diagnostics. J Pharm Sci Res. 2017; 9(5):527-536.; Chihara E., Dimitrova G., Amano H., Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017; 58:690-697. https://doi. org/10.1167/iovs.16-20709; Yu D.Y., Cringle S.J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001; 20:175-208. https://doi. org/10.1016/S1350-9462(00)00027-6; Takusagawa H.L., Liu L., Ma K., Jia Y., Zhang M., Gao S., et al. Projection-resolved optical coherence angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017; 124(11):1589-1599. doi:10.1016/j.ophtha.2017.06.002; Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. https://doi.org/10.1016/j. ajo.2016.08.030; Hollo G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26:7-10. https://doi.org/10.1097/ IJG.0000000000000527; Scripsema N.K., Garcia P.M., Bavier R.D., Chui T.Y., Krawitz B.D., Mo S., et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal — tension glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:611620. https://doi.org/10.1167/iovs.15-18783; Bowd C., Zangwill L.M., Berry C.C., Blumenthal E.Z., Vasile C., Snachez-Galeana C. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001; 42:1993-2003.; Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol Chic. 1981; 99:635-649. https://doi. org/10.1001/archopht.1981.03930010635009; Pechauer A.D., Jia Y., Liu L., Gao S., Jiang C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015; 56:3287-3291. https://doi.org/10.1167/iovs.15-16655; Falsini B., Colotto A., Porciatti V., Bolzani R., Porrello G., Giudiceandrea A. Follow-up study with pattern ERG in ocular hypertension and glaucoma subjects under timolol maleate treatment. Clin Vis Sci. 1992; 7:341-347.; Ventura L., Porciatti V., Ishida K., Feuer W.J., Parrish R.K. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005; 1:20-27. https://doi.org/10.1016/j.ophtha.2004.07.018; Papst N., Bopp M., Schnaudigel O. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1984; 222:34-37. https://doi.org/10.1007/ BF02133775; Nesher R., Trick G.L., Kass M.A., Gordon M.O. Steady-state pattern electroretinogram following long term unilateral administration of timolol to ocular hypertensive subjects. Doc Ophthalmol. 1990; 75:101-109. https://doi.org/10.1007/BF00146546; Colotto A., Salgarello T., Giudiceandrea A., De Luca L.A., Coppe A., Buzzonetti L. et al. Pattern electroretinogram in treated ocular hypertension: a cross-sectional study after timolol maleate the- rapy. Ophthalmic Res. 1995; 27:168-177. https://doi.org/10.1159/ 000267663; Banitt M., Ventura L., Feuer W.J., Savatovsky E., Luna G., Shif O. et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013; 54:2346-2352. https://doi.org/10.1167/iovs.12-11026; Kremmer S., Tolksdorf-Kremmer A., Stodtmeister R. Simultaneous registration of VECP and pattern ERG during artificially raised intraocular pressure. Ophthalmologica. 1995; 209(5):233-241 https://doi. org/10.1159/000310622; Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domainOCT structural measurements in glaucoma. 2011; 25:224. https:// doi.org/10.1038/eye.2010.203 Поступила / Received / 18.07.2019; https://www.glaucomajournal.ru/jour/article/view/239

  7. 7
  8. 8
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 6, No 4 (2012); 6-12 ; Акушерство, Гинекология и Репродукция; Vol 6, No 4 (2012); 6-12 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/331/345; Апгар Б.С, Броцман Г.Л, Шпицер М. Клиническая кольпосопия. Иллюстрированное руководство. Пер. с англ под общей ред. В.Н. Прилепской. М. 2012.; Барышников А.Н., Новиков В.В. Программированная клеточная смерть (апоптоз). Клиническая онкогематология: руководство для врачей. М. 2007; 99-106.; Бауэр Г. Цветной атлас по кольпоскопии. М. 2007; 288 с.; Дамиров М.М. Радиоволновые, криогенные и лазерные технологии в диагностике и лечении в гинекологии.М. 2011.; Дисаи Ф.Дж, Крисман У.Т. Клиническая онкогинекология в 3 томах. Том 1. Переводчик Е. Новикова. 2011; Краснопольский В.И., Шипулина О.Ю., Мельник Т.Н., Михеева И.В., Серова О.Ф., Зароченцева Н.В., Белая Ю.М. Инфицированность вирусом папилломы человека среди девочек-подростков в Московской области. Российский вестник акушера-гинеколога. 2010; 5: 46-49.; Кузнецова И.А. Диагностические возможности оптической когерентной томографии в оценке состояния шейки матки. Дисс. канд. мед. наук. 2003; 157с.; Прилепская В.Н., Костава М.Н. Возможности терапии папилломавирусной инфекции. РМЖ. 2009; 17 (1): 16-19.; Роговская С.И. Практическая кольпоскопия. М.2011.; Роговская С.И. Папилломавирусная инфекция у женщин и патология шейки матки. 2-е изд., испр. и доп. М. 2011.; Роговская С.И., Акопова Е.С., Коган Е.А. Совершенствование лечебно-диагностических подходов к ВПЧ-инфекции гениталий. РМЖ. 2011; 20: 1238.; Роговская С.И. Папилломавирусная инфекция нижних отделов гениталий: клиника, диагностика, лечение. Дисс. докт. мед. наук. 2003.; Серов В.Н. Изучение эффективности Полижинакса в лечении неспецифических бактериальных и грибковых кольпитов. АГ-инфо. 2003. сентябрь.; Kanodia S., Fahey L.M., Kast W.M. Mechanisms used by human papillomavirus to escape the host immune response. Curr. Cancer. Drug. Targets. 2007; 7: 79-89.; Moscicki A.B., Ma Y. et al. The role of sexual behavior and HPV persistence in predicting repeated infections with new HPV types. Cancer. Epidemiol. Biomarkers. Prev. 2010 Aug.; 19 (8): 2055-2065.; Schiffman M., Castle P.E. The promise of global cervical-cancer prevention. N. Engl. J. Med. 2005; 353: 2101-2104.; Schiffman M.H., Kiviat N.B. et al. Accuracy and interlaboratory reability of human papillomavirus DNA testing By Hybrid Capture. J. Clin. Microbiol. 1995; 33: 545 p.; Wright T.C., Cox J.T. et al. American Society for Colposcopy and Cervical Pathology. 2001 consensus guidelines for the management of women with cervical intraepithelial neoplasia. Am. J. Obstet. Gynaecol. 2003 Jul; 189 (1): 295-304.; https://www.gynecology.su/jour/article/view/331

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    File Description: text/html

  18. 18
  19. 19
  20. 20