-
1Academic Journal
Authors: E. K. Fetisova, N. V. Vorobjeva, M. S. Muntyan, Е. К. Фетисова, Н. В. Воробьева, М. С. Мунтян
Contributors: This research was performed under the state assignment of Moscow State University, project number АААА-А19-119031390114-5.
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2 (2024); 87-101 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2 (2024); 87-101 ; 0137-0952
Subject Terms: старение, oxidative stress, reactive oxygen species, mitochondria-targeted antioxidants, demyelination, oligodendrocytes, microglia, aging, окислительный стресс, активные формы кислорода, митохондриально-направленные антиоксиданты, демиелинизация, олигодендроциты, микроглия
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1367/668; Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R. A., Robertson N, La Rocca N., Uitdehaag B., van der Mei I., Wallin M., Helme A., Angood Napier C., Rijke N., Baneke P. Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS. Mult. Scler. J. 2020;26(14):1816–1821.; Dobson R., Giovannoni G. Multiple sclerosis – a review. Eur. J. Neurol. 2019;26(1):27–40.; Axthelm M.K., Bourdette D.N., Marracci G.H., Su W., Mullaney E.T., Manoharan M., Kohama S.G., Pollaro J., Witkowski E., Wang P., Rooney W.D., Sherman L.S., Wong S.W. Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann. Neurol. 2011;70(3):362–373.; Hedström A.K., Hössjer O., Katsoulis M., Kockum I., Olsson T., Alfredsson L. Organic solvents and MS susceptibility. Interaction with MS risk HLA genes. Neurology. 2018;91(5):e455–e462.; Баринский И.Ф., Гребенникова Т.В., Альховский С.В., Кочергин-Никитский К.С., Сергеев О.В., Грибенча С.В., Раев С.А. Молекулярно-генетическая характеристика вируса, выделенного от больных острым энцефаломиелитом человека и множественным склерозом. Вопросы вирусологии. 2015;60(4):14–18.; Buljevac D., Flach H.Z., Hop W.C., Hijdra D., Laman J.D., Savelkoul H.F., van Der Meche F.G., van Doorn P.A., Hintzen R.Q. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125(Pt. 5):952–960.; Kriesel J.D., White A., Hayden F.G., Spruance S.L., Petajan J. Multiple sclerosis attacks are associated with picornavirus infections. Mult. Scler. 2004;10(2):145–148.; Cossu D., Yokoyama K., Hattori N. Bacteria-host interactions in multiple sclerosis. Front. Microbiol. 2018;9:2966.; Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.; Handel A.E., Handunnetthi L., Ebers G.C. Ramagopalan S.V. Type 1 diabetes mellitus and multiple sclerosis: common etiological features. Nat. Rev. Endocrinol. 2009;5(12):655–664.; Nielsen N.M., Westergaard T., Frisch M., Rostgaard K., Wohlfahrt J., Koch-Henriksen N., Melbye M., Hjalgrim H. Type 1 diabetes and multiple sclerosis: A Danish population-based cohort study. Arch. Neurol. 2006;63(7):1001–1004.; Bechtold S., Blaschek A., Raile K., Dost A., Freiberg C., Askenas M., Fröhlich-Reiterer E., Molz E., Holl R.W. Higher relative risk for multiple sclerosis in a pediatric and adolescent diabetic population: analysis from DPV database. Diabetes Care. 2014;37(1):96–101.; Magyari M., Sorensen P.S. Comorbidity in multiple sclerosis. Front. Neurol. 2020;11:851.; Лапштаева А.В., Абросимова Ю.Г., Еремкина Т.Я., Костина Ю.A. Микробные агенты как триггеры развития рассеянного склероза. Инфекция и иммунитет. 2021;11(6):1050–1056.; Conway S.E., Healy B.C., Zurawski J., Severson C., Kaplan T., Stazzone L., Galetta K., Chitnis T., Houtchens M.K. COVID-19 severity is associated with worsened neurological outcomes in multiple sclerosis and related disorders. Mult. Scler. Relat. Dis. 2022;63:103946.; Najjar S., Najjar A., Chong D.J., Pramanik B.K., Kirsch C., Kuzniecky R.I., Pacia S.V., Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 2020;17(1):231.; Sormani M.P., Schiavetti I., Carmisciano L. et al. COVID-19 severity in multiple sclerosis: putting data into context. Neurol. Neuroimmunol. Neuroinflamm. 2021;9(1):e1105.; Michelena G., Casas M., Eizaguirre M.B., Pita M.C., Cohen L., Alonso R., Garcea O., Silva B.A. ¿ Can COVID-19 exacerbate multiple sclerosis symptoms? A case series analysis. Mult. Scler. Relat. Dis. 2022;57:103368.; Lima M., Aloizou A.M., Siokas V., Bakirtzis C., Liampas I., Tsouris Z., Bogdanos D.P., Baloyannis S.J. Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev. Neurosci. 2022;33(7):703–720.; Ximeno-Rodríguez I., Blanco-delRío I., Astigarraga E., Barreda-Gómez G. Acquired immune deficiency syndrome correlation with SARS-CoV-2 N genotypes. Biomed. J. 2023;100650. https://doi.org/10.1016/j.bj.2023.100650.; Bauer L., Laksono B.M., de Vrij F.M.S., Kushner S.A., Harschnitz O., van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–368.; Stoiloudis P., Kesidou E., Bakirtzis C., Sintila S-A., Konstantinidou N., Boziki M., Grigoriadis N. The role of diet and interventions on multiple sclerosis: a review. Nutrients. 2022; 14(6):1150.; Tarlinton R.E., Khaibullin T., Granatov E., Martynova E., Rizvanov A., Khaiboullina S. The interaction between viral and environmental risk factors in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2019;20(2):303.; Fazia T., Baldrighi G.N., Nova A., Bernardinelli L. A systematic review of Mendelian randomization studies on multiple sclerosis. Eur. J. Neurosci., 2023;58(4):3172–3194.; Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.; Theodosis-Nobelos P., Rekka E.A. Efforts towards repurposing of antioxidant drugs and active compounds for multiple sclerosis control. Neurochem. Res. 2023;48(3):725–744.; Nozari E., Ghavamzadeh S., Razazian N. The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clin. Nutr. Res. 2019;8(1):36–45.; Magyari M., Koch-Henriksen N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2022;93(7):716–722.; Salpietro V., Polizzi A., Recca G., Ruggieri M. The role of puberty and adolescence in the pathobiology of pediatric multiple sclerosis. Mult. Scler. Demyelinating Disord. 2018;3:2.; Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging): comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.; Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.; Lotti C.B.D.C., Oliveira A.S.B., Bichuetti D.B., Castro I.D., Oliveira E.M.L. Late onset multiple sclerosis: concerns in aging patients. Arq. Neuropsiquiatr. 2017;75(7):451–456.; Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology. 1983;33(12):1537–1537.; Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.; Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.; Branco M., Ruano L., Portaccio E., Goretti B., Niccolai C., Patti F., Chisari C., Gallo P., Grossi P., Ghezzi A., Roscio M., Mattioli F., Bellomi F., Simone M., Gemma R., Amato M.P. Aging with multiple sclerosis: prevalence and profile of cognitive impairment. Neurol. Sci. 2019;40(8):1651–1657.; Jakimovski D., Weinstock-Guttman B., Roy S., Jaworski III M., Hancock L., Nizinski A., Srinivasan P., Fuchs T.A., Szigeti K., Zivadinov R., Benedict R.H. Cognitive profiles of aging in multiple sclerosis. Front. Aging Neurosci. 2019;11:105.; Boyko A., Melnikov M. Prevalence and incidence of multiple sclerosis in Russian Federation: 30 years of studies. Brain Sci. 2020;10(5):305.; Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.; Морозов С.П., Владзимирский А.В., Черняева Г.Н., Бажин А.В., Пимкин А.А., Беляев М.Г., Кляшторный В.Г., Горшкова Т.Н., Курочкина Н.С., Якушева С.Ф. Валидация диагностической точности алгоритма «искусственного интеллекта» для выявления рассеянного склероза в условиях городской поликлиники. Лучевая диагностика и терапия. 2020;11(2):58–65.; Kiselev I., Bashinskaya V., Baulina N., Kozin M., Popova E., Boyko A., Favorova O., Kulakova O. Genetic differences between primary progressive and relapsingremitting multiple sclerosis: the impact of immune-related genes variability. Mult. Scler. Relat. Dis. 2019;29:130–136.; Kiselev I.S., Kulakova O.G., Baulina N.M., Bashinskaya V.V., Popova E.V., Boyko A.N., Favorova O.O. Variability of the MIR196A2 gene as a risk factor in primary-progressive multiple sclerosis development. Mol. Biol. 2019;53(2):249–255.; International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 2019;10:2236.; Patsopoulos N.A. Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb. Perspect. Med. 2018;8(7):a028951.; Ransohoff R.M., Hafler D.A., Lucchinetti C.F. Multiple sclerosis – a quiet revolution. Nat. Rev. Neurol. 