-
1Academic Journal
Πηγή: Мать и дитя в Кузбассе, Vol 26, Iss 2, Pp 22-27 (2025)
Θεματικοί όροι: кисспептин, ановуляторное бесплодие, генотип, однонуклеотидный полиморфизм, гормональный фон, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
Περιγραφή αρχείου: electronic resource
Relation: https://mednauki.ru/index.php/MD/article/view/1190; https://doaj.org/toc/1991-010X; https://doaj.org/toc/2542-0968
Σύνδεσμος πρόσβασης: https://doaj.org/article/eca309f2c9f2482ea17ace88f1a5453e
-
2Academic Journal
Θεματικοί όροι: паралогичный ген, single nucleotide polymorphism (SNP), aquaculture, однонуклеотидный полиморфизм (SNP), paralogic gene, sterlet (Acipenser ruthenus), маркерная селекция, стерлядь (Acipenser ruthenus), marker-assisted selection, insulin-like growth factor 2 (IGF2), инсулиноподобный фактор роста 2 (IGF2), аквакультура
-
3Academic Journal
Πηγή: Мать и дитя в Кузбассе, Vol 26, Iss 2, Pp 22-27 (2025)
Θεματικοί όροι: кисспептин, однонуклеотидный полиморфизм, генотип, RG1-991, ановуляторное бесплодие, гормональный фон, Gynecology and obstetrics, Pediatrics, RJ1-570
Σύνδεσμος πρόσβασης: https://doaj.org/article/eca309f2c9f2482ea17ace88f1a5453e
-
4Academic Journal
Πηγή: Mother and Baby in Kuzbass; № 2 (2025): март; 22-27 ; Мать и Дитя в Кузбассе; № 2 (2025): март; 22-27 ; 2542-0968 ; 1991-010X
Θεματικοί όροι: kisspeptin, anovulatory infertility, genotype, single nucleotide polymorphism, hormonal background, кисспептин, ановуляторное бесплодие, генотип, однонуклеотидный полиморфизм, гормональный фон
Περιγραφή αρχείου: application/pdf; text/html
Relation: http://mednauki.ru/index.php/MD/article/view/1190/2116; http://mednauki.ru/index.php/MD/article/view/1190/2158; http://mednauki.ru/index.php/MD/article/view/1190
Διαθεσιμότητα: http://mednauki.ru/index.php/MD/article/view/1190
-
5Academic Journal
Συγγραφείς: V. V. Klimontov, K. S. Shishin, R. A. Ivanov, M. P. Ponomarenko, K. A. Zolotareva, S. A. Lashin, В. В. Климонтов, К. С. Шишин, Р. А. Иванов, М. П. Пономаренко, К. А. Золотарева, С. А. Лашин
Συνεισφορές: The sections on evolutionary analysis of genes and SNP analysis were performed using the Bioinformatics Sharing Centre supported by Budget Project No. FWNR-2022-0006. The authors express their sincere gratitude to O.V. Saik (RICEL – branch of ICG SB RAS) for her significant contribution to data collection and valuable advice on the development of the database. We also thank A.M. Mukhin (ICG SB RAS) for technical assistance in creating the web resource.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 8 (2024); 1008-1017 ; Вавиловский журнал генетики и селекции; Том 28, № 8 (2024); 1008-1017 ; 2500-3259 ; 10.18699/vjgb-24-88
Θεματικοί όροι: однонуклеотидный полиморфизм, protein, diabetes mellitus, hyperglycemia, hypoglycemia, glucose variability, database, phylostratigraphic index, single nucleotide polymorphism, белок, cахарный диабет, гипергликемия, гипогликемия, вариабельность глюкозы, база данных, филостратиграфический индекс
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4421/1906; Ceriello A., Monnier L., Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7(3):221-230. doi 10.1016/S2213-8587(18)30136-0; Chung W.K., Erion K., Florez J.C., Hattersley A.T., Hivert M.F., Lee C.G., McCarthy M.I., Nolan J.J., Norris J.M., Pearson E.R., Philipson L., McElvaine A.T., Cefalu W.T., Rich S.S., Franks P.W. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(9):1671-1693. doi 10.1007/s00125-020-05181-w; Day I.N. dbSNP in the detail and copy number complexities. Hum. Mutat. 2010;31(1):2-4. doi 10.1002/humu.21149; Dhawan P., Vasishta S., Balakrishnan A., Joshi M.B. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci. 2022;298:120490. doi 10.1016/j.lfs.2022.120490; Domazet-Lošo T., Tautz D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature. 2010; 468(7325):815-819. doi 10.1038/nature09632; Filonov S.V., Podkolodnyy N.L., Podkolodnaya O.A., Tverdokhleb N.N., Ponomarenko P.M., Rasskazov D.A., Bogomolov A.G., Ponomarenko M.P. Human_SNP_TATAdb: a database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: genome-wide analysis and use cases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):728-736. doi 10.18699/VJGB-23-85; Hall E., Dekker Nitert M., Volkov P., Malmgren S., Mulder H., Bacos K., Ling C. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol. Cell. Endocrinol. 2018;472:57-67. doi 10.1016/j.mce.2017.11.019; Hanefeld M., Frier B.M., Pistrosch F. Hypoglycemia and cardiovascular risk: is there a major link? Diabetes Care. 2016;39(S.2):S205-S209. doi 10.2337/dcS15-3014; International Diabetes Federation. IDF Diabetes Atlas, 10th ed. Brussels, 2021; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(S2):S2. doi 10.1186/1752-0509-9-S2-S2; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(1):34. doi 10.1186/s12859-018-2567-6; Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457-D462. doi 10.1093/nar/gkv1070; Klimontov V.V., Berikov V.B., Saik O.V. Artificial intelligence in diabetology. Sakharnyi Diabet = Diabetes Mellitus. 2021a;24(2):156-166. doi 10.14341/DM12665 (in Russian); Klimontov V.V., Saik O.V., Korbut A.I. Glucose variability: How does it work? Int. J. Mol. Sci. 2021b;22(15):7783. doi 10.3390/ijms22157783; Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833-850 (in Russian); Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S., Church D.M., Maglott D.R. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980-D985. doi 10.1093/nar/gkt1113; Langenberg C., Lotta L.A. Genomic insights into the causes of type 2 diabetes. Lancet. 2018;391(10138):2463-2474. doi 10.1016/S0140-6736(18)31132-2; Li Y., Liang R., Sun M., Li Z., Sheng H., Wang J., Xu P., Liu S., Yang W., Lu B., Zhang S., Shan C. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Lett. 2020;478:82-92. doi 10.1016/j.canlet.2020.03.007; Lyssenko V., Vaag A. Genetics of diabetes-associated microvascular complications. Diabetologia. 2023;66(9):1601-1613. doi 10.1007/s00125-023-05964-x; Maloof A.C., Porter S.M., Moore J.L., Dudás F.Ö., Bowring S.A., Higgins J.A., Fike D.A., Eddy M.P. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 2010; 122(11-12):1731-1774. doi 10.1130/B30346.1; Mustafin Z.S., Lashin S.A., Matushkin Yu.G. Phylostratigraphic analysis of gene networks of human diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021; 25(1):46-56. doi 10.18699/VJ21.006; Nielsen J. Systems biology of metabolism: A driver for developing personalized and precision medicine. Cell Metab. 2017:25(3):572-579. doi 10.1016/j.cmet.2017.02.002; Orlov Y.L., Anashkina A.A., Klimontov V.V., Baranova A.V. Medical genetics, genomics and bioinformatics aid in understanding molecular mechanisms of human diseases. Int. J. Mol. Sci. 2021;22(18): 9962. doi 10.3390/ijms22189962; Putra S.E.D., Martriano Humardani F., Antonius Y., Jonathan J., Thalia Mulyanata L. Epigenetics of Diabetes: A bioinformatic approach. Clin. Chim. Acta. 2024;557:117856. doi 10.1016/j.cca.2024.117856; Rehni A.K., Dave K.R. Impact of hypoglycemia on brain metabolism during diabetes. Mol. Neurobiol. 2018;55(12):9075-9088. doi 10.1007/s12035-018-1044-6; Saik O.V., Klimontov V.V. Bioinformatic reconstruction and analysis of gene networks related to glucose variability in diabetes and its complications. Int. J. Mol. Sci. 2020;21(22):8691. doi 10.3390/ijms21228691; Saik O.V., Klimontov V.V. Hypoglycemia, vascular disease and cognitive dysfunction in diabetes: insights from text mining-based reconstruction and bioinformatics analysis of the gene networks. Int. J. Mol. Sci. 2021;22(22):12419. doi 10.3390/ijms22222212419; Saik O.V., Klimontov V.V. Gene networks of hyperglycemia, diabetic complications, and human proteins targeted by SARS-CoV-2: what is the molecular basis for comorbidity? Int. J. Mol. Sci. 2022;23:7247. doi 10.3390/ijms23137247; Sasaki T., Kuroko M., Sekine S., Matsui S., Kikuchi O., Susanti V.Y., Kobayashi M., Tanaka Y., Yuasa T., Kitamura T. Overexpression of insulin receptor partially improves obese and diabetic phenotypes in db/db mice. Endocr. J. 2015;62(9):787-796. doi 10.1507/endocrj.ej15-0255; Shojima N., Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J. Diabetes Investig. 2023;14(4):503-515. doi 10.1111/jdi.13970; Vaulont S., Vasseur-Cognet M., Kahn A. Glucose regulation of gene transcription. J. Biol. Chem. 2000;275(41):31555-31558. doi 10.1074/jbc.R000016200; Vega M.E., Finlay J., Vasishtha M., Schwarzbauer J.E. Elevated glucose alters global gene expression and tenascin-C alternative splicing in mesangial cells. Matrix Biol. Plus. 2020;8:100048. doi 10.1016/j.mbplus.2020.100048; Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24(8):1586-1591. doi 10.1093/molbev/msm088; Wilmot E.G., Choudhary P., Leelarathna L., Baxter M. Glycaemic variability: The under-recognized therapeutic target in type 1 diabetes care. Diabetes Obes. Metab. 2019;21(12):2599-2608. doi 10.1111/dom.13842; Zhang S., Ke Z., Yang C., Zhou P., Jiang H., Chen L., Li Y., Li Q. High glucose causes distinct expression patterns of primary human skin cells by RNA sequencing. Front. Endocrinol. 2021;12:603645. doi 10.3389/fendo.2021.603645; Zhang Q., Xiao X., Zheng J., Li M., Yu M., Ping F., Wang T., Wang X. DNA methylation regulates pancreatic gene expression and links maternal high-fat diet to the offspring glucose metabolism. J. Nutr. Biochem. 2024;123:109490. doi 10.1016/j.jnutbio.2023.109490; https://vavilov.elpub.ru/jour/article/view/4421
-
6Academic Journal
-
7Academic Journal
Συγγραφείς: Issilbayeva, A.A., Ainabekova, B.A.
