Εμφανίζονται 1 - 20 Αποτελέσματα από 3.059 για την αναζήτηση '"новообразования"', χρόνος αναζήτησης: 1,04δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Θέμα γεωγραφικό: USPU

    Relation: Специальное образование. 2022. № 1 (65)

    Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/51204

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2483/1340; Чернобровкина А.Е. Заболеваемость злокачественными новообразованиями женской половой сферы населения Санкт-Петербурга. Здоровье населения и среда обитания – ЗНиСО. 2022;30(1):29–35. https://doi.org/10.35627/2219-5238/2022-30-1-29-35.; Sung H., Ferlay J., Siegel R.L.et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.; Song Y., Zhang Y. Research progress of neoantigens in gynecologic cancers. Int Immunopharmacol. 2022;112:109236. https://doi.org/10.1016/j.intimp.2022.109236.; Peng H., He X., Wang Q. Immune checkpoint blockades in gynecological cancers: a review of clinical trials. Acta Obstet Gynecol Scand. 2022;101(9):941–51. https://doi.org/10.1111/aogs.14412.; Шубникова Е.В., Букатина Т.М., Вельц Н.Ю.и др. Ингибиторы контрольных точек иммунного ответа: новые риски нового класса противоопухолевых средств. Безопасность и риск фармакотерапии. 2020;8(1):9–22. https://doi.org/10.30895/2312-7821-2020-8-1-9-22.; Гаптулбарова К.А., Цыганов М.М., Ибрагимова М.К. и др. Эффективность иммунотерапии при разных злокачественных новообразованиях: обзор литературы. Успехи молекулярной онкологии. 2021;8(4):8–20. https://doi.org/10.17650/2313-805X-2021-8-4-8-20.; Petitprez F., Meylan M., de Reyniès A. et al. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol. 2020;11:784. https://doi.org/10.3389/fimmu.2020.00784.; Drakes M.L., Czerlanis C.M., Stiff P.J. Immune ccheckpoint blockade in gynecologic cancers: state of affairs. Cancers (Basel). 2020;12(11):3301. https://doi.org/10.3390/cancers12113301.; Мустафина Д.А., Багаутдинова А.Н., Зинатуллина М.М. и др. Роль ингибиторов иммунных контрольных точек в развитии и лечении инфекционных процессов. Клиническая практика. 2024;15(1):91–106. https://doi.org/10.17816/clinpract627504.; Chauvin J.M., Zarour H.M. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020;8(2):e000957. https://doi.org/10.1136/jitc-2020-000957.; Tang W., Chen J., Ji T., Cong X. TIGIT, a novel immune checkpoint therapy for melanoma. Cell Death Dis. 2023;14(7):466. https://doi.org/10.1038/s41419-023-05961-3.; Yu X., Harden K., Gonzalez L.C. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57. https://doi.org/10.1038/ni.1674.; Chiang E.Y., Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer. 2022;10(4):e004711. https://doi.org/10.1136/jitc-2022-004711.; Stengel K.F., Harden-Bowles K., Yu X. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A. 2012;109(14):5399–404. https://doi.org/10.1073/pnas.1120606109.; Manieri N.A., Chiang E.Y., Grogan J.L. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 2017;38(1):20–8. https://doi.org/10.1016/j.it.2016.10.002.; Reches A., Ophir Y., Stein N. et al. Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity. J Immunother Cancer. 2020;8(1):e000266. https://doi.org/10.1136/jitc-2019-000266.; Gur C., Ibrahim Y., Isaacson B. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55. https://doi.org/10.1016/j.immuni.2015.01.010.; Zhou R., Chen S., Wu Q. et al. CD155 and its receptors in cancer immune escape and immunotherapy. Cancer Lett. 2023;573:216381. https://doi.org/10.1016/j.canlet.2023.216381.; Jin H.S., Park Y. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy. BMB Rep. 2021;54(1):2–11. https://doi.org/10.5483/BMBRep.2021.54.1.229.; Zeng T., Cao Y., Jin T. et al. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. J Exp Clin Cancer Res. 2021;40(1):285. https://doi.org/10.1186/s13046-021-02053-y.; Son Y., Lee B., Choi Y.J. et al. Nectin-2 (CD112) is expressed on outgrowth endothelial cells and regulates cell proliferation and angiogenic function. PLoS One. 2016;11(9):e0163301. https://doi.org/10.1371/journal.pone.0163301.; Deuss F.A., Gully B.S., Rossjohn J., Berry R. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem. 2017;292(27):11413–22. https://doi.org/10.1074/jbc.M117.786483.; Wu B., Zhong C., Lang Q. et al. Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy. J Exp Clin Cancer Res. 2021;40(1):267. https://doi.org/10.1186/s13046-021-02068-5.; Yue C., Gao S., Li S. et al. TIGIT as a promising therapeutic target in autoimmune diseases. Front Immunol. 2022;13:911919. https://doi.org/10.3389/fimmu.2022.911919.; Bouleftour W., Guillot A., Magne N. The anti-nectin 4: a promising tumor cells target. A systematic review. Mol Cancer Ther. 2022;21(4):493–501. https://doi.org/10.1158/1535-7163.MCT-21-0846.; Braun M., Aguilera A.R., Sundarrajan A. et al. CD155 on tumor cells drives resistance to immunotherapy by Inducing the degradation of the activating receptor CD226 in CD8+ T cells. Immunity. 2020;53(4):805–823.e15. https://doi.org/10.1016/j.immuni.2020.09.010.; Viot J., Abdeljaoued S., Vienot A. et al. CD8+ CD226high T cells in liver metastases dictate the prognosis of colorectal cancer patients treated with chemotherapy and radical surgery. Cell Mol Immunol. 2023;20(4):365–78. https://doi.org/10.1038/s41423-023-00978-2.; Weulersse M., Asrir A., Pichler A.C. et al. Eomes-dependent loss of the co-activating receptor CD226 restrains CD8+ T cell aAnti-tumor functions and limits the efficacy of cancer immunotherapy. Immunity. 2020;53(4):824-839.e10. https://doi.org/10.1016/j.immuni.2020.09.006.; Shibuya A., Shibuya K. DNAM-1 versus TIGIT: competitive roles in tumor immunity and inflammatory responses. Int Immunol. 2021;33(12):687–92. https://doi.org/10.1093/intimm/dxab085.; Stanietsky N., Simic H., Arapovic J. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A. 2009;106(42):17858–63. https://doi.org/10.1073/pnas.0903474106.; Johnston R.J., Comps-Agrar L., Hackney J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–37. https://doi.org/10.1016/j.ccell.2014.10.018.; Banta K.L., Xu X., Chitre A.S. et al. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses. Immunity. 2022;55(3):512–26. https://doi.org/10.1016/j.immuni.2022.02.005.; Feng S, Isayev O, Werner J, Bazhin AV. CD96 as a potential immune regulator in cancers. Int J Mol Sci. 2023;24(2):1303. https://doi.org/10.3390/ijms24021303.; Georgiev H., Ravens I., Papadogianni G., Bernhardt G. Coming of age: CD96 emerges as modulator of immune responses. Front Immunol. 2018;9:1072. https://doi.org/10.3389/fimmu.2018.01072.; Chiang E.Y., de Almeida P.E., de Almeida Nagata D.E. et al. CD96 functions as a co-stimulatory receptor to enhance CD8+ T cell activation and effector responses. Eur J Immunol. 2020;50(6):891–902. https://doi.org/10.1002/eji.201948405.; Zhu Y., Paniccia A., Schulick A.C. et al. Identification of CD112R as a novel checkpoint for human T cells. J Exp Med. 2016;213(2):167–76. https://doi.org/10.1084/jem.20150785.; Whelan S., Ophir E., Kotturi M.F. et al. PVRIG and PVRL2 are induced in cancer and inhibit CD8+ T-cell function. Cancer Immunol Res. 2019;7(2):257–68. https://doi.org/10.1158/2326-6066.CIR-18-0442.; Chu X., Tian W., Wang Z. et al. Correction: co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: mechanisms and clinical trials. Mol Cancer. 