-
1Academic Journal
Authors: M. V. Ignatenk, М. В. Игнатенко
Contributors: This work was supported by the State Program of Scientific Research “Convergence-2025”, subprogram “Mathematical models and methods”, task 1.4.01.2., Работа выполнена в рамках Госу дарственной программы научных исследований «Кон вергенция-2025», подпрограмма «Математические модели и методы», задание 1.4.01.2.
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 60, № 4 (2024); 295-302 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 60, № 4 (2024); 295-302 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2024-60-4
Subject Terms: преобразование Лапласа, convolution operator, operator interpolation of Lagrange type, Dirac delta function, Fourier transform, Heaviside function, Laplace transform, операторы свертки, операторное интерполирование типа Лагранжа, дельта-функция Дирака, преобразование Фурье, функция Хевисайда
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/809/617; Гахов, Ф. Д. Уравнения типа свертки / Ф. Д. Гахов, Ю. И. Черский. – М.: Наука, 1978. – 296 с.; Гельфанд, И. М. Коммутативные нормированные кольца / И. М. Гельфанд, Д. А. Райков, Г. Е. Шилов. – М.: Физматлит, 1960. – 316 с.; Васильев, И. Л. Разностные уравнения первого порядка с переменными коэффициентами в банаховых модулях последовательностей / И. Л. Васильев, Д. А. Новичкова // Докл. Нац. акад. наук Беларуси. – 2012. – Т. 56, № 2. – С. 5–9.; Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко; Нац. акад. наук Беларуси, Ин-т математики. – Минск: Беларус. навука, 2016. – 281 c.; Янович, Л. А. Интерполяционные методы аппроксимации операторов, заданных на функциональных пространствах и множествах матриц / Л. А. Янович, М. В. Игнатенко; Нац. акад. наук Беларуси, Ин-т математики. – Минск: Беларус. навука, 2020. – 476 c.; Наймарк, М. А. Нормированные кольца / М. А. Наймарк. – М.: Наука, 1968. – 664 с.; Хелемский, А. Я. Лекции по функциональному анализу / А. Я. Хелемский. – М.: МЦНМО, 2004. – 560 с.; Хелемский, А. Я. Банаховы и полинормированные алгебры: общая теория, представления, гомологии / А. Я. Хелемский. – М.: Наука, 1989. – 464 с.; https://vestifm.belnauka.by/jour/article/view/809
-
2Academic Journal
Authors: M. V. Ignatenko, L. A. Yanovich, М. В. Игнатенко, Л. А. Янович
Contributors: Работа выполнена в рамках ГПНИ «Конвергенция-2025», подпрограмма «Математические модели и методы», задание 1.3.01.
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 57, № 4 (2021); 401-416 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 57, № 4 (2021); 401-416 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2021-57-4
Subject Terms: обратное интерполирование, variational derivative, Gateaux differential, operator interpolation of Hermite type, inverse interpolation, вариационная производная, дифференциал Гато, операторное интерполирование эрмитова типа
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/608/503; Смирнов, В. И. Вариационное исчисление / В. И. Смирнов, В. И. Крылов, Л. В. Канторович. – Л.: Кубуч, 1933. – 204 с.; Леви, П. Конкретные проблемы функционального анализа / П. Леви. – М.: Наука, 1967. – 510 с.; Вайнберг, М. М. Вариационные методы исследования нелинейных операторов / М. М. Вайнберг. – М.: Гостехиздат, 1956. – 345 с.; Вольтерра, В. Теория функционалов, интегральных и интегро-дифференциальных уравнений / В. Вольтера. – М.: Наука, 1982. – 304 с.; Далецкий, Ю. Л. Бесконечномерные эллиптические операторы и связанные с ними параболические уравнения / Ю. Л. Далецкий // Успехи мат. наук. – 1967. – Т. 22, вып. 4 (136). – С. 3–54.; Далецкий, Ю. Л. Дифференциальные уравнения с функциональными производными и стохастические уравнения для обобщенных случайных процессов / Ю. Л. Далецкий // Докл. АН СССР. – 1966. – Т. 166, № 5. – С. 1035–1038.; Задорожний, В. Г. О дифференциальных уравнениях второго порядка в вариационных производных / В. Г. Задорожний // Дифференц. уравнения. – 1989. – Т. 25, № 10. – С. 1679–1683.; Данилович, В. П. Формула Коши для линейных уравнений с функциональными производными / В. П. Данилович, И. М. Ковальчик // Дифференц. уравнения. – 1977. – Т. 13, № 8. – С. 1509–1511.; Ковальчик, И. М. Линейные уравнения с функциональными производными / И. М. Ковальчик // Докл. АН СССР. – 1970. – Т. 194, № 4. – С. 763–766.; Ковальчик, И. М. Представление решений некоторых уравнений с функциональными производными с помощью интегралов Винера / И. М. Ковальчик // Докл. АН УССР. Сер. А, Физ.