-
1Academic Journal
Συγγραφείς: Karamova Y.S., Uskach T.M., Imaev T.E., Tereshchenko S.N.
Συνεισφορές: 1
Πηγή: Almanac of Clinical Medicine; Vol 52, No 2 (2024); 77-84 ; Альманах клинической медицины; Vol 52, No 2 (2024); 77-84 ; 2587-9294 ; 2072-0505
Θεματικοί όροι: heart failure, secondary mitral regurgitation, transcatheter mitral valve repair, clipping, drug therapy, remodeling, хроническая сердечная недостаточность (ХСН), вторичная митральная регургитация, транскатетерная пластика митрального клапана, оптимальная медикаментозная терапия, обратное ремоделирование
Περιγραφή αρχείου: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17241/1657; https://almclinmed.ru/jour/article/view/17241/1662; https://almclinmed.ru/jour/article/view/17241/1667; https://almclinmed.ru/jour/article/downloadSuppFile/17241/159861; https://almclinmed.ru/jour/article/downloadSuppFile/17241/159862; https://almclinmed.ru/jour/article/downloadSuppFile/17241/159965; https://almclinmed.ru/jour/article/downloadSuppFile/17241/159966; https://almclinmed.ru/jour/article/downloadSuppFile/17241/159967; https://almclinmed.ru/jour/article/downloadSuppFile/17241/159968; https://almclinmed.ru/jour/article/view/17241
-
2Academic Journal
Συγγραφείς: D. V. Shumakov, D. I. Zybin, M. A. Popov, Д. В. Шумаков, Д. И. Зыбин, М. А. Попов
Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 11, № 4 (2019); 311-319 ; Трансплантология; Том 11, № 4 (2019); 311-319 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2019-11-4
Θεματικοί όροι: трансплантация сердца, mechanical circulatory support, myocardial remodeling, reverse myocardial remodeling, heart transplantation, механическая поддержка кровообращения, ремоделирование миокарда, обратное ремоделирование миокарда
Περιγραφή αρχείου: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/463/532; https://www.jtransplantologiya.ru/jour/article/view/463/543; Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow-up of Thoratec ventricular assist device bridge-torecovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9; Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–896. PMID: 17761592 https://doi.org/10.1056/NEJMoa067758; Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–2251. PMID: 19920051 https://doi.org/10.1056/NEJMoa0909938; Müller J, Wallukat G, Weng Y, Dandel M, Spiegelsberger S, Semrau S, et al. Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation. 1997;96(2):542–549. PMID: 9244223 https://doi.org/10.1161/01.cir.96.2.542; Hetzer R, Müller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M. Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg. 1999;68(2):742–749. PMID: 10475481 https://doi.org/10.1016/S0003-4975(99)00542-1; Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl H B, Hetzer R. Longterm results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation. 2005;112(9Suppl):37–45. PMID: 16159848 https://doi.org/10.1055/s-2005-861953; Frazier OH, Benedect CR, Radovancevic B, Bick RJ, Capek P, Springer WE, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg. 1996;62(3):675–682. PMID:8783992 https://doi.org/10.1016/S0003-4975(96)00437-7; Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57(6):641–652. PMID: 21292124 https://doi.org/10.1016/j.jacc.2010.11.010; Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, et al. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2010;29(6):603–609. PMID: 20202864 https://doi.org/10.1016/j.healun.2010.01.010; Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yamauchi T, Kuratani T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant. 2010;29(6):672–679. PMID: 20188595 https://doi.org/10.1016/j.healun.2010.01.007; Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, et al. Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant. 2010;29(5):554–561. PMID: 20044278 https://doi.org/10.1016/j.healun.2009.10.015; Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, et al. Cardiac improvement d uring mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation. 