Πηγή: Наука и здравоохранение. :139-146
Θεματικοί όροι: Ревматоидты артрит, Genetic predisposition, Бір нуклеотидті полиморфизм (SNP), Однонуклеотидный полиморфизм (SNP), исследования обще геномных ассоциаций (GWAS), HLA-ға жатпайтын гендер, Жалпы геномдық қауымдастықтарды зерттеу (GWAS), 3. Good health, Адамның лейкоциттік антигенінің гендері (HLA), non-HLA genes, Human Leucocyte Antigen (HLA) genes, Ревматоидный артрит, гены, Генетикалық бейімділік, Single nucleotide polymorphism (SNP), genome-wide association studies (GWAS), Генетическая предрасположенность, не относящиеся к HLA, Rheumatoid arthritis, гены лейкоцитарного антигена человека (HLA)
-
8Academic Journal
-
9Academic Journal
Συγγραφείς: Volosovets, O.P., Dosenko, V.Ye., Kryvopustov, S.P., Pavlyk, O.V., Yeemets, O.V., Stroi, D.O.
Πηγή: Zdorovʹe Rebenka, Vol 10, Iss 3.63, Pp 5-11 (2015)
CHILD`S HEALTH; № 3.63 (2015); 5-11
Здоровье ребенка-Zdorovʹe rebenka; № 3.63 (2015); 5-11
Здоров'я дитини-Zdorovʹe rebenka; № 3.63 (2015); 5-11Θεματικοί όροι: autophagy, allergic diseases, children, однонуклеотидный полиморфизм, аутофагия, mTOR, ATG5, аллергическая патология, дети, однонуклеотидний поліморфізм, автофагія, алергічна патологія, діти, single nucleotide polymorphism, Pediatrics, RJ1-570, 3. Good health
Περιγραφή αρχείου: application/pdf
-
10Academic Journal
Συγγραφείς: Volosovets, O.P., Dosenko, V.Ye., Kryvopustov, S.P., Pavlyk, O.V., Yemets, O.V., Stroi, D.O.
Πηγή: Zdorovʹe Rebenka, Vol 10, Iss 1.60, Pp 14-18 (2015)
CHILD`S HEALTH; № 1.60 (2015); 14-18
Здоровье ребенка-Zdorovʹe rebenka; № 1.60 (2015); 14-18
Здоров'я дитини-Zdorovʹe rebenka; № 1.60 (2015); 14-18Θεματικοί όροι: single-nucleotide polymorphism, filaggrin, asthma, pediatrics, однонуклеотидний поліморфізм, філагрин, астма, педіатрія, однонуклеотидный полиморфизм, филаггрин, педиатрия, Pediatrics, RJ1-570, 3. Good health
Περιγραφή αρχείου: application/pdf
-
11Academic Journal
Συγγραφείς: Дунай, В.И., Глинская, Н.А., Жук, О.Н., Сильченко, Е.С.
Πηγή: Bulletin of Polessky State University. Series in Natural Sciences; No. 1 (2024); 56-65 ; Веснік Палескага дзяржаўнага універсітэта. Серыя прыродазнаўчых навук; № 1 (2024); 56-65 ; 2524-2326 ; 2078-5461
Θεματικοί όροι: оксид азота, эндотелиальная NO-синтаза (еNOS), ген эндотелиальной синтазы оксида азота (NOS3), аллель, однонуклеотидный полиморфизм (SNP), nitric oxide, endothelial NO synthase (eNOS), endothelial nitric oxide synthase (NOS3) gene, allele, single nucleotide polymorphism (SNP)
Περιγραφή αρχείου: application/pdf
Relation: https://ojs.polessu.by/BPSUS2/article/view/1916/1600; https://ojs.polessu.by/BPSUS2/article/view/1916
Διαθεσιμότητα: https://ojs.polessu.by/BPSUS2/article/view/1916
-
12Academic Journal
Συγγραφείς: A. V. Igoshin, T. M. Mishakova, R. B. Aitnazarov, A. V. Ilina, D. M. Larkin, N. S. Yudin, А. В. Игошин, Т. М. Мишакова, Р. Б. Айтназаров, А. В. Ильина, Д. М. Ларкин, Н. С. Юдин
Συνεισφορές: This work was supported by State Budgeted Project No. FWNR-2022-0039.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 117-125 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 117-125 ; 2500-3259 ; 10.18699/vjgb-24-01
Θεματικοί όροι: ассоциация, Yaroslavl breed, milk yield, fat percentage, protein percentage, fat yield, protein yield, LPIN1 gene, single nucleotide polymorphism, association, ярославская порода, удой, процент жира, процент белка, выход жира, выход белка, ген LPIN1, однонуклеотидный полиморфизм
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4062/1818; Abdelmanova A.S., Kharzinova V.R., Volkova V.V., Mishina A.I., Dotsev A.V., Sermyagin A.A., Boronetskaya O.I., Petrikeeva L.V., Chinarov R.Y., Brem G., Zinovieva N.A. Genetic diversity of historical and modern populations of Russian cattle breeds revealed by microsatellite analysis. Genes (Basel). 2020;11(8):940. DOI 10.3390/genes11080940; Ahmad S.M., Bhat B., Bhat S.A., Yaseen M., Mir S., Raza M., Iquebal M.A., Shah R.A., Ganai N.A. SNPs in mammary gland epithelial cells unraveling potential difference in milk production between Jersey and Kashmiri cattle using RNA sequencing. Front. Genet. 2021;12:666015. DOI 10.3389/fgene.2021.666015; Barroso E., Rodríguez-Calvo R., Serrano-Marco L., Astudillo A.M., Balsinde J., Palomer X., Vázquez-Carrera M. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology. 2011;152(5):1848-1859. DOI 10.1210/en.2010-1468; Bekele R., Taye M., Abebe G., Meseret S. Genomic regions and candidate genes associated with milk production traits in Holstein and its crossbred cattle: a review. Int. J. Genomics. 2023;2023:8497453. DOI 10.1155/2023/8497453; Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57(1):289-300. DOI 10.1111/j.2517-6161.1995.tb02031; Bionaz M., Loor J.J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 2008;138(6): 1019-1024. DOI 10.1093/jn/138.6.1019; Brahe L.K., Ängquist L., Larsen L.H., Vimaleswaran K.S., Hager J., Viguerie N., Loos R.J., Handjieva-Darlenska T., Jebb S.A., Hlavaty P., Larsen T.M., Martinez J.A., Papadaki A., Pfeiffer A.F., van Baak M.A., Sørensen T.I., Holst C., Langin D., Astrup A., Saris W.H. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids: the DiOGenes study. Br. J. Nutr. 2013;110(5):790-796. DOI 10.1017/S0007114512006058; Buaban S., Puangdee S., Duangjinda M., Boonkum W. Estimation of genetic parameters and trends for production traits of dairy cattle in Thailand using a multiple-trait multiple-lactation test day model. Asian-Australas. J. Anim. Sci. 2020;33(9):1387-1399. DOI 10.5713/ajas.19.0141; Cecchinato A., Ribeca C., Chessa S., Cipolat-Gotet C., Maretto F., Casellas J., Bittante G. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal. 2014;8(7):1062-1070. DOI 10.1017/S1751731114001098; Chen S.Y., Gloria L.S., Pedrosa V.B., Doucette J., Boerman J.P., Brito L.F. Unravelling the genomic background of resilience based on variability in milk yield and milk production levels in North American Holstein cattle through GWAS and Mendelian randomization analyses. J. Dairy Sci. 2023;107:1035-1053. DOI 10.3168/jds.2023-23650; Chen Y., Rui B.B., Tang L.Y., Hu C.M. Lipin family proteins – key regulators in lipid metabolism. Ann. Nutr. Metab. 2015;66(1):10-18. DOI 10.1159/000368661; Csaki L.S., Dwyer J.R., Fong L.G., Tontonoz P., Young S.G., Reue K. Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog. Lipid Res. 2013;52(3):305-316. DOI 10.1016/j.plipres.2013.04.001; Dimov G., Albuquerque L.G., Keown J.F., Van Vleck L.D., Norman H.D. Variance of interaction effects of sire and herd for yield traits of Holsteins in California, New York, and Pennsylvania with an animal model. J. Dairy Sci. 1995;78(4):939-946. DOI 10.3168/jds.S0022-0302(95)76709-1; Dmitriev N.G. Breed Cattle by Countries of the World. Leningrad: Kolos Publ., 1978 (in Russian); Dmitriev N.G., Ernst L.K. (Eds.) Animal Genetics Resources of the USSR. Rome: Food and Agriculture Organization of the United Nations, 1989; Du X., Zhou H., Liu X., Li Y., Hickford J.G.H. Sequence variation in the bovine lipin-1 gene (LPIN1) and its association with milk fat and protein contents in New Zealand Holstein-Friesian × Jersey (HF × J)-cross dairy cows. Animals (Basel). 