-мат. и техн. науки. – 1978. – Т. 12. – С. 1079–1083.; Авербух, В. И. Теория дифференцирования в линейных топологических пространствах / В. И. Авербух, О. Г. Смолянов // Успехи мат. наук. – 1967. – Т. 22, вып. 6 (138). – С. 201–260.; Макаров, В. Л. Интерполирование операторов / В. Л. Макаров, В. В. Хлобыстов, Л. А. Янович. – Киев: Наук. думка, 2000. – 407 с.; Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich. – Київ: Iн-т математики НАН України, 2010. – 517 с. – (Праці Ін-ту математики НАН України. – Vol. 83: Математика та ii застосування).; Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко; Нац. акад. наук Беларуси, Ин-т математики. – Минск: Беларус. навука, 2016. – 281 c.; Янович, Л. А. Интерполяционные методы аппроксимации операторов, заданных на функциональных пространствах и множествах матриц / Л. А. Янович, М. В. Игнатенко; Нац. акад. наук Беларуси, Ин-т математики. – Минск: Беларус. навука, 2020. – 476 c.; Крылов, В. И. Вычислительные методы: в 2 т. / В. И. Крылов, В. В. Бобков, П. И. Монастырный. – M.: Наука, 1976–1977. – 2 т.; Мысовских, И. П. Лекции по методам вычислений: учеб. пособие / И. П. Мысовских. – СПб.: Изд-во С.-Петерб. гос. ун-та, 1998. – 472 с.; Янович, Л. А. Интерполяционные функциональные многочлены ньютонова типа с двукратными узлами / Л. А. Янович, М. В. Игнатенко // Аналитические методы анализа и дифференциальных уравнений: сб. науч. тр. – Минск: Изд. центр БГУ, 2012. – С. 229–240.; Игнатенко, М. В. О точном и приближенном решении отдельных дифференциальных уравнений с вариационными производными первого и второго порядков / М. В. Игнатенко, Л. А. Янович // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2020. – Т. 56, № 1. – С. 51–71. https://doi.org/10.29235/1561-2430-2020-56-1-51-71; Янович, Л. А. К теории интерполирования Эрмита – Биркгофа нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2017. – № 2. – С. 7–23.; Игнатенко, М. В. К теории интерполирования дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко // Тр. Ин-та математики Нац. акад. наук Беларуси. – 2017. – Т. 25, № 2. – С. 11–20.; Игнатенко, М. В. Обобщенные интерполяционные многочлены Эрмита – Биркгофа для дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко, Л. А. Янович // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2018. – Т. 54, № 2. – С. 149–163. https://doi.org/10.29235/1561-2430-2018-54-2-149-163; https://vestifm.belnauka.by/jour/article/view/608
-
3Academic Journal
Authors: M. V. Ignatenko, L. A. Yanovich, М. В. Игнатенко, Л. А. Янович
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 1 (2020); 51-71 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 1 (2020); 51-71 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-1
Subject Terms: операторное интерполирование эрмитова типа, Gateaux differential, Cauchy problem, Dalamber formula, operator interpolation of Hermite type, дифференциал Гато, задача Коши, формула Даламбера