2007;115(19):2497–2505. PMID: 17485581 https://doi.org/10.1161/CIRCULATIONAHA.106.633180; Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4:425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326; Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9; Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J, et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005;112(9Suppl):132–136. PMID: 16159839 https://doi.org/10.1161/CIRCULATIONAHA.104.524124; Birks E J, Tansley P D, Hardy J, George R S, Bowles C T, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failur e. N Engl J Med. 2006;355(18):1873–1884. PMID: 17079761 https://doi.org/10.1056/NEJMoa053063; Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, et al. Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008;118(14Suppl):S94–105. PMID: 18824777 https://doi.org/10.1161/CIRCULATIONAHA.107.755983; Hetzer R, Dandel M, Knosalla C. Left ventricular assist devices and drug therapy in heart failure. N Engl J Med. 2007;356(8):869–870. PMID: 17314351 https://doi.org/10.1056/NEJMc063394; Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J. 2011;32(9):1148–1160. PMID: 20929978 https://doi.org/10.1093/eurheartj/ehq353; Dandel M, Weng Y, Siniawski H, Potapov E, Krabatsch T, Lehmkuhl HB, et al. Pre-explant stability of unloading promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation. 2012;126(11Suppl):S9–19. PMID: 22965998 https://doi.org/10.1161/CIRCULATIONAHA.111.084640; Swynghedauw B. Molecular mechanisms of myocardial remode ling. Physiol Rev. 1999;79(1):215–262. PMID: 9922372 https://doi.org/10.1152/physrev.1999.79.1.215; van Empel V, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67(1):21–29. PMID:15896727 https://doi.org/10.1016/j.cardiores.2005.04.012; van Empel V, De Windt LJ. Myocyte hypertrophy and apoptosis: a balan cing act. Cardiovasc Res. 2004;63(3):487–499. PMID: 15276474 https://doi.org/10.1016/j.cardiores.2004.02.013; Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation. 1999;100(9):999–1008. PMID: 10468532 https://doi.org/10.1161/01.cir.100.9.999; Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44(5):412–427. PMID: 151399989 https://doi.org/10.1111/j.1365-2559.2004.01835.x; Catena E, Milazzo F. Echocardiography and cardiac assist devices. Minerva Cardioangiol. 2007;55(2):247–265. PMID: 17342042; Scheinin SA, Capek P, Radovancevic B, Duncan JM, McAllister HA Jr, Frazier OH. The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J. 1992;38(3):M271–M274. PMID: 1457863 https://doi.org/10.1097/00002480-199207000-00035; Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91(11):2717–2720. PMID: 7758175 https://doi.org/10.1161/01.cir.91.11.2717; Razeghi P, Bruckner BA, Sharma S, Youker KA, Frazier OH, Taegtmeyer H. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway. Cardiology. 2003;100(1):17–22. PMID: 12975541 https://doi.org/10.1159/000072387; Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tjan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668-674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7; Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat. 1979;129(Pt3):541–559. PMID: 120352; Yacoub MH. A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery. Eur Heart J. 2001;22(7):534–540. PMID: 11259141 https://doi.org/10.1053/euhj.2001.2613; Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation. 1998;98(7):656–662. PMID: 9715858 https://doi.org/10.1161/01.cir.98.7.656; Razeghi P, Taegtmeyer H. Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci. 2006;1080:110–119. PMID: 17132779 https://doi.org/10.1196/annals.1380.011; Wohlschlaeger J, Sixt SU, Stoeppler T, Schmitz KJ, Levkau B, Tsagakis K, et al. Ventricular unloading is associated with increased 20s proteasome protein expression in the myocardium. J Heart Lung Transplant. 2010;29(1):125–132 PMID: 19837610 https://doi.org/10.1016/j.healun.2009.07.022; Soppa GK, Barton PJ, Terracciano CM, Yacoub MH. Left ventricular assist device-induced molecular changes in the failing myocardium. Curr Opin Cardiol. 