2023;22(1):101. https://doi.org/10.1186/s12943-023-01812-z.; Paijens S.T., Vledder A., de Bruyn M., Nijman H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18(4):842–59. https://doi.org/10.1038/s41423-020-00565-9.; Liu S., Zhang H., Li M. et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 2013;20(3):456–64. https://doi.org/10.1038/cdd.2012.141.; Li M., Xia P., Du Y. et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J Biol Chem. 2014;289(25):17647–57. https://doi.org/10.1074/jbc.M114.572420.; Kumar S. Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology. 2018;154(3):383–93. https://doi.org/10.1111/imm.12921.; Joller N., Hafler J.P., Brynedal B. et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol. 2011;186(3):1338–42. https://doi.org/10.4049/jimmunol.1003081.; He W., Zhang H., Han F. et al. CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 2017;77(22):6375–88. https://doi.org/10.1158/0008-5472.CAN-17-0381.; Li J., Zhou J., Huang H. et al. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): aA novel population in the tumour microenvironment and immunotherapy target. Clin Transl Med. 2023;13(2):e1199. https://doi.org/10.1002/ctm2.1199.; Saraiva M., Vieira P., O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):e20190418. https://doi.org/10.1084/jem.20190418.; Lucca L.E., Dominguez-Villar M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol. 2020;20(11):680–93. https://doi.org/10.1038/s41577-020-0296-3.; Cortez J.T., Montauti E., Shifrut E. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature. 2020;582(7812):416–20. https://doi.org/10.1038/s41586-020-2246-4.; Zhang Y., Maksimovic J., Naselli G. et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood. 2013;122(16):2823–36. https://doi.org/10.1182/blood-2013-02-481788.; Joller N., Lozano E., Burkett P.R. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40(4):569–81. https://doi.org/10.1016/j.immuni.2014.02.012.; Lucca L.E., Axisa P.P., Singer E.R. et al. TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight. 2019;4(3):e124427. https://doi.org/10.1172/jci.insight.124427.; Preillon J., Cuende J., Rabolli V. et al. Restoration of T-cell effector function, depletion of Tregs, and direct killing of tumor cells: the multiple mechanisms of action of a-TIGIT antagonist antibodies. Mol Cancer Ther. 2021;20(1):121–31. https://doi.org/10.1158/1535-7163.MCT-20-0464.; Jayasingam S.D., Citartan M., Thang T.H. et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol. 2020;9:1512. https://doi.org/10.3389/fonc.2019.01512.; Brauneck F., Fischer B., Witt M. et al. TIGIT blockade repolarizes AML-associated TIGIT+ M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis. J Immunother Cancer. 2022;10(12):e004794. https://doi.org/10.1136/jitc-2022-004794.; Noguchi Y., Maeda A., Lo P.C. et al. Human TIGIT on porcine aortic endothelial cells suppresses xenogeneic macrophage-mediated cytotoxicity. Immunobiology. 2019;224(5):605–13. https://doi.org/10.1016/j.imbio.2019.07.008.; Mao L., Xiao Y., Yang Q.C. et al. TIGIT/CD155 blockade enhances anti-PD-L1 therapy in head and neck squamous cell carcinoma by targeting myeloid-derived suppressor cells. Oral Oncol. 2021;121:105472. https://doi.org/10.1016/j.oraloncology.2021.105472.; Sarhan D., Cichocki F., Zhang B. et al. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res. 2016;76(19):5696–706. https://doi.org/10.1158/0008-5472.CAN-16-0839.; Zou Y., Xu Y., Chen X., Zheng L. Advances in the application of immune checkpoint inhibitors in gynecological tumors. Int Immunopharmacol. 