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/505/419; Леви, П. Конкретные проблемы функционального анализа / П. Леви. – М.: Наука, 1967. – 510 с.; Вайнберг, М. М. Вариационные методы исследования нелинейных операторов / М. М. Вайнберг. – М.: Гостехиздат, 1956. – 345 с.; Вольтерра, В. Теория функционалов, интегральных и интегро-дифференциальных уравнений / В. Вольтера. – М.: Наука, 1982. – 304 с.; Далецкий, Ю. Л. Дифференциальные уравнения с функциональными производными и стохастические уравнения для обобщенных случайных процессов / Ю. Л. Далецкий // Докл. АН СССР. – 1966. – Т. 166, № 5. – С. 1035–1038.; Задорожний, В. Г. О дифференциальных уравнениях второго порядка в вариационных производных / В. Г. Задорожний // Дифференц. уравнения. – 1989. – Т. 25, № 10. – С. 1679–1683.; Данилович, В. П. Формула Коши для линейных уравнений с функциональными производными / В. П. Данилович, И. М. Ковальчик // Дифференц. уравнения. – 1977. – Т. 13, № 8. – С. 1509–1511.; Ковальчик, И. М. Представление решений некоторых уравнений с функциональными производными с помощью интегралов Винера / И. М. Ковальчик // Докл. АН УССР. Сер. А, Физ.-мат. и техн. науки. – 1978. – Т. 12. – С. 1079–1083.; Ковальчик, И. М. Линейные уравнения с функциональными производными / И. М. Ковальчик // Докл. АН СССР. – 1970. – Т. 194, № 4. – С. 763–766.; Далецкий, Ю. Л. Бесконечномерные эллиптические операторы и связанные с ними параболические уравнения / Ю. Л. Далецкий // Успехи мат. наук. – 1967. – Т. 22, вып. 4 (136). – С. 3–54.; Авербух, В. И. Теория дифференцирования в линейных топологических пространствах / В. И. Авербух, О. Г. Смолянов // Успехи мат. наук. – 1967. – Т. 22, вып. 6 (138). – С. 201–260.; Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich. – Київ: Iн-т математики НАН Украïни, 2010. – 516 с. – (Праці Ін-ту математики НАН України. – Vol. 83: Математика та ii застосування).; Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко. – Минск: Беларус. навука, 2016. – 281 с.; Янович, Л. А. Интерполяционные функциональные многочлены ньютонова типа с двукратными узлами / Л. А. Янович, М. В. Игнатенко // Аналитические методы анализа и дифференциальных уравнений: сб. науч. тр. – Минск: Изд. центр БГУ, 2012. – С. 229–240.; Янович, Л. А. Об одном классе интерполяционных многочленов для нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Мат. моделирование. – 2014. – Т. 26, № 11. – С. 90–96.; Янович, Л. А. К теории интерполирования Эрмита – Биркгофа нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2017. – № 2. – С. 7–23.; Игнатенко, М. В. К теории интерполирования дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко // Тр. Ин-та математики Нац. акад. наук Беларуси. – 2017. – Т. 25, № 2. – С. 11–20.; Игнатенко, М. В. Обобщенные интерполяционные многочлены Эрмита – Биркгофа для дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко, Л. А. Янович // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2018. – Т. 54, № 2. – С. 149–163. https://doi.org/10.29235/1561-2430-2018-54-2-149-163; https://vestifm.belnauka.by/jour/article/view/505
-
4Academic Journal
Authors: M. V. Ignatenko, М. В. Игнатенко
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 54, № 3 (2018); 263-272 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 54, № 3 (2018); 263-272 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2018-54-3
Subject Terms: погрешность интерполяции, operator polynomial, operator interpolation, Gateaux differential, Stieltjes integral, interpolation error, операторный многочлен, операторное интерполирование, дифференциал Гато, интеграл Стилтьеса
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/330/309; Ватсон, Г. Н. Теория бесселевых функций: в 2 т. / Г. Н. Ватсон. – М.: Изд-во иностр. лит., 1949. – Т. 1. – 799 с.; Samko, S. G. Fractional Integrals and Derivatives. Theory and Applications / S. G. Samko, A. A. Kilbas, O. I. Marichev. – New York [et al.]: Gordon and Breach Science Publishers, 1993. – 1006 p.; Титмарш, Е. Введение в теорию интегралов Фурье / Е. Титмарш. – М.; Л.: ГИТТЛ, 1948. – 418 с.; Krylov, V. I. A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation / V. I. Krylov, N. S. Skoblya. – M.: Mir Publ., 1977. – 273 p.; Бейтмен, Г. Таблицы интегральных преобразований: в 2 т. / Г. Бейтмен, А. Эрдейи. – M.: Наука, 1969. – Т. 1: Преобразования Фурье, Лапласа, Меллина. – 344 с.; Янович, Л. А. О взаимосвязи интерполирования операторов и функций / Л. А. Янович, M. В. Игнатенко // Докл. Нац. акад. наук Беларуси. – 1998. – Т. 42, № 3. – С. 9–16.; Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich // Праці Ін-ту математики НАН України. – Київ, 2010. – Т. 83. – С. 1–517.; Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко. – Минск: Беларус. навука, 2016. – 281 с.; https://vestifm.belnauka.by/jour/article/view/330