2008;23(3):206–18. PMID: 18382208 https://doi.org/10.1097/HCO.0b013e3282fc7010; Terracciano CM, Hardy J, Birks EJ, Khaghani A, Banner NR, Yacoub MH. Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation. 2004;109(19):2263–2265. PMID: 15136495 https://doi.org/10.1161/01. CIR.0000129233.51320.92; Hall JL, Birks EJ, Grindle S, Cullen ME, Barton PJ, Rider JE, et al. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur Heart J. 2007;28(5):613–627. PMID: 17132651 https://doi.org/10.1093/eurheartj/ehl365; Vatta M, Stetson SJ, Perez-Verdia A, Entman ML, Noon GP, TorreAmione G, et al. Molecular remodelling of dystrophin in patients with endstage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359(9310):936–941. PMID: 11918913 https://doi.org/10.1016/S0140-6736(02)08026-1; Birks EJ, Hall JL, Barton PJ, Grindle S, Latif N, Hardy JP, et al. Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation. 2005;112(9Suppl):I57–I64. PMID: 16159866 https://doi.org/10.1161/CIRCULATIONAHA.104.526137; Latif N, Yacoub MH, George R, Barton PJR, Birks EJ. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung Transplant. 2007;26(3):230–235. PMID: 17346624 https://doi.org/10.1016/j.healun.2006.08.011; de Jonge N, van Wichen DF, Schipper ME, Lahpor JR, Gmelig- Meyling FH, Robles de Medina EO. Left ventricular assist device In end-stage heart failure: persistence of structural myocyte damage after unloa ding: Animmunohistochemical analysis of the contractile myofilaments. J Am Coll Cardiol. 2002;39(6):963–969. PMID: 11897437 https://doi.org/10.1016/S0735-1097(02)01713-8; Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326; Lee SH, Doliba N, Osbakken M, Oz M, Mancini D. Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. J Thorac Cardiovasc Surg. 1998;116(2):344–349. PMID: 9699589 https://doi.org/10.1016/S0022-5223(98)70136-9; Mital S, Loke KE, Addonizio LJ, Oz MC, Hintze TH. Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respirationin failing human hearts. J Am Coll Cardiol. 2000;36(6):1897–1902. PMID: 11092662 https://doi.org/10.1016/S0735-1097(00)00948-7; Heerdt PM, Schlame M, Jehle R, Barbone A, Burkhoff D, Blanck TJ. Diseasespecific remodeling of cardiac mitochondria after a left ventricular assist device. Ann Thorac Surg. 2002;73(4):1216–1221. PMID: 11996266 https://doi.org/10.1016/S0003-4975(01)03621-9; Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, et al. Myocardial expression of the arginine: glycineamidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation. 2006;114(1Suppl):I16–I20. PMID: 16820567 https://doi.org/10.1161/CIRCULATIONAHA.105.000448; Doenst T, Abel ED. Spotlight on metabolic remodelling in heart failure. Cardiovasc Res. 2011;90(2):191–193. PMID: 21429943 https://doi.org/10.1093/cvr/cvr077; Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, et al. Markers of autophagy are down regulated in failing human heart after mechanical unloading. Circulation. 2009;120(11Suppl):S191–S197. PMID: 19752367 https://doi.org/10.1161/CIRCULATIONAHA.108.842252; Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tijan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668–674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7; Grabellus F, Schmid C, Levkau B, Breukelmann D, Halloran PF, August C, et al. Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support. J Pathol. 2002;197(2):230–237. PMID: 12015748 https://doi.org/10.1002/path.1106; Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56(5):382–391. PMID: 20650360 https://doi.org/10.1016/j.jacc.2010.04.019; Manginas A, Tsiavou A, Sfyrakis P, Giamouzis G, Tsourelis L, Leontiadis E, et al. Increased number of circulating progenitor cells after implantation of ventricular assist devices. J Heart Lung Transplant. 2009;28(7):710–717. PMID: 19560700 https://doi.org/10.1016/j.healun.2009.04.006; Wohlschlaeger J, Levkau B, Brockoff G, Schmitz K J, von Winterfeld M, Takeda A, et al. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation. 