2015;11(3):134–142.; Pytel V., Matías-Guiu J.A., Torre-Fuentes L., Montero P., Gómez-Graña Á., García-Ramos R., Moreno-Ramos T., Oreja-Guevara C., Fernández-Arquero M., Gómez-Pinedo U., Matías-Guiu J. Familial multiple sclerosis and association with other autoimmune diseases. Brain Behav. 2017;8(1):e00899.; Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., Bebo B. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286.; Govindhan E., Pavithra J., Yuvaraj K., Muralidharan P. A comprehensive review on multiple sclerosis: it’s etiology, symptoms, epidemiology and current therapeutic approaches. Int. J. Sci. Res. Arch. 2023;8(2):462–474.; Hendriks J.J., Teunissen C.E., de Vries H.E., Dijkstra C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005;48(2):185–195.; Zheng C., Chen J., Chu F., Zhu J., Jin T. Inflammatory role of TLR-MyD88 signaling in multiple sclerosis. Front. Mol. Neurosci. 2020;12:314.; Van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. BBA-Mol. Basis Dis. 2011;1812(2):141–150.; Friese M.A., Schattling B., Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014;10(4):225–238.; Scalfari A., Neuhaus A., Daumer M., Muraro P.A., Ebers G.C. Onset of secondary progressive phase and longterm evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2014;85(1):67–75.; Goodin D.S. The epidemiology of multiple sclerosis: insights to a causal cascade. Handbook of clinical neurology. Eds. M.J. Aminoff, F. Boller, and D.F. Swaab. Elsevier; 2016;138:173–206.; Dong Y., Yong V.W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 2019;15(12):704–717.; Guerrero B.L., Sicotte N.L. Microglia in multiple sclerosis: friend or foe? Front. Immunol. 2020;11:374.; Inoue M., Shinohara M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis. 2013;2013:859145.; Shao S., Chen C., Shi G., Zhou Y., Wei Y., Fan N., Yang Y., Wu L., Zhang T. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol. Therapeut. 2021;227:107880.; Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.Y., Sack M.N., Kastner D.L., Siegel R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1- associated periodic syndrome (TRAPS). J. Exp. Med. 2011;208(3):519–533.; Gris D., Ye Z., Iocca H.A., Wen H., Craven R.R., Gris P., Huang M., Schneider M., Miller S.D., Ting J.P. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 2010;185(2):974–981.; Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Sign. 2015;22(13):1111–1129.; Chen Y., Ye X., Escames G., Lei W., Zhang X., Li M., Jing T., Yao Y., Qiu Z., Wang Z., Acuña-Castroviejo D., Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol. Biol. Lett. 2023;28(1):51.; Wolburg H., Neuhaus J., Kniesel U., Krauß B., Schmid E.M., Ocalan M., Farrell C., Risau W. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 1994;107(5):1347–1357.; Owens T., Bechmann I., Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropath. Exp. Neur. 2008;67(12):1113–1121.; Ortiz G.G., Pacheco-Moisés F.P., Macías-Islas M.Á., Flores-Alvarado L.J., Mireles-Ramírez M.A., González-Renovato E.D., Hernández-Navarro V.E., Sánchez-López A.L., Alatorre-Jiménez M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014;45(8):687–697.; Zinovkin R.A., Romaschenko V.P., Galkin I.I., Zakharova V.V., Pletjushkina O.Y., Chernyak B.V., Popova E.N. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging (Albany N.Y.). 2014;6(8):661.; Zakharova V.V., Pletjushkina O.Y., Galkin I.I., Zinovkin R.A., Chernyak B.V., Krysko D.V., Skulachev V.P., Popova E.N. Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. BBA-Mol. Basis Dis. 2017;1863(4):968–977.; Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.; Calkins M.J., Johnson D.A., Townsend J.A., Vargas M.R., Dowell J.A., Williamson T.P., Kraft A.D., Lee J.M., Li J., Johnson J.A. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Sign. 2009;11(3):497–508.; Kharel P., McDonough J., Basu S. Evidence of extensive RNA oxidation in normal appearing cortex of multiple sclerosis brain. Neurochem. Int. 2016;92:43–48.; Tully M., Shi R. New insights in the pathogenesis of multiple sclerosis – role of acrolein in neuronal and myelin damage. Int. J. Mol. Sci. 2013;14(10):20037–20047.; Zhang J., Sturla S., Lacroix C., Schwab C. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio. 2018;9(1):e01947-17.; Nonneman A., Robberecht W., Van Den Bosch L.V. The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegen. Dis. Manag. 2014;4(3):223–239.; van Horssen J., Schreibelt G., Drexhage J., Hazes T., Dijkstra C.D., van der Valk P., de Vries H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical. Biol. Med. 2008;45(12):1729–1737.; Spaas J., van Veggel L., Schepers M., Tiane A., van Horssen J., Wilson D.M. 3rd, Moya P.R., Piccart E., Hellings N., Eijnde B.O., Derave W., Schreiber R., Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol. Life Sci. 2021;78(10):4615–4637.; Witte M.E., Geurts J.J., de Vries H.E., van der Valk P., van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10(5):411–418.; Padureanu R., Albu C.V., Mititelu R.R., Bacanoiu M.V., Docea A.O., Calina D., Padureanu V., Olaru G., Sandu R.E., Malin R.D., Buga A.M. Oxidative stress and inflammation interdependence in multiple sclerosis. J. Clin. Med. 2019;8(11):1815.; Michaličková D., Šíma M., Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol. Res. 2020;69(1):1–19.; Ragupathy H., Vukku M., Barodia S.K. Cell-typespecific mitochondrial quality control in the brain: a plausible mechanism of neurodegeneration. Int. J. Mol. Sci. 2023;24(19):14421.; Petersen R.C., Thomas R.G., Grundman M., Bennett D., Doody R., Ferris S., Galasko D., Jin S., Kaye J., Levey A., Pfeiffer E., Sano M., van Dyck C.H., Thal L.J., Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 2005;352(23):2379–2388.; Kamat C.D., Gadal S., Mhatre M., Williamson K.S., Pye Q.N., Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis. 2008;15(3):473–493.; Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012;2012(3):CD007176.; Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.; Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.; Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.; Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.
-
2Academic Journal
Authors: O S Logvinov, V. I. Poberezhnyi, I. Y. Petrik, O. V. Marchuk, O. S. Shvidyuk
Source: Medicina bolu; Том 3 № 4 (2018): Pain medicine; 6-40
Pain medicine; Vol 3 No 4 (2018): Pain medicine; 6-40Subject Terms: астроцити, глиальные клетки, dendrites, oligodendrocytes, spines, обчислювальні властивості, феномен 'боль, сома, феномен 'біль', дендриты, nervous tissue, computational properties, вычислительные свойства, нейрон, microglial cells, шипики, олигодендроциты, гліальні клітини, axon, аксон, дендрити, astrocytes, центральна нервова система, central nervous system, neuron, glial cells, астроциты, 3. Good health, олігодендроцити, микроглиальные клетки, нервова тканина, центральная нервная система, нервная ткань, мікрогліальні клітини, 'pain', soma
File Description: application/pdf
-
3Academic Journal
Authors: Boiagina, O. D., Kostilenko, Ju. P.
Source: Морфологія, Vol 10, Iss 4, Pp 12-17 (2016)
Morphologia; Том 10, № 4 (2016); 12-17Subject Terms: фібрилярні астроцити, QH301-705.5, мозолистое тело, миелоархитектоника, фибриллярные астроциты, интерфасцикулярные олигодендроциты, the corpus callosum, myeloarchitectonics, fibrous astrocytes, interfascicular oligodendrocytes, Biology (General), інтерфасцикулярні олігодендроцити, мозолисте тіло, мієлоархітектоніка
File Description: application/pdf
-
4Academic Journal
Authors: Poberezhnyi, V I, Marchuk, O V, Shvidyuk, O S, Petrik, I Y, Logvinov, O S
Source: Pain medicine; Vol. 3 No. 4 (2018): Pain medicine; 6-40 ; Medicina bolu; Том 3 № 4 (2018): Pain medicine; 6-40 ; 2519-2752 ; 2414-3812
Subject Terms: “pain”, central nervous system, nervous tissue, neuron, spines, dendrites, soma, axon, computational properties, glial cells, astrocytes, oligodendrocytes, microglial cells, феномен “боль, центральная нервная система, нервная ткань, нейрон, шипики, дендриты, сома, аксон, вычислительные свойства, глиальные клетки, астроциты, олигодендроциты, микроглиальные клетки, феномен “біль”, центральна нервова система, нервова тканина, дендрити
File Description: application/pdf
-
5Academic Journal
Authors: Костиленко, Юрий Петрович, Боягина, Ольга Дмитриевна, Боягіна, Ольга Дмитрівна, Костиленко, Юрій Петрович, Kostilenko, Yu. P., Boiagina, O. D.