2021;11(11):3223. DOI 10.3390/ani11113223; Dunin I.M., Dankvert A.G. (Eds.) Breeds and Types of Farm Animals in the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2013 (in Russian); Fang L., Cai W., Liu S., Canela-Xandri O., Gao Y., Jiang J., Rawlik K., Li B., Schroeder S.G., Rosen B.D., Li C.J., Sonstegard T.S., Alexander L.J., Van Tassell C.P., Van Raden P.M., Cole J.B., Yu Y., Zhang S., Tenesa A., Ma L., Liu G.E. Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. Genome Res. 2020;30(5):790-801. DOI 10.1101/gr.250704.119; Gutierrez-Reinoso M.A., Aponte P.M., Garcia-Herreros M. Genomic analysis, progress and future perspectives in dairy cattle selection: a review. Animals (Basel). 2021;11(3):599. DOI 10.3390/ani11030599; Haldane J.B.S. An exact test for randomness of mating. J. Genet. 1954; 52:631-635. DOI 10.1007/BF02985085; Han B., Yuan Y., Liang R., Li Y., Liu L., Sun D. Genetic effects of LPIN1 polymorphisms on milk production traits in dairy cattle. Genes (Basel). 2019;10(4):265. DOI 10.3390/genes10040265; Han L.Q., Li H.J., Wang Y.Y., Zhu H.S., Wang L.F., Guo Y.J., Lu W.F., Wang Y.L., Yang G.Y. mRNAabundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle. Genet. Mol. Res. 2010;9(2):1250-1257. DOI 10.4238/vol9-2gmr814; He X.P., Xu X.W., Zhao S.H., Fan B., Yu M., Zhu M.J., Li C.C., Peng Z.Z., Liu B. Investigation of Lpin1 as a candidate gene for fat deposition in pigs. Mol. Biol. Rep. 2009;36(5):1175-1180. DOI 10.1007/s11033-008-9294-4; Hedrick P.W. Genetics of Populations. Jones & Bartlett Learning, 2005 Hillers J.K., Williams G.F. “Shook” factors and lactation milk yield. Extension Bull. (Wash. State Univ.). 1981;EB0779; Huang S., Huang S., Wang X., Zhang Q., Liu J., Leng Y. Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes. Int. J. Biol. Sci. 2017;13(1):1-12. DOI 10.7150/ijbs.17149; Ilatsia E.D., Muasya T.K., Muhuyi W.B., Kahi A.K. Genetic and phenotypic parameters for test day milk yield of Sahiwal cattle in the semi-arid tropics. Animal. 2007;1(2):185-192. DOI 10.1017/S175173110739263X; Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016;47(6):647-657. DOI 10.1111/age.12473; Kadegowda A.K., Bionaz M., Piperova L.S., Erdman R.A., Loor J.J. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J. Dairy Sci. 2009;92(9): 4276-4289. DOI 10.3168/jds.2008-1932; Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 2004;36(2):163-190. DOI 10.1186/1297-9686-36-2-163; Kim H.E., Bae E., Jeong D.Y., Kim M.J., Jin W.J., Park S.W., Han G.S., Carman G.M., Koh E., Kim K.S. Lipin1 regulates PPARγ transcriptional activity. Biochem. J. 2013;453(1):49-60. DOI 10.1042/BJ20121598; Lee Y.M., Dang C.G., Alam M.Z., Kim Y.S., Cho K.H., Park K.D., Kim J.J. The effectiveness of genomic selection for milk production traits of Holstein dairy cattle. Asian-Australas. J. Anim. Sci. 2020; 33(3):382-389. DOI 10.5713/ajas.19.0546; Li Q., Liang R., Li Y., Gao Y., Li Q., Sun D., Li J. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages. BMC Genet. 2020;21(1): 72. DOI 10.1186/s12863-020-00882-y; Lopdell T.J. Using QTL to identify genes and pathways underlying the regulation and production of milk components in cattle. Animals (Basel). 2023;13(5):911. DOI 10.3390/ani13050911; Lu G., Moriyama E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinform. 2004;5(4):378-388. DOI 10.1093/bib/5.4.378; Lv Y., Guan W., Qiao H., Wang C., Chen F., Zhang Y., Liao Z. Veterinary Medicine and Omics (Veterinomics): metabolic transition of milk triacylglycerol synthesis in sows from late pregnancy to lactation. OMICS. 2015;19(10):602-616. DOI 10.1089/omi.2015.0102; Madilindi M.A., Banga C.B., Bhebhe E., Sanarana Y.P., Nxumalo K.S., Taela M.G., Magagula B.S., Mapholi N.O. Genetic diversity and relationships among three Southern African Nguni cattle populations. Trop. Anim. Health Prod. 2020;52(2):753-762. DOI 10.1007/s11250-019-02066-y; Melka M.G., Schenkel F.S. Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers. BMC Res. Notes. 2012;5:161. DOI 10.1186/1756-0500-5-161; Mohammad M.A., Haymond M.W. Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation. Am. J. Physiol. Endocrinol. Metab. 2013; 305(6):E700-E716. DOI 10.1152/ajpendo.00052.2013; Mul J.D., Nadra K., Jagalur N.B., Nijman I.J., Toonen P.W., Médard J.J., Grès S., de Bruin A., Han G.S., Brouwers J.F., Carman G.M., Saulnier-Blache J.S., Meijer D., Chrast R., Cuppen E. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J. Biol. Chem. 2011;286(30):26781-26793. DOI 10.1074/jbc.M110.197947; Nayak S.S., Panigrahi M., Rajawat D., Ghildiyal K., Sharma A., Parida S., Bhushan B., Mishra B.P., Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm. Genome. 2023;34(4):615-631. DOI 10.1007/s00335-023-10021-4; Ocampo R.J., Martínez J.F., Martínez R. Assessment of genetic diversity and population structure of Colombian Creole cattle using microsatellites. Trop. Anim. Health Prod. 2021;53(1):122. DOI 10.1007/s11250-021-02563-z; Pegolo S., Cecchinato A., Mele M., Conte G., Schiavon S., Bittante G. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J. Dairy Sci. 2016;99(6):4558-4573. DOI 10.3168/jds.2015-10420; Persichilli C., Senczuk G., Mastrangelo S., Marusi M., van Kaam J.T., Finocchiaro R., Di Civita M., Cassandro M., Pilla F. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J. Dairy Sci. 2023; 106(8):5537-5553. DOI 10.3168/jds.2022-22159; Péterfy M., Phan J., Xu P., Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 2001;27(1):121-124. DOI 10.1038/83685; Peterson T.R., Sengupta S.S., Harris T.E., Carmack A.E., Kang S.A., Balderas E., Guertin D.A., Madden K.L., Carpenter A.E., Finck B.N., Sabatini D.M. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408-420. DOI 10.1016/j.cell.2011.06.034; Phan J., Reue K. Lipin, a lipodystrophy and obesity gene. Cell Metab. 2005;1(1):73-83. DOI 10.1016/j.cmet.2004.12.002; Porto-Neto L.R., Kijas J.W., Reverter A. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genet. Sel. Evol. 2014;46(1):22. DOI 10.1186/1297-9686-46-22; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. DOI 10.1086/519795; Rajawat D., Panigrahi M., Kumar H., Nayak S.S., Parida S., Bhushan B., Gaur G.K., Dutt T., Mishra B.P. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene. 2022;816:146165. DOI 10.1016/j.gene.2021.146165; Reue K., Zhang P. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett. 2008;582(1):90-96. DOI 10.1016/j.febslet.2007.11.014; Robertson A., Hill W.G. Deviations from Hardy–Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics. 1984;107(4):703-718. DOI 10.1093/genetics/107.4.703; Ruvinskiy D., Igoshin A., Yurchenko A., Ilina A.V., Larkin D.M. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes. Anim. Genet. 2022;53(5):680-684. DOI 10.1111/age.13230; Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2006; Saydakova S.S., Morozova K.N., Kiseleva E.V. Lipin family proteins: structure, functions, and related diseases. Cell Tissue Biol. 2021; 15(4):317-325. DOI 10.1134/S1990519X21040076; Sermyagin A.A., Dotsev A.V., Gladyr E.A., Traspov A.A., Deniskova T.E., Kostyunina O.V., Reyer H., Wimmers K., Barbato M., Paronyan I.A., Plemyashov K.V., Sölkner J., Popov R.G., Brem G., Zinovieva N.A. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genet. Sel. Evol. 2018;50(1):37. DOI 10.1186/s12711-018-0408-8; Shichkin G.I., Tyapugin E.E., Dunin I.M., Gerasimova E.V., Kozlova N.A., Myshkina M.S., Semenova N.V., Dunin M.I., Tyapugin S.E. The state of dairy cattle breeding in the Russian Federation. In: Yearbook on Breeding Work in Dairy Cattle Breeding in Farms of the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2023;3-20 (in Russian); Silpa M.V., König S., Sejian V., Malik P.K., Nair M.R.R., Fonseca V.F.C., Maia A.S.C., Bhatta R. Climate-resilient dairy cattle production: applications of genomic tools and statistical models. Front. Vet. Sci. 2021;8:625189. DOI 10.3389/fvets.2021.625189; Singh A., Malla W.A., Kumar A., Jain A., Thakur M.S., Khare V., Tiwari S.P. Review: genetic background of milk fatty acid synthesis in bovines. Trop. Anim. Health Prod. 2023;55(5):328. DOI 10.1007/s11250-023-03754-6; Siniossoglou S. Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim. Biophys. Acta. 2013;1831(3):575-581. DOI 10.1016/j.bbalip.2012.09.014; Sinnwell J.P., Therneau T.M., Schaid D.J. The kinship2 R package for pedigree data. Hum. Hered. 2014;78(2):91-93. DOI 10.1159/000363105; Stolpovsky Yu.A., Gosteva E.R., Solodneva E.V. Genetic and Selection Aspects of the History of the Development of Cattle Breeding on the Territory of Russia. Moscow: Akvarel’ Publ., 2022 (in Russian); Storey J.D., Bass A.J., Dabney A., Robinson D. qvalue: Q-value estimation for false discovery rate control. R Package version 2.34.0. 2023. DOI 10.18129/B9.bioc.qvalue. (https://bioconductor.org/packages/qvalue); Suviolahti E., Reue K., Cantor R.M., Phan J., Gentile M., Naukkarinen J., Soro-Paavonen A., Oksanen L., Kaprio J., Rissanen A., Salomaa V., Kontula K., Taskinen M.R., Pajukanta P., Peltonen L. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum. Mol. Genet. 2006;15(3):377-386. DOI 10.1093/hmg/ddi448; Teng J., Wang D., Zhao C., Zhang X., Chen Z., Liu J., Sun D., Tang H., Wang W., Li J., Mei C., Yang Z., Ning C., Zhang Q. Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data. J. Dairy Sci. 2023;106(4):2535-2550. DOI 10.3168/jds.2022-22277; Thering B.J., Graugnard D.E., Piantoni P., Loor J.J. Adipose tissue lipogenic gene networks due to lipid feeding and milk fat depression in lactating cows. J. Dairy Sci. 2009;92(9):4290-4300. DOI 10.3168/jds.2008-2000; Weller J.I., Ron M. Invited review: quantitative trait nucleotide determination in the era of genomic selection. J. Dairy Sci. 2011;94(3): 1082-1090. DOI 10.3168/jds.2010-3793; Weller J.I., Ezra E., Ron M. Invited review: a perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 2017;100(11): 8633-8644. DOI 10.3168/jds.2017-12879; Wiggans G.R., Van Vleck L.D. Extending partial lactation milk and fat records with a function of last-sample production. J. Dairy Sci. 1979;62(2):316-325. DOI 10.3168/jds.S0022-0302(79)83242-7; Williams M., Sleator R.D., Murphy C.P., McCarthy J., Berry D.P. Exploiting genetic variability in the trajectory of lactation yield and somatic cell score with each progressing parity. J. Dairy Sci. 2022;105(4):3341-3354. DOI 10.3168/jds.2021-21306; Yamazaki T., Hagiya K., Takeda H., Osawa T., Yamaguchi S., Nagamine Y. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model. Animal. 2016;10(8):1263-1270. DOI 10.1017/S1751731116000185; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. DOI 10.1186/1471-2105-13-134; Yurchenko A.A., Daetwyler H.D., Yudin N., Schnabel R.D., Vander Jagt C.J., Soloshenko V., Lhasaranov B., Popov R., Taylor J.F., Larkin D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci. Rep. 2018a;8(1):12984. DOI 10.1038/s41598-018-31304-w; Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb). 2018b;120(2):125-137. DOI 10.1038/s41437-017-0024-3; Zhang R., Jiang F., Hu C., Yu W., Wang J., Wang C., Ma X., Tang S., Bao Y., Xiang K., Jia W. Genetic variants of LPIN1 indicate an association with Type 2 diabetes mellitus in a Chinese population. Diabet. Med. 2013;30(1):118-122. DOI 10.1111/j.1464-5491.2012.03758.x; Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Sölkner J., Reyer H., Wimmers K., Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS One. 2020;15(11):e0242200. DOI 10.1371/journal.pone.0242200; Ziyatdinov A., Vázquez-Santiago M., Brunel H., Martinez-Perez A., Aschard H., Soria J.M. lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinformatics. 2018;19(1):68. DOI 10.1186/s12859-018-2057-x; https://vavilov.elpub.ru/jour/article/view/4062
-
13Academic Journal
Συγγραφείς: A. K. Khamzina, A. A. Yurchenko, N. S. Yudin, P. Sh. Ibragimov, Y. S. Ussenbekov, D. M. Larkin, А. К. Хамзина, А. А. Юрченко, Н. С. Юдин, П. Ш. Ибрагимов, Е. С. Усенбеков, Д. М. Ларкин
Συνεισφορές: The work was performed in the framework of a grant funding project for scientific and (or) scientific and technical projects for 2023–2025 (Ministry of Science and Higher Education of the Republic of Kazakhstan) AP19674808 – Creation of genetic passports and study of genetics of local Kazakhstani cattle breeds using genome resequencing.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 4 (2024); 416-423 ; Вавиловский журнал генетики и селекции; Том 28, № 4 (2024); 416-423 ; 2500-3259 ; 10.18699/vjgb-24-41
Θεματικοί όροι: однонуклеотидный полиморфизм, breeds, history, Kazakhstan, genetic characteristics, single nucleotide polymorphism, породы, история, Казахстан, генетическая характеристика
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4184/1848; Abdelmanova A.S., Kharzinova V.R., Volkova V.V., Dotsev A.V., Sermyagin A.A., Boronetskaya O.I., Chinarov R.Y., Brem G., Zinovieva N.A. Analysis of genetic diversity of Kazakh white-headed cattle breed by microsatellites compare with ancestral breeds. In: Proceedings of the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, 15–31 March 2021. Basel, Switzerland: MDPI, 2021;9487. DOI 10.3390/BDEE2021-09487; Abugaliev S.K., Bupebaeva L.K., Baybatyrova M.A., Matkerimov N.K., Matkerimova K.G. The growth and development of heifers of Alatau breed at different technologies of rearing. Glavnyj Zootekhnik = Head of Animal Breeding. 2020;(6):43-49. DOI 10.33920/sel-03-2006-06 (in Russian); Adilova A.K., Ilyassov Sh.A. Development of cattle breeding in Kazakhstan in the Bronze Age. Bull. Karaganda Univ. 2018;1(89): 8-13; Alentayev A. Increase of the Efficiency of Aulieata Cattle Breeding in Southern Kazakhstan by Using the World Gene Pool. Shymkent, 2010 (in Russian); Allsen T.T. Culture and Conquest in Mongol Eurasia. Cambridge: Cambridge University Press, 2001. DOI 10.1017/CBO9780511497445; Argynbayev Kh. Ethnographic Essays on Kazakh Cattle Breeding. Almaty, 1969 (in Kazakh); Baimukanov A.D., Artykovich Y.Y., Alexandrovich D.V., Amkhatovich M.T., Ablgazinovich A.K. Efficient breeding in Kazakhstan Alatau cattle breed population. Am. J. Anim. Vet. Sci. 2021;16(4): 318-326. DOI 10.3844/ajavsp.2021.318.326; Beishova I., Dossybayev K., Shamshidin A., Belaya A., Bissembayev A., Khamzin K., Kovalchuk A., Nametov A. Population analysis and genetic structure of two Kazakh cattle breeds using 150K SNP. HAYATI J. Biosci. 2022a;29(3):301-309. DOI 10.4308/hjb.29.3.301-309; Beishova I., Dossybayev K., Shamshidin A., Belaya A., Bissembayev A., Khamzin K., Kovalchuk A., Nametov A. Distribution of homozygosity regions in the genome of Kazakh cattle breeds. Diversity. 