2010;121(8):989–996. PMID: 20159834 https://doi.org/10.1161/CIRCULATIONAHA.108.808071; Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation. 2005;112(3):364–374. PMID: 15998679 https://doi.org/10.1161/CIRCULATIONAHA.104.515106; Blaxall BC, Tschannen-Moran BM, Milano CA, Koch WJ. Differential gene expression and genomic patient stratification following left ventricular assist device support. J Am Coll Cardiol. 2003;41(7):1096–1106. PMID: 12679207 https://doi.org/10.1016/S0735-1097(03)00043-3; Margulies KB, Matiwala S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failin g and recovering human myocardium. Circ Res. 2005;96(5):592–599. PMID: 15718504 https://doi.org/10.1161/01.RES.0000159390.03503.c3; Matkovich SJ, VanBooven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regu lation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–1271. PMID:19237659 https://doi.org/10.1161/CIRCULATIONAHA.108.813576; de Weger RA, Schipper ME, Sierade Koning E, van der Weide P, Quadir R, Lahpor JR, et al. Proteomic profiling of the human failing heart after left ventricular assist device support. J Heart Lung Transplant. 2011;30(5):497–506. PMID: 21211997 https://doi.org/10.1016/j.healun.2010.11.011; Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, et al. A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol. 2011;58(22):2270–2278. PMID: 22093502 https://doi.org/10.1016/j.jacc.2011.08.041; Bruggink AH, de Jonge N, van Oosterhout MF, van Wichen DF, de Ko ning E, Lahpor JR, et al. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2006;25(2):174–180. PMID: 16446217 https://doi.org/10.1016/j.healun.2005.09.007; Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, et al. Decreased expression of tumor necrosis factor-α in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation. 1999;100(11):1189–1193. PMID: 10484539 https://doi.org/10.1161/01.cir.100.11.1189; Hall JL, Grindle S, Han X, Fermin D, Park S, Chen Y, et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics. 2004;17(3):283–291. PMID: 14872006 https://doi.org/10.1152/physiolgenomics.00004.2004; James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, et al. Effect of implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation. 1995;92(9Suppl):II191–II195. PMID: 7586406 https://doi.org/10.1161/01.CIR.92.9.191; Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3(1):64–70. PMID: 20129533 https://doi.org/10.1016/j.jcmg.2009.10.008; Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–2849. PMID: 15927992 https://doi.org/10.1161/CIRCULATIONAHA.104.500546; Mann DL, Burkhoff D. Myocardial expression levels of micro-ribonucleic acids in patients with left ventricular assist devices signature of myocardial recovery, signature of reverse remodeling, or signature with no name? J Am Coll Cardiol. 2011;58(22):2279–81. PMID: 22093503 https://doi.org/10.1016/j.jacc.2011.09.007; Koitabashi N, Kass DA. Reverse remodeling in heart failure-mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2011;9(3):147–157. PMID: 22143079 https://doi.org/10.1038/nrcardio.2011.172; Drakos SG, Kfoury AG, Selzman CH, Verma DR, Nanas JN, Li DY, et al. Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol. 2011;26(3):245–255. PMID: 21451407 https://doi.org/10.1097/HCO.0b013e328345af13; https://www.jtransplantologiya.ru/jour/article/view/463
-
3Academic Journal
Συγγραφείς: M. A. Ovcharov, A. V. Bogachev-Prokofiev, D. A. Astapov, A. N. Pivkin, K. S. Malozemov, T. N. Podsosnikova, O. Yu. Malakhova, A. M. Karaskov, М. А. Овчаров, А. В. Богачев-Прокофьев, Д. А. Астапов, А. Н. Пивкин, К. С. Малоземов, Т. Н. Подсосникова, О. Ю. Малахова, А. М. Караськов
Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 34, № 2 (2019); 89-98 ; Сибирский журнал клинической и экспериментальной медицины; Том 34, № 2 (2019); 89-98 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2019-34-2
Θεματικοί όροι: трикуспидальная недостаточность, tricuspid valve annuloplasty, reverse remodeling, tricuspid insufficiency, пластика трикуспидального клапана, обратное ремоделирование