Subject Terms: мозолистое тело, миелоархитектоника, фибриллярные астроциты, интерфасцикулярные олигодендроциты, the corpus callosum, myeloarchitectonics, fibrous astrocytes, interfascicular oligodendrocytes, мозолисте тіло, інтерфасцикулярні олігодендроцити, мієлоархітектоніка, фібрилярні астроцити
File Description: application/pdf
Relation: Костиленко Ю. П. Микроархитектоника мозолистого тела людей зрелого возраста / Ю. П. Костиленко, О. Д. Боягина // Morphologia. – 2016. – Т. 10, № 4. – С. 12–17.; https://repository.pdmu.edu.ua/handle/123456789/583
Availability: https://repository.pdmu.edu.ua/handle/123456789/583
-
6Academic Journal
Authors: Шепітько, Володимир Іванович, Шепитько, Владимир Иванович, Shepit'ko, V., Якушко, Олена Святославівна, Якушко, Елена Святославовна, Yakushko, O., Єрошенко, Галина Анатоліївна, Ерошенко, Галина Анатольевна, Yeroshenko, G., Лисаченко, Ольга Дмитрівна, Лисаченко, Ольга Дмитриевна, Lisachenko, O.
Subject Terms: зоровий нерв, асептичний неврит, астроцити, олігодендроцити, зрительный нерв, асептический неврит, астроциты, олигодендроциты, optic nerve, aseptic neuritis, astrocytes, oligodendrocytes
File Description: application/pdf
Relation: Характеристика морфологічних змін в клітинах макроглії зорового нерва щурів при гострому експериментальному невриті / В. І. Шепітько, О. С. Якушко, Г. А. Єрошенко, О. Д. Лисаченко // Світ медицини та біології. – 2012. – № 3. – С. 63–66.; https://repository.pdmu.edu.ua/handle/123456789/2789
Availability: https://repository.pdmu.edu.ua/handle/123456789/2789
-
7Academic Journal
Authors: M Khodanovich, Yana Tyumentseva, Anna O Pishchelko, Tatyana V Anan'ina, V Glazacheva, A. E. Akulov, Vasily L. Yarnykh, Mikhail V. Svetlik, E Pan
Source: Cells
Cells, Vol 8, Iss 10, p 1204 (2019)
Volume 8
Issue 10
Cells. 2019. Vol. 8, № 10. P. 1204 (1-18)Subject Terms: магнитно-резонансная томография, Male, 0301 basic medicine, macromolecular proton fraction, oligodendrocytes, клетки-предшественники олигодендроцитов, демиелинизация, oligodendrocyte precursors, Article, Cuprizone, Mice, 03 medical and health sciences, 0302 clinical medicine, magnetic resonance imaging, Animals, Gray Matter, иммуногистохимия, олигодендроциты, mpf, Oligodendrocyte Precursor Cells, 2. Zero hunger, макромолекулярная протонная фракция, QH573-671, ремиелинизация, Myelin Basic Protein, купризоновая модель, Magnetic Resonance Imaging, White Matter, myelin, Disease Models, Animal, Oligodendroglia, remyelination, Remyelination, cuprizone model, Mesothelin, immunohistochemistry, миелин, demyelination, Cytology, MPF, Demyelinating Diseases
File Description: application/pdf
Access URL: https://www.mdpi.com/2073-4409/8/10/1204/pdf
https://pubmed.ncbi.nlm.nih.gov/31590363
https://doaj.org/article/a092ef99cbcd43d18477116dca86b23c
http://europepmc.org/article/MED/31590363
https://www.mdpi.com/2073-4409/8/10/1204/pdf
https://www.ncbi.nlm.nih.gov/pubmed/31590363
https://pubmed.ncbi.nlm.nih.gov/31590363/
https://www.mdpi.com/2073-4409/8/10/1204
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000675550 -
8Report
-
9Academic Journal
Authors: Обухов Д.К., Пущина Е.В., Цехмистренко Т.А.
Source: Биология в школе
Subject Terms: nervous system, glial cells, Ependyma, нервная система, позвоночные и беспозвоночные животные, глиальные клетки, астроциты, олигодендроциты, эпендима
Availability: https://repository.rudn.ru/records/article/record/79765/