2022b;14(4):279. DOI 10.3390/d14040279; Bichurin N.Ya. Historical Overview of the Oirats, or Kalmyks, from the 15th Century to the Present. Elista, 1991 (in Russian); Bozymov K. Zonal type of Kazakh white-headed breed of cattle in West Kazakhstan. Saarbrucken: Lambert Academic Publishing, 2018; Bureau of National Statistics of Kazakhstan. Official Site. Available at: www.stat.gov.kz; Chimidova N.V., Moiseikina L., Ubushieva A.V., Khakhlinov A.I., Kedeeva O. Genetic structure of population of the Kalmyk breed cattle. E3S Web Conf. 2022;363:03025. DOI 10.1051/e3sconf/202236303025; Dakhshleyger G. Economy of the Kazakhs at the Turn of the 19th- 20th Centuries: Materials for the Historical and Ethnographic Atlas. Alma-Ata, 1980 (in Russian); Diarov K. Livestock Farming in Kazakhstan. Alma-Ata, 1963 (in Russian); Dmitriev N.G., Ernst L.K. (Eds.). Animal Genetic Resources of the USSR. Rome: FAO of the United Nations, 1989; Fedotova G.V., Slozhenkina M.I., Tsitsige, Natyrov A.K., Erendzhenova M.V. Comparative analysis of economic and biological features of Kalmyk and Mongolian cattle breeds. IOP Conf. Ser. Earth Environ. Sci. 2020;548(8):082076. DOI 10.1088/1755-1315/548/8/082076; Frizen D.Ya. On the problem of the development of cattle breeding and agriculture among the Kazakhs in the Western Kazakhstan at the turn of the XIX-XX centuries. Vestnik Tyumenskogo Gosudarstvennogo Universiteta. Gumanitarnye Issledovaniya. Humanitates = Tyumen State University Herald. Humanities Research. Humanitates. 2022;8(1):241-252. DOI 10.21684/2411-197x-2022-8-1-241-252 (in Russian); Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016;47(6):647-657. DOI 10.1111/age.12473; Kazhgaliyev N.Z., Shauyenov S.K., Omarkozhauly N., Shaikenova K.H., Shurkin A.I. Adaptability and productive qualities of imported beef cattle under the conditions of the Northern region of Kazakhstan. Biosci. Biotechnol. Res. Asia. 2016;13(1):531-538. DOI 10.13005/bbra/2065; Kazkenova A., Ainakanova B. Current state of dairy cattle breeding in Mongolia and the Republic of Kazakhstan. Mongolian Journal of Agricultural Sciences. 2016;14(1):125-129. DOI 10.5564/mjas.v14i1.592 (in Russian); Lumbunov S.G., Garmaev B.D. Beef productivity of differently bred steers of the Kalmyk breed. Glavnyj Zootekhnik = Head of Animal Breeding. 2021;(11):31-46. DOI 10.33920/sel-03-2111-04 (in Russian); Nysanbaev A.N. Kazakhstan. National Encyclopedia. Almaty, 2004 (in Russian); Plakhtukova V., Selionova M.I., Gladkikh M.Y., Kuznetsova O.V. Association of CAPN1 and GH genes with productivity traits in Kazakh Whiteheaded cattle. E3S Web Conf. 2020;224:04027. DOI 10.1051/e3sconf/202022404027; Porter V., Alderson L., Hall S.J., Sponenberg D.P. Mason’s world encyclopedia of livestock breeds and breeding. Volume 1 and Volume 2. CABI, 2016. DOI 10.1079/9781845934668.0000; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: A tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. DOI 10.1086/519795; Raj A., Stephens M., Pritchard J.K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014;197(2):573-589. DOI 10.1534/genetics.114.164350; Ratchnevsky P. Genghis Khan: His Life and Legacy. Hoboken, New Jersey: Wiley-Blackwell, 1993; Sattarova R., Shynybaev K., Bakiyeva F., Strochkov V., Boranbayeva K., Zhanserkenova O., Kassymbekova S., Ibadullayeva A., Khamzina A. Metagenomic analysis and identification of epizootic strains of the causative agent of infectious bovine keratoconjunctivitis in Kazakhstan. Int. J. Vet. Sci. 2023;12(6):822-831. DOI 10.47278/journal.ijvs/2023.071; Shamshidin A.S., Kharzhau A., Baimukanov D.A., Sermyagin A.A. Molecular genetic profile of Kazakhstan populations of cattle breeds. Bull. Natl. Acad. Sci. Republic Kazakhstan. 2019;6(382):154-162. DOI 10.32014/2019.2518-1467.157; Terletsky V.P., Tyshchenko V.I., Usenbekov E.S. Genetic features of Kazakh cattle breeds. Effectivnoye Zhivotnovodstvo = Efficient Livestock Farming. 2019;(1):64-66. DOI 10.24411/9999-007A-2019-10015 (in Russian); The Electronic Government of the Republic of Kazakhstan. Ministry of Agriculture. Official site. Available at: www.gov.kz; The Republican Chamber of Dairy and Combined Breeds of Cattle. Official site. Available at: www.qazaqsut.kz; The Republican Chamber of Kazakh White-Headed Cattle Breed. Official site. Available at: www.aqbas.kz; The Republican Chamber of the Kalmyk Breed. Official site. Available at: www.qalmaq.kz; Tolybekov S. The Nomadic Society of Kazakhs in the 17th–early 20th Centuries. Alma-Ata, 1971 (in Russian); Torekhanov A., Karimov J., Dalenov Sh., Naimanov D., Zhazilbekov N. Animal Husbandry. Almaty, 2006 (in Kazakh); Torekhanov A., Musabaev B., Tadzhiev K., Karymsakov T. Scientific Achievements in Animal Husbandry. Almaty, 2011 (in Russian); Ulimbashev M., Gosteva E., Krasnova O., Konik N., Tletseruk I. Condition of meat breed resources of cattle in Russia (review). Genetika i Razvedenie Zhivotnykh = Genetics and Breeding of Animals. 2023; (1):52-64. DOI 10.31043/2410-2733-2023-1-52-64 (in Russian); Yudin N.S., Larkin D.M. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019; 23(5):559-568. DOI 10.18699/VJ19.525 (in Russian); Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity. 2018a; 120(2):125-137. DOI 10.1038/s41437-017-0024-3; Yurchenko A.A., Daetwyler H.D., Yudin N., Schnabel R.D., Vander Jagt C.J., Soloshenko V., Lhasaranov B., Popov R., Taylor J.F., Larkin D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci. Rep. 2018b;8(1):12984. DOI 10.1038/s41598-018-31304-w; Zhumanov K., Baimukanov A. Dairy productivity of cows of the Holstein black-and-white cattle of the Kazakhstan population. Rep. Natl. Acad. Sci. Republic Kazakhstan. 2020;(6):109-114; https://vavilov.elpub.ru/jour/article/view/4184
-
14Academic Journal
Συγγραφείς: A. Yu. Krivoruchko, A. V. Skokova, O. A. Yatsyk, M. Yu. Kuharuk, A. A. Likhovid, N. I. Kizilova, А. Ю. Криворучко, А. В. Скокова, О. А. Яцык, М. Ю. Кухарук, А. А. Лиховид, Н. И. Кизилова
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; Том 62, № 1 (2024); 57-67 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; Том 62, № 1 (2024); 57-67 ; 1817-7239 ; 1817-7204 ; 10.29235/1817-7204-2024-62-1
Θεματικοί όροι: полногеномный поиск ассоциаций, breed identification, single nucleotide polymorphism, DNA biochip, genome-wide association search, идентификация породы, однонуклеотидный полиморфизм, ДНК-биочип
Περιγραφή αρχείου: application/pdf
Relation: https://vestiagr.belnauka.by/jour/article/view/740/623; Characteristics of gene pool of various sheep breeds of the Republic of Kazakhstan / Z. Iskakova [et al.] // EurAsian J. Biosci. – 2020. – Vol. 14, № 1. – P. 2395–2402.; Методология управления формированием функционально-технологических свойств животноводческого сырья за счет оптимизации селекционных и паратипических факторов / М. И. Сложенкина [и др.] // Аграр.-пищевые инновации. – 2018. – № 2 (2). – С. 6–15. https://doi.org/10.31208/2618-7353-2018-1-2-6-15; On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools / E. Ciani [et al.] // Genet. Sel. Evol. – 2020. – Vol. 52. – Art. 25. https://doi.org/10.1186/s12711-020-00545-7; Генетическая изменчивость казахской полугрубошерстной породы овец / Н. Ж. Каримов [и др.] // Вестн. Кыргыз. нац. аграр. ун-та им. К. И. Скрябина. – 2020. – № 1 (52). – С. 17–21.; Mihailova, Y. Genetic diversity and structure of 2 indigenous sheep breeds (Kotel and Teteven) in Bulgaria using microsatellite markers / Y. Mihailova // Biotechnol. Biotechnol. Equip. – 2021. – Vol. 35, № 1. – P. 576–585. https://doi.org/10.1080/13102818.2021.1903339; Иммунологические, генетические и биологические маркеры в селекции овец и коз / Н. С. Марзанов [и др.] // Молекулярно-генетические технологии для анализа экспрессии генов продуктивности и устойчивости к заболеваниям животных: материалы 2-й Междунар. науч.