-
5Academic Journal
Authors: M. V. Ignatenko, L. A. Yanovich, М. В. Игнатенко, Л. А. Янович
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 54, № 2 (2018); 149-163 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 54, № 2 (2018); 149-163 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2018-54-2
Subject Terms: погрешность интерполяции, operator interpolation, generalized Hermite – Birkhoff interpolation, differential opera- tor, Gateaux differential, Stieltjes integral, interpolation error, операторное интерполирование, обобщенное интерполирование типа Эрмита – Биркгофа, дифференциальный оператор, дифференциал Гато, интеграл Стилтьеса
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/314/298; Янович, Л. А. Обобщенная интерполяционная задача Эрмита – Биркгофа для операторов / Л. А. Янович, М. В. Игнатенко // Аналитические методы анализа и дифференциальных уравнений: сб. науч. тр. 5-й междунар. конф. – Минск, Ин-т математики НАН Беларуси, 2010. – Т. 1. – С. 140–147.; Янович, Л. А. К теории интерполирования Эрмита – Биркгофа нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2017. – № 2. – С. 7–23.; Игнатенко, М. В. К теории интерполирования дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко // Тр. Ин-та математики Нац. акад. наук Беларуси. – 2017. – Т. 25, № 2. – C. 11–20.; Евграфов, М. А. Интерполяционная задача Абеля – Гончарова / М. А. Евграфов. – М.: ГИТТЛ, 1954. – 128 с.; Янович, Л. А. Об одном классе интерполяционных многочленов для нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Мат. моделирование. – 2014. – Т. 26, № 11. – С. 90–96.; Янович, Л. А. Обобщенная интерполяционная задача Абеля – Гончарова / Л. А. Янович, В. В. Дорошко // Вестн. фонда фундам. исслед. – 1999. – № 4. – С. 34–44.; Янович, Л. А. Формулы операторного интерполирования, основанные на интерполяционных многочленах для числовых функций / Л. А. Янович, В. В. Дорошко // Вычислительная математика и математические проблемы механики: тр. Укр. мат. конгресса. – Киев, 2002. – С. 137–145.; Янович, Л. А. Об одном классе формул операторного интерполирования Эрмита – Биркгофа в пространстве дифференцируемых функций / Л. А. Янович, М. В. Игнатенко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2005. – № 2. – С.11–16.; Янович, Л. А. Интерполяционные операторные многочлены Эрмита – Биркгофа в пространстве гладких функций / Л. А. Янович, М. В. Игнатенко // Докл. Нац. акад. наук Беларуси. – 2009. – Т. 53, № 5. – С.15–21.; Янович, Л. А. Специальный случай интерполяционной задачи Эрмита – Биркгофа для операторов в пространстве гладких функций / Л. А. Янович, М. В. Игнатенко // Актуальные проблемы анализа: сб. науч. тр. – Гродно: ГрГУ, 2009. – С. 198–215.; Худяков, А. П. Интерполяционные формулы Эрмита – Биркгофа относительно алгебраической и тригонометрической систем функций с одним специальным узлом / А. П. Худяков, А. А. Трофимук // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2017. – № 1. – С. 14–28.; Shi, Y. G. Theory of Birkhoff Interpolation / Y. G. Shi. – New York: Nova Science Publishers, 2003. – 253 p.; Nazarzadeh, A. Another case of incidence matrix for bivariate Birkhoff interpolation / A. Nazarzadeh, Kh. Rahsepar Fard, A. Mahmoodi // Journal of Numerical & Applied Mathematics. – 2016. – № 2 (122). – P. 55–70.; Zhao, T. G. On Two Birkhoff-Type Interpolations with First- and Second-Order Derivative / T. G. Zhao, Y. J. Li // J. Appl. Math. Phys. – 2016. – Vol. 4, № 7. – P. 1269–1274. https://doi.org/10.4236/jamp.2016.47133; Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich. – Київ: Iнститут математики НАН Украiни, 2010. – 516 с. – (Праці Ін-ту математики НАН України, Vol. 83: Математика та ii застосування).; Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко. – Минск: Беларус. навука, 2016. – 281 с.; https://vestifm.belnauka.by/jour/article/view/314