Περιγραφή αρχείου: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/766/453; Varadarajan P., Pai R.G. Tricuspid regurgitation in patients with severe mitral regurgitation and normal left ventricular ejection fraction: risk factors and prognostic implications in a cohort of 895 patients. J. Heart Valve Dis. 2010;19(4):412–419.; Goldstone A.B., Howard J.L., Cohen J.E., MacArthur Jr J.W., Atluri P., Kirkpatrick J.N., et al. Natural history of coexistent tricuspid regurgitation in patients with degenerative mitral valve disease: implications for future guidelines. J. Thorac. Cardiovasc. Surg. 2014;148(6):2802–2810. DOI:10.1016/j.jtcvs.2014.08.001.; Nishimura R.A., Otto C.M., Bonow R.O., Carabello B.A., Erwin J.P., Guyton R.A., et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014 Jun. 10;129(23):2440–2492. DOI:10.1161/CIR.0000000000000029.; Topilsky Y., Tribouilloy C., Michelena H.I., Pislaru S., Mahoney D.W., Enriquez-Sarano M. Pathophysiology of tricuspid regurgitation: quantitative Doppler echocardiographic assessment of respiratory dependence.Circulation. 2010;122(15):1505–1513. DOI:10.1161/CIRCULATIONAHA.110.941310.; Koelling T.M., Aaronson K.D., Cody R.J., Bach D.S., Armstrong W.F. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am. Heart J. 2002;144(3):524–529.; Nath J., Foster E., Heidenreich P.A. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 2004 Feb. 1;43(3):405–409. DOI:10.1016/j.jacc.2003.09.036.; Huang X., Gu C., Men X., Zhang J., You B., Zhang, H., et al. Repair of functional tricuspid regurgitation: comparison between suture annuloplasty and rings annuloplasty. Ann. Thorac. Surg. 2014 Apr.;97(4):1286–1292. DOI:10.1016/j.athoracsur.2013.10.037.; Wang N., Phan S., Tian D.H., Yan T.D., Phan K. Flexible band versus rigid ring annuloplasty for tricuspid regurgitation: a systematic review and meta-analysis. Annals of Cardiothoracic Surgery. 2017;6(3):194–203.; Овчаров М.А., Богачев-Прокофьев А.В., Пивкин А.Н., Будагаев С.А. Афанасьев А.В., Шарифулин Р.М., и др. Сравнение жестких колец и гибких бэндов в коррекции сопутствующей недостаточности трикуспидального клапана у пациентов, перенесших операцию на митральном клапана. Кардиология и сердечно-сосудистая хирургия. 2019;12(2):122–131; Miller D., Farah M.G., Liner A., Fox K., Schluchter M., Hoit B.D. The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance. J. Am. Soc. Echocardiogr. 2004;17(5):443–447. DOI:10.1016/j.echo.2004.01.010.; Maffessanti F., Muraru D., Esposito R., Gripari P., Ermacora D., Santoro C., et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circulation: Cardiovascular Imaging. 2013 Jun.;6(5):700–710. DOI:10.1161/CIRCIMAGING.113.000706.; Lancellotti P., Moura L., Pierard L.A., Agricola E., Popescu B.A., Tribouilloy C.; European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). European Journal of Echocardiography. 2010;11(4):307–332. DOI:10.1093/ejechocard/jeq031.; McCarthy P.M., Bhudia S.K., Rajeswaran J., Hoercher K.J., Lytle B.W., Cosgrove D.M., et al. Tricuspid valve repair: durability and risk factors for failure. J. Thorac. Cardiovasc. Surg. 2004;127(3):674–685. DOI:10.1016/j.jtcvs.2003.11.019.; Tang G.H., David T.E., Singh S.K., Maganti M.D., Armstrong S., Borger M.A. Tricuspid valve repair with an annuloplasty ring results in improved long-term outcomes. Circulation. 2006;114(1 Suppl.):577–581. DOI:10.1161/CIRCULATIONAHA.105.001263.; Gatti G., Marciano F., Antonini-Canterin F., Pinamonti B., Benussi B., Pappalardo A., et al. Tricuspid valve annuloplasty with a flexible prosthetic band. Interactive Cardiovascular and Thoracic Surgery. 2007;6(6):731–735. DOI:10.1510/icvts.2007.156786.; Izutani H., Nakamura T., Kawachi K. Flexible band versus rigid ring annuloplasty for functional tricuspid regurgitation. Heart International. 2010 Dec. 31;5(2):e13. DOI:10.4081/hi.2010.e13.; Sagie A., Schwammenthal E., Padial L.R., de Prada J.A.V., Weyman A.E., Levine R. A determinants of functional tricuspid regurgitation in incomplete tricuspid valve closure: Doppler color flow study of 109 patients. J. Am. Coll. Cardiol. 