-практ. конф., 25 дек. 2020 г. / Моск. гос. акад. ветеринар. медицины и биотехнологии; редкол.: И. И. Кочиш [и др.]. – М., 2020. – С. 249–258.; Изменчивость микросателлитов в породах овец, разводимых в России / Т. Е. Денискова [и др.] // С.-х. биология. – 2016. – Т. 51, № 6. – С. 801–810. https://doi.org/10.15389/agrobiology.2016.6.801rus; Evaluation of single nucleotide polymorphisms identified through the use of SNP assay in Romanian and Chinese Holstein and Simmental cattle breeds / D. E. Ilie [et al.] // Acta Biochim. Pol. – 2020. – Vol. 67, № 3. – P. 341–346. https://doi.org/10.18388/ABP.2020_5080; Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle KuchinoshimaUshi / R. Kawahara-Miki [et al.] // BMC Genom. – 2011. – Vol. 12. – Art. 103. https://doi.org/10.1186/1471-2164-12-103; Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture / G. Ni [et al.] // Genet. Sel. Evol. – 2017. – Vol. 49. – Art. 8. https://doi.org/10.1186/s12711-016-0277-y; Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology / J. Plassais [et al.] // Nat. Commun. – 2019. – Vol. 10. – Art. 1489. https://doi.org/10.1038/s41467-019-09373-w; Юдин, Н. С. Общие признаки селекции и гены, связанные с адаптацией и акклиматизацией, в геномах российских пород крупного рогатого скота и овец / Н. С. Юдин, Д. М. Ларкин // Генетика. – 2019. – Т. 55, № 8. – С. 936–943. https://doi.org/10.1134/s0016675819070154; Development and application of high-density SNP arrays in genomic studies of domestic animals / B. Fan [et al.] // Asian-Australas. J. Anim. Sci. – 2010. – Vol. 23, № 7. – P. 833–847. https://doi.org/10.5713/ajas.2010.r.03; Оценка биоразнообразия межвидовых гибридов рода Ovis с использованием STR- и SNP-маркеров / Т. Е. Денискова [и др.] // С.-х. биология. – 2017. – Т. 52, № 2. – С. 251–260. https://doi.org/10.15389/agrobiology.2017.2.251rus; Генетические маркеры в козоводстве (обзор) / М. И. Селионова [и др.] // С.-х. биология. – 2021. – Т. 56, № 6. – С. 1031–1048. https://doi.org/10.15389/agrobiology.2021.6.1031rus; Genome-wide selection of discriminant SNP markers for breed assignment in indigenous sheep breeds / M. H. Moradi [et al.] // Ann. Anim. Sci. – 2021. – Vol. 21, № 3. – P. 807–831. https://doi.org/10.2478/aoas-2020-0097; Омаров, А. А. Продуктивные показатели овец северокавказской мясо-шерстной породы и их взаимосвязь с основными селекционируемыми признаками / А. А. Омаров, С. И. Гайдашов // Вестн. Алт. гос. аграр. ун-та. – 2021. – № 2 (196). – С. 66–72.; PLINK: a tool set for whole-genome association and population-based linkage analyses / S. Purcell [et al.] // Am. J. Hum. Genet. – 2007. – Vol. 81, № 3. – P. 559–575. https://doi.org/10.1086/519795; Shen, X. Overexpression of gene DEP domain containing 1 and its clinical prognostic significance in colorectal cancer / X. Shen, J. Han // J. Clin. Lab. Anal. – 2020. – Vol. 34, № 12. – P. e23634. https://doi.org/10.1002/jcla.23634; The eukaryotic elongation factor eEF1A1 interacts with SAMHD1 / C. Morrissey [et al.] // Biochem. J. – 2015. – Vol. 466, № 1. – P. 69–76. https://doi.org/10.1042/BJ20140203; Expression analysis of solute carrier (SLC2A) genes in milk derived mammary epithelial cells during different stages of lactation in sahiwal (Bos indicus) cows / J. Pradeep [et al.] // Adv. Dairy Res. – 2014. – Vol. 2. – Art. 2. https://doi.org/10.4172/2329-888X.1000117; Krivoruchko A. Y. Candidate genes for productivity identified by genome-wide association study with indicators of class in the Russian meat merino sheep breed / A. Y. Krivoruchko, O. A. Yatsyk, E. Y. Safaryan // Вавил. журн. генетики и селекции. – 2020. – Т. 24, № 8. – С. 836–843. https://doi.org/10.18699/VJ20.681; Mapping key regions of the RXFP2 low-density lipoprotein class-A module that are involved in signal activation / R. C. K. Kong [et al.] // Biochemistry. – 2014. – Vol. 53, № 28. – P. 4537–4548. https://doi.org/10.1021/bi500797d; Discovery of SNPs in RXFP2 related to horn types in sheep / X. Wang [et al.] // Small Rumin. Res. – 2014. – Vol. 116, № 2–3. – P. 133–136. https://doi.org/10.1016/j.smallrumres.2013.10.022; Runs of homozygosity and signatures of selection: a comparison among eight local Swiss sheep breeds / H. SignerHasler [et al.] // Anim. Genet. – 2019. – Vol. 50, № 5. – P. 512–525. https://doi.org/10.1111/age.12828; Murine ortholog of the novel glycosyltransferase, B3GTL: primary structure, characterization of the gene and transcripts, and expression in tissues / T. Y. K. Heinonen [et al.] // DNA Cell Biol. – 2006. – Vol. 25, № 8. – P. 465–474. https://doi.org/10.1089/dna.2006.25.465; Molecular cloning and characterization of a novel human β1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain / T. Sato [et al.] // Glycobiology. – 2006. – Vol. 16, № 12. – P. 1194–1206. https://doi.org/10.1093/glycob/cwl035; A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in nordic red cattle: additional evidence for the common occurrence of balancing selection in livestock / N. K. Kadri [et al.] // PLoS Genet. – 2014. – Vol. 10, № 1. – P. e1004049. https://doi.org/10.1371/journal.pgen.1004049; Expression analysis of fibronectin type III domain-containing (FNDC) genes in inflammatory bowel disease and colorectal cancer / T. Wuensch [et al.] // Gastroenterol. Res. Pract. – 2019. – Vol. 2019. – Art. 3784172. https://doi.org/10.1155/2019/3784172; Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells / S. Zhu [et al.] // Cell. Mol. Biol. Lett. – 2022. – Vol. 27. – Art. 11. https://doi.org/10.1186/s11658-022-00314-y; A functional variant in the coding region of CAMTA2 is associated with left ventricular hypertrophy by affecting the activation of Nkx2.5-dependent transcription / W.-H. Song [et al.] // J. Hypertens. – 2016. – Vol. 34, № 5. – P. 942–949. https://doi.org/10.1097/HJH.0000000000000873; Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation / F. L. Zhong [et al.] // Cell. – 2016. – Vol. 167. – P. 187–202. https://doi.org/10.1016/j.cell.2016.09.001; Variants in ALX4 and their association with genitourinary defects / C. H. Chen [et al.] // Andrology. – 2020. – Vol. 8, № 5. – P. 1243–1255. https://doi.org/10.1111/andr.12815; Linkage and association of childhood asthma with the chromosome 12 genes / C. Shao [et al.] // J. Hum. Genet. – 2004. – Vol. 49, № 3. – P. 115–122. https://doi.org/10.1007/s10038-003-0118-z; Four genetic loci affecting swine lung lesions identified by whole-genome sequencing-based association studies / X. Tong [et al.] // Sci. China Life Sci. – 2021. – Vol. 64, № 9. – P. 1571–1574. https://doi.org/10.1007/s11427-020-1826-x; Whole genome detection of recent selection signatures in Sarabi cattle: a unique Iranian taurine breed / H. Moradian [et al.] // Genes Genom. – 2020. – Vol. 42, № 2. – P. 203–215. https://doi.org/10.1007/s13258-019-00888-6; https://vestiagr.belnauka.by/jour/article/view/740
-
15Academic Journal
Συγγραφείς: Yu. N. Reshetnikova, I. V. Ponomarenko, V. М. Churnosov, M. S. Ponomarenko, M. I. Churnosov, E. A. Reshetnikov, Ю. Н. Решетникова, И. В. Пономаренко, В. М. Чурносов, М. С. Пономаренко, М. И. Чурносов, Е. А. Решетников