-
6Academic Journal
Authors: L. A. Yanovich, M. V. Ignatenko, Л. А. Янович, М. В. Игнатенко
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 2 (2017); 7-23 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 2 (2017); 7-23 ; 2524-2415 ; 1561-2430 ; undefined
Subject Terms: погрешность интерполяции, operator interpolation, generalized Hermite – Birkhoff-type interpolation, differential operator, differential of Gateaux, integral of Stieltjes, interpolation error, операторное интерполирование, обобщенное интерполирование типа Эрмита – Биркгофа, дифференциальный оператор, дифференциал Гато, интеграл Стилтьеса
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/246/236; Мысовских, И. П. Лекции по методам вычислений / И. П. Мысовских. – СПб: изд-во С.-Петерб. ун-та, 1998. – 470 с.; Турецкий, А. Х. Теория интерполирования в задачах / А. Х. Турецкий. – Минск: Выш. шк., 1968. – 317 с.; Shi, Y. G. Theory of Birkhoff Interpolation / Y. G. Shi. – New York: Nova Science Publishers, 2003. – 253 p.; Nazarzadeh, A. Another case of incidence matrix for bivariate Birkhoff interpolation / A. Nazarzadeh, Kh. Rahsepar Fard, A. Mahmoodi // J. Comput. Appl. Math. – 2016. – № 2 (122). – P. 55–70.; Zhao, T. G. On Two Birkhoff-Type Interpolations with First- and Second-Order Derivative / T. G. Zhao, Y. J. Li //J. Appl. Math. Phys. – 2016. – № 4. – P. 1269–1274.; Янович, л. а. Обобщенная интерполяционная задача Абеля – Гончарова / Л. А. Янович, В. В. Дорошко // Вестн. фонда фундам. исслед. – 1999. – № 4. – С. 34–44.; Янович, Л. А. Интерполяционные операторные многочлены Эрмита – Биркгофа в пространстве гладких функций / Л. А. Янович, М. В. Игнатенко // Докл. Нац. акад. наук Беларуси. – 2009. – т. 53, № 5. – С. 15–21.; Янович, Л. А. Специальный случай интерполяционной задачи Эрмита – Биркгофа для операторов в пространстве гладких функций / Л. А. Янович, М. В. Игнатенко // актуальные проблемы анализа: сб. науч. тр. – Гродно: ГрГУ, 2009. – С. 198–215.; Худяков, А. П. Интерполяционные формулы Эрмита – Биркгофа относительно алгебраической и тригонометрической систем функций с одним специальным узлом / А. П. Худяков, А. А. Трофимук // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2017. – № 1. – С. 14–28.; Янович, л. а. Обобщенная интерполяционная задача Эрмита – Биркгофа для операторов / Л. А. Янович, М. В. Игнатенко // аналитические методы анализа и дифференциальных уравнений: сб. науч. тр. 5-й междунар. конф. – Минск, Ин-т математики НаН Беларуси, 2010. – т. 1. – С. 140–147.; Янович, Л. А. Формулы операторного интерполирования, основанные на интерполяционных многочленах для числовых функций / Л. А. Янович, В. В. Дорошко // Вычислительная математика и математические проблемы механики: тр. Укр. мат. конгресса. – Киев, 2002. – С. 137–145.; Янович, Л. А. Об одном классе интерполяционных многочленов для нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Математическое моделирование. – 2014. – т. 26, № 11. – С. 90–96.; Янович, Л. А. Об одном классе формул операторного интерполирования Эрмита – Биркгофа в пространстве дифференцируемых функций / л. а. Янович, М. В. Игнатенко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. на - вук. – 2005. – № 2. – С. 11–16.; Евграфов, М. А. Интерполяционная задача Абеля – Гончарова / М. А. Евграфов. – М.: ГИттл, 1954. – 128 с.; Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich // Праці Ін-ту математики НаН України. – Київ, 2010. – Vol. 83. – P. 1–517.; https://vestifm.belnauka.by/jour/article/view/246; undefined
Availability: https://vestifm.belnauka.by/jour/article/view/246