1994;24(2):446–453.; Fukuda S., Song J.M., Gillinov A.M., McCarthy P.M., Daimon M., Kongsaerepong V. et al. Tricuspid valve tethering predicts residual tricuspid regurgitation after tricuspid annuloplasty. Circulation. 2005 Feb. 14;111(8):975–979. DOI:10.1161/01.CIR.0000156449.49998.51.; Wang H., Liu X., Wang X., Lv Z., Liu X., Xu P. Comparison of outcomes of tricuspid annuloplasty with 3D-rigid versus flexible prosthetic ring for functional tricuspid regurgitation secondary to rheumatic mitral valve disease. Journal of Thoracic Disease. 2016;8(11):3087–3095. DOI:10.21037/jtd.2016.11.97.; Pfannmüller B., Doenst T., Eberhardt K., Seeburger J., Borger M.A., Mohr F.W. Increased risk of dehiscence after tricuspid valve repair with rigid annuloplasty rings. J. Thorac. Cardiovasc. Surg. 2012;143(5):1050–1055. DOI:10.1016/j.jtcvs.2011.06.019.; Zhu T.Y., Wang J.G., Meng X. Is a rigid tricuspid annuloplasty ring superior to a flexible band when correcting secondary tricuspid regurgitation? Interactive Cardiovascular and Thoracic Surgery. 2013;17(6):1009–1014.; Navia J.L., Nowicki E.R., Blackstone E.H., Brozzi N.A., Nento D.E., Atik F.A., et al. Surgical management of secondary tricuspid valve regurgitation: annulus, commissure, or leaflet procedure? J. Thorac. Cardiovasc. Surg. 2010;139(6):1473–1482. DOI:10.1016/j.jtcvs.2010.02.046.; Gatti G., Dell’Angela L., Morosin M., Maschietto L., Pinamonti B., Benussi B. et al. Flexible band versus rigid ring annuloplasty for functional tricuspid regurgitation: two different patterns of right heart reverse remodelling. Interactive Cardiovascular and Thoracic Surgery. 2016 Jul.;23(1):79–89. DOI:10.1093/icvts/ivw047.; Anwar A.M., Geleijnse M.L., ten Cate F.J., Meijboom F.J. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interactive Cardiovascular and Thoracic Surgery. 2006 Dec. 1;5(6):683–687. DOI:10.1510/icvts.2006.132381.; Fukuda S., Gillinov A.M., Song J.M., Daimon M., Kongsaerepong V., Thomas J.D., et al. Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation. Am. Heart J. 2006;152(6):1208–1214. DOI:10.1016/j.ahj.2006.07.027.; Benedetto U., Melina G., Angeloni E., Refice S., Roscitano A., Comito C., et al. Prophylactic tricuspid annuloplasty in patients with dilated tricuspid annulus undergoing mitral valve surgery. J. Thorac. Cardiovasc. Surg. 2012 Mar.;143(3):632–638. DOI:10.1016/j.jtcvs.2011.12.006.; https://www.sibjcem.ru/jour/article/view/766
-
4Academic Journal
Συγγραφείς: Ревишвили, А., Ступаков, Сергей
Θεματικοί όροι: СЕРДЕЧНАЯ РЕСИНХРОНИЗИРУЮЩАЯ ТЕРАПИЯ, ОБРАТНОЕ РЕМОДЕЛИРОВАНИЕ ЛЖ, УЛУЧШЕНИЕ КЛИНИЧЕСКОГО СТАТУСА ПАЦИЕНТА
Περιγραφή αρχείου: text/html
-
5Academic Journal
Πηγή: Российский медицинский журнал.
Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, СЕРДЕЧНАЯ РЕСИНХРОНИЗИРУЮЩАЯ ТЕРАПИЯ, ОБРАТНОЕ РЕМОДЕЛИРОВАНИЕ ЛЖ, УЛУЧШЕНИЕ КЛИНИЧЕСКОГО СТАТУСА ПАЦИЕНТА
Περιγραφή αρχείου: text/html
-
6
-
7Report
Θεματικοί όροι: ГИПЕРТРОФИЧЕСКАЯ КАРДИОМИОПАТИЯ, НЕКОМПАКТНЫЙ МИОКАРД, EXTRACORPOREAL ARTIFICIAL VENTRICLE, ОБРАТНОЕ РЕМОДЕЛИРОВАНИЕ СЕРДЦА, КЛАПАННАЯ ДИСПЛАЗИЯ, HYPERTROPHIC CARDIOMYOPATHY, LEFT VENTRICULAR NON-COMPACTION, ДИЛАТАЦИОННАЯ КАРДИОМИОПАТИЯ, VALVULAR DYSPLASIA, REVERSE CARDIAC REMODELING, DILATED CARDIOMYOPATHY, 3. Good health, ИСКУССТВЕННЫЙ ЭКСТРАКОРПОРАЛЬНЫЙ ЖЕЛУДОЧЕК
-
8Academic Journal
Συγγραφείς: Терещенко А.С., Желяков Е.Г., Меркулов Е.В., Пузенко Д.В., Струнин О.В., Ардашев А.В.
Πηγή: Евразийский кардиологический журнал
Θεματικοί όροι: open oval window, atrial fibrillation, endovascular occlusion of the open oval window, primary prevention of strokes, Reverse atrial remodeling, radiofrequency ablation, heart failure, case report, открытое овальное окно, фибрилляция предсердий, эндоваскулярная окклюзия открытого овального окна, первичная профилактика инсультов, обратное ремоделирование предсердий, радиочастотная абляция, сердечная недостаточность, клинический случай
Διαθεσιμότητα: https://repository.rudn.ru/records/article/record/111066/