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 46-54 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 46-54 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: масса тела новорожденного, FGR, single nucleotide polymorphism, SNP, folate cycle, MTRR gene, associations, neonatal birth weight, ЗРП, однонуклеотидный полиморфизм, фолатный цикл, ген MTRR, ассоциации
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1878/1173; Society for Maternal-Fetal Medicine (SMFM). Electronic address: pubs@smfm.org; Martins J.G., Biggio J.R., Abuhamad A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am J Obstet Gynecol. 2020;223(4):B2–B17. https://doi.org/10.1016/j.ajog.2020.05.010.; Головченко О.В. Молекулярно-генетические детерминанты преэклампсии. Научные результаты биомедицинских исследований. 2019;5(4):139–49. https://doi.org/10.18413/2658-6533-2019-5-4-0-11.; Решетников Е.А. Поиск ассоциаций генов-кандидатов, дифференциально экспрессирующихся в плаценте, с риском развития плацентарной недостаточности с синдромом задержки роста плода. Научные результаты биомедицинских исследований. 2020;6(3):338–49. https://doi.org/10.18413/2658-6533-2020-6-3-0-5.; Баев Т.О., Панова И.А., Кузьменко Г.Н. и др. Состояние микроциркуляции у беременных женщин с гипертензивными расстройствами в III триместре беременности. Научные результаты биомедицинских исследований. 2023;9(1):113–28. https://doi.org/10.18413/2658-6533-2023-9-1-0-8.; Pels A., Beune I.M., van Wassenaer-Leemhuis A.G. et al. Early-onset fetal growth restriction: A systematic review on mortality and morbidity. Acta Obstet Gynecol Scand. 2020;99(2):153–66. https://doi.org/10.1111/aogs.13702.; D'Agostin M., Di Sipio Morgia C., Vento G., Nobile S. Long-term implications of fetal growth restriction. World J Clin Cases. 2023;11(3):2855–863. https://doi.org/10.12998/wjcc.v11.i13.2855.; Anil K.C., Basel P.L., Singh S. Low birth weight and its associated risk factors: Health facility-based case-control study. PLoS ONE. 2020;15(6):e0234907. https://doi.org/10.1371/journal.pone.0234907.; Gaccioli F., Lager S. Placental nutrient transport and intrauterine growth restriction. Front Physiol. 2016;7:40. https://doi.org/10.3389/fphys.2016.00040.; Ducker G.S., Rabinowitz J.D. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42. https://doi.org/10.1016/j.cmet.2016.08.009.; Jiang H.L., Cao L.Q., Chen H.Y. Blood folic acid, vitamin B12, and homocysteine levels in pregnant women with fetal growth restriction. Genet Mol Res. 2016;15(4). https://doi.org/10.4238/gmr15048890.; Liu C., Luo D., Wang Q. et al. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: The Sichuan Homocysteine study. BMC Pregnancy Childbirth. 2020;20(1):176. https://doi.org/10.1186/s12884-020-02860-9.; Gaiday A., Balash L., Tussupkaliyev A. The role of high concentrations of homocysteine for the development of fetal growth restriction. Rev Bras Ginecol Obstet. 2022;44(4):352–9. https://doi.org/10.1055/s-0042-1743093.; Yila T.A., Sasaki S., Miyashita C. et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C Polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J Epidemiol. 2012;22(2):91–102. https://doi.org/10.2188/jea.JE20110039.; Sukla K.K., Tiwari P.K., Kumar A., Raman R. Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: Association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS ONE. 2013;8(8):e71587. https://doi.org/10.1371/journal.pone.0071587.; Liew S.C., Gupta E.D. Methylenetetrahydrofolatereductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58(1):1–10. https://doi.org/10.1016/j.ejmg.2014.10.004.; Tiwari D., Bose P.D., Das S. et al. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study. Meta Gene. 2015;3:31–42. https://doi.org/10.1016/j.mgene.2014.12.002.; Wu H., Zhu P., Geng X. et al. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet. 2017;295(5):1105–18. https://doi.org/10.1007/s00404-017-4322-z.; Wang S., Duan Y., Jiang S. et al. Relationships between maternal gene polymorphisms in one carbon metabolism and adverse pregnancy outcomes: a prospective mother and child cohort study in China. Nutrients. 2022;14(10):2108. https://doi.org/10.3390/nu14102108.; Медведев М.В. Пренатальнаяэхография: дифференциальный диагноз и прогноз. М.: Реал Тайм, 2012. 448 с.; Пономаренко И.В., Решетников Е.А., Полоников А.В., Чурносов М.И. Полиморфный локус rs314276 гена LIN28B ассоциирован с возрастом менархе у женщин Центрального Черноземья России. Акушерство и гинекология. 2019;(2):98–104. https://doi.org/10.18565/aig.2019.2.98-104.; Wu P.P., Tang R.N., An L. A meta-analysis of MTRR A66G polymorphism and colorectal cancer susceptibility. J BUON. 2015;20(3):918–22.; Bergen N.E., Schalekamp-Timmermans S., Jaddoe V.W. et al. Maternal and neonatal markers of the homocysteine pathway and fetal growth: The Generation R Study. Paediatr Perinat Epidemiol. 2016;30(4):386–96. https://doi.org/10.1111/ppe.12297.; Laskowska M., Laskowska K., Oleszczuk J. Differences in the association between maternal serum homocysteine and ADMA levels in women with pregnancies complicated by preeclampsia and/or intrauterine growth restriction. Hypertens Pregnancy. 2013;32(1):83–93. https://doi.org/10.3109/10641955.2012.751993.; Cawley S., O'Malley E.G., Kennedy R.A.K. et al. The relationship between maternal plasma homocysteine in early pregnancy and birth weight. J Matern Fetal Neonatal Med. 2020;33(18):3045–9. https://doi.org/10.1080/14767058.2019.1567705.; Gaughan D.J., Kluijtmans L.A., Barbaux S. et al The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451–6. https://doi.org/10.1016/s0021-9150(00)00739-5.; Wu X., Zou T., Cao N. Plasma homocysteine levels and genetic polymorphisms in folatemetablism are associated with breast cancer risk in chinese women. Hered Cancer Clin Pract. 2014;12(1):2. https://doi.org/10.1186/1897-4287-12-2.; Ni J., Liu Y., Zhou T., Wu X., Wang X. Single nucleotide polymorphisms in key one-carbon metabolism genes and their association with blood folate and homocysteine levels in a Chinese population in Yunnan. Genet Test Mol Biomarkers. 2018;22(3):193–8. https://doi.org/10.1089/gtmb.2017.0195.; Dewelle W.K., Melka D.S., Aklilu A.T. et al. Polymorphisms in maternal selected folate metabolism-related genes in neural tube defect-affected pregnancy. Adv Biomed Res. 2023;12:160. https://doi.org/10.4103/abr.abr_103_22.; Su J., Li Z. Analysis of MTR and MTRR gene polymorphisms in Chinese patients with ventricular septal defect. Appl Immunohistochem Mol Morphol. 2018;26(10):769–74. https://doi.org/10.1097/PAI.0000000000000512.; Yadav U., Kumar P., Rai V. Distribution of methionine synthase reductase (MTRR) gene A66G polymorphism in Indian Population. Indian J Clin Biochem. 2021;36(1):23–32. https://doi.org/10.1007/s12291-019-00862-9.; https://www.gynecology.su/jour/article/view/1878
-
16Academic Journal
Συγγραφείς: S. A. Shipulina, I. A. Goncharova, A. A. Sleptcov, D. S. Panfilov, E. V. Lelik, B. N. Kozlov, M. S. Nazarenko, С. А. Шипулина, И. А. Гончарова, А. А. Слепцов, Д. С. Панфилов, Е. В. Лелик, Б. Н. Козлов, М. С. Назаренко
Συνεισφορές: Information collection and analysis were carried out with the financial support of the Russian Science Foundation grant No. 22-25-00701., Сбор и анализ информации выполнены при финансовой поддержке гранта РНФ № 22-25-00701.
Πηγή: Medical Genetics; Том 23, № 6 (2024); 35-43 ; Медицинская генетика; Том 23, № 6 (2024); 35-43 ; 2073-7998
Θεματικοί όροι: дисплазия соединительной ткани, single nucleotide polymorphism, connective tissue diseases, однонуклеотидный полиморфизм
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2488/1798; Deng J., Li D., Zhang X., et al. Murine model of elastase-induced proximal thoracic aortic aneurysm through a midline incision in the anterior neck. Front Cardiovasc Med. 2023 Feb 6;10:953514.; Howard D.P.J., Banerjee A., Fairhead J.F., et al. Population-Based Study of Incidence and Outcome of Acute Aortic Dissection and Premorbid Risk Factor Control. Circulation. 2013 May 21;127(20):2031–7.; Salmasi M.Y., Alwis S., Cyclewala S., et al. The genetic basis of thoracic aortic disease: The future of aneurysm classification? Hell J Cardiol. 2023;69:41–50.; Bhandari R., Aatre R.D., Kanthi Y. Diagnostic approach and management of genetic aortopathies. Vasc Med. 2020 Feb 1;25(1):63–77.; Verstraeten A., Luyckx I., Loeys B. Aetiology and management of hereditary aortopathy. Nat Rev Cardiol. 2017 Apr;14(4):197–208.; Weerakkody R., Ross D., Parry D.A., et al. Targeted genetic analysis in a large cohort of familial and sporadic cases of aneurysm or dissection of the thoracic aorta. Genet Med Off J Am Coll Med Genet. 2018 Nov;20(11):1414–22.; Arnaud P., Hanna N., Benarroch L., et al. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD). Genet Med Off J Am Coll Med Genet. 2019 Sep;21(9):2015–24.; Milewicz D.M., Guo D., Hostetler E., et al. Update on the genetic risk for thoracic aortic aneurysms and acute aortic dissections: implications for clinical care. J Cardiovasc Surg (Torino). 2021 Jun;62(3):203–10.; Rodrigues Bento J., Meester J., Luyckx I., et al. The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annu Rev Genomics Hum Genet. 2022 Aug 31;23:223–53.; Ewans L.J., Colley A., Gaston-Massuet C., et al. Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications. J Med Genet. 2019 Sep;56(9):629–38.; Renard M., Francis C., Ghosh R., et al. Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. J Am Coll Cardiol. 2018 Aug 7;72(6):605–15.; Kontopodis N., Pantidis D., Dedes A., et al. The – Not So – Solid 5.5 cm Threshold for Abdominal Aortic Aneurysm Repair: Facts, Misinterpretations, and Future Directions. Front Surg. 2016 Jan 25;3:1.; Sazonova S.I., Saushkin V.V., Panfilov D.S., et al. Insights into ascending aortic aneurysm: Interactions between biomechanical properties of the aortic wall and tissue biomarkers. Heliyon. 2024 Jan 15;10(1):e23538.; Koenig S.N., Cavus O., Williams J., et al. New mechanistic insights to PLOD1-mediated human vascular disease. Transl Res J Lab Clin Med. 2022 Jan;239:1–17.; Li Y., Gao S., Han Y., et al. Variants of Focal Adhesion Scaffold Genes Cause Thoracic Aortic Aneurysm. Circ Res. 2021 Jan 8;128(1):8–23.; Guo D.C., Hostetler E.M., Fan Y., et al. Heritable Thoracic Aortic Disease Genes in Sporadic Aortic Dissection. J Am Coll Cardiol. 2017 Nov 28;70(21):2728–30.; Reddy P., Nair K.S., Kumar V., et al. Thoracic Aortic Aneurysmal Disease: Comprehensive Recommendations for the Primary Care Physician. Mayo Clin Proc. 2024 Jan;99(1):111–23.; Brownstein A.J., Kostiuk V., Ziganshin B.A., et al. Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2018 Update and Clinical Implications. Aorta Stamford Conn. 2018 Feb;6(1):13–20.; Versbraegen N., Gravel B., Nachtegael C., et al. Faster and more accurate pathogenic combination predictions with VarCoPP2.0. BMC Bioinformatics. 2023 May 1;24(1):179.; Kwartler C.S., Gong L., Chen J., et al. Variants of Unknown Significance in Genes Associated with Heritable Thoracic Aortic Disease Can Be Low Penetrant “Risk Variants.” Am J Hum Genet. 2018 Jul 5;103(1):138–43.
-
17Academic Journal
Συγγραφείς: Решетникова, Ю. Н., Пономаренко, И. В., Чурносов, В. И., Пономаренко, М. С., Решетников, Е. А.
Θεματικοί όροι: медицина, медицинская генетика, беременные, задержка роста плода, однонуклеотидный полиморфизм, матриксные металлопротеиназы, MMP-7, ассоциации, вес новорожденного
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/63262
-
18Academic Journal
Πηγή: Сучасна педіатрія. Україна; № 6(134) (2023): Сучасна педіатрія. Україна; 56-67
Modern Pediatrics. Ukraine; No. 6(134) (2023): Modern pediatrics. Ukraine; 56-67
Modern Pediatrics. Ukraine; № 6(134) (2023): Modern pediatrics. Ukraine; 56-67Θεματικοί όροι: пневмонія, дети школьного возраста, соматоформний розлад, депресія, діти шкільного віку, anxiety, тривожність, 3. Good health, однонуклеотидный полиморфизм, тревожность, children, single nucleotide polymorphism, depression, pneumonia, бронхиальная астма, bronchial asthma, somatoform disorder, соматоформное расстройство, однонуклеотидний поліморфізм, бронхіальна астма
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://mpu.med-expert.com.ua/article/view/292554
-
19Academic Journal
Συγγραφείς: Volosovets, O.P., Kryvopustov, S.P., Pavlyk, O.V., Yemets, O.V., Stroi, D.O., Dosenko, V.Ye.
Πηγή: Zdorovʹe Rebenka, Vol 11, Iss 1.69, Pp 18-24 (2016)
CHILD`S HEALTH; № 1.69 (2016); 18-24
Здоровье ребенка-Zdorovʹe rebenka; № 1.69 (2016); 18-24
Здоров'я дитини-Zdorovʹe rebenka; № 1.69 (2016); 18-24Θεματικοί όροι: single-nucleotide polymorphism, filaggrin, proteasome proteolysis, autophagy, MTOR, asthma, pediatrics, однонуклеотидный полиморфизм, филаггрин, аутофагия, протеасомный протеолиз, бронхиальная астма, педиатрия, однонуклеотидний поліморфізм, філагрин, протеасомний протеоліз, автофагія, бронхіальна астма, педіатрія, Pediatrics, RJ1-570, 3. Good health
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://childshealth.zaslavsky.com.ua/article/download/73693/69110
https://doaj.org/article/dd47cab8b68a4097a7c83f83a854e746
https://core.ac.uk/display/87785581
http://childshealth.zaslavsky.com.ua/article/download/73693/69110
http://childshealth.zaslavsky.com.ua/article/view/73693
http://childshealth.zaslavsky.com.ua/article/view/73693 -
20Academic Journal
Значення однонуклеотидного поліморфізму rs4769628 гена РОМР у розвитку атопічних захворювань у дітей
Συγγραφείς: Yemets, O.V.
Πηγή: Zdorovʹe Rebenka, Vol 11, Iss 4.72, Pp 7-12 (2016)
CHILD`S HEALTH; № 4.72 (2016); 7-12
Здоровье ребенка-Zdorovʹe rebenka; № 4.72 (2016); 7-12
Здоров'я дитини-Zdorovʹe rebenka; № 4.72 (2016); 7-12Θεματικοί όροι: 2. Zero hunger, proteasomal proteolysis, children, single-nucleotide polymorphism, POMP, atopic diseases, Pediatrics, RJ1-570, однонуклеотидный полиморфизм, протеасомный протеолиз, РОМР, атопические заболевания, дети, однонуклеотидний поліморфізм, протеасомний протеоліз, атопічні захворювання, діти, 3. Good health
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://childshealth.zaslavsky.com.ua/article/download/76583/72129
https://doaj.org/article/edaf51bd6eea40e584c27567bed67e22
https://core.ac.uk/display/87785468
http://childshealth.zaslavsky.com.ua/article/view/76583
http://childshealth.zaslavsky.com.ua/article/download/76583/72129
http://childshealth.zaslavsky.com.ua/article/view/76583