2023;117:109774. https://doi.org/10.1016/j.intimp.2023.109774.; Sharma P., Goswami S., Raychaudhuri D. et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69. https://doi.org/10.1016/j.cell.2023.03.006.; Востров А.Н., Казакевич В.И., Митина Л.А. и др. Ошибки эхографии в диагностике распространенности рака яичников. Архив акушерства и гинекологии имени В.Ф. Снегирева. 2017;4(1):40–4. https://doi.org/10.18821/2313-8726-2017-4-1-40-44.; Lheureux S., Gourley C., Vergote I., Oza A.M. Epithelial ovarian cancer. Lancet. 2019;393(10177):1240–53. https://doi.org/10.1016/S0140-6736(18)32552-2.; Pawłowska A., Skiba W., Suszczyk D. et al. The dual blockade of the TIGIT and PD-1/PD-L1 pathway as a new hope for ovarian cancer patients. Cancers (Basel). 2022;14(23):5757. https://doi.org/10.3390/cancers14235757.; Pawłowska A., Rekowska A., Kuryło W. et al. Current understanding on why ovarian cancer is resistant to immune checkpoint inhibitors. Int J Mol Sci. 2023;24(13):10859. https://doi.org/10.3390/ijms241310859.; Maas R.J., Hoogstad-van Evert J.S., Van der Meer J.M. et al. TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology. 2020;9(1):1843247. https://doi.org/10.1080/2162402X.2020.1843247.; Maiorano B.A., Maiorano M.F.P., Lorusso D., Maiello E. Ovarian cancer in the era of immune checkpoint inhibitors: state of the art and future perspectives. Cancers (Basel). 2021;13(17):4438. https://doi.org/10.3390/cancers13174438.; Howitt B.E., Strickland K.C., Sholl L.M. et al. Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology. 2017;6(2):e1277308. https://doi.org/10.1080/2162402X.2016.1277308.; Yang B., Li X., Zhang W. et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med. 2022;3(12):100856. https://doi.org/10.1016/j.xcrm.2022.100856.; Chen F., Xu Y., Chen Y., Shan S. TIGIT enhances CD4+ regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med. 2020;9(10):3584–91. https://doi.org/10.1002/cam4.2976.; Xu J., Fang Y., Chen K. et al. Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer. Clin Cancer Res. 2022;28(16):3590–602. https://doi.org/10.1158/1078-0432.CCR-22-0296.; Smazynski J., Hamilton P.T., Thornton S. et al. The immune suppressive factors CD155 and PD-L1 show contrasting expression patterns and immune correlates in ovarian and other cancers. Gynecol Oncol. 2020;158(1):167–77. https://doi.org/10.1016/j.ygyno.2020.04.689.; Laumont C.M., Wouters M.C.A., Smazynski J. et al. Single-cell profiles and prognostic impact of tumor-infiltrating lymphocytes coexpressing CD39, CD103, and PD-1 in ovarian cancer. Clin Cancer Res. 2021;27(14):4089–100. https://doi.org/10.1158/1078-0432.CCR-20-4394.; Brenna E., Pedroza-Pacheco I. Harnessing CXCL13 in ovarian cancer. Nat Rev Immunol. 2022;22(3):145. https://doi.org/10.1038/s41577-022-00683-7.; Ozmadenci D., Shankara Narayanan J.S., Andrew J. et al. Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proc Natl Acad Sci U S A. 2022;119(17):e2117065119. https://doi.org/10.1073/pnas.2117065119.; Кулиева Г.З., Мкртчян Л.С., Крикунова Л.И. и др. Эпидемиологические аспекты заболеваемости раком шейки матки и смертности от него (обзор литературы). Опухоли женской репродуктивной системы. 2023;19(3):77–84. https://doi.org/10.17650/1994-4098-2023-19-3-77-84.; Gennigens C., Jerusalem G., Lapaille L. et al. Recurrent or primary metastatic cervical cancer: current and future treatments. ESMO Open. 2022;7(5):100579. https://doi.org/10.1016/j.esmoop.2022.100579.; Пивазян Л.Г., Унанян А.Л., Давыдова Ю.Д. и др. Профилактика и скрининг рака шейки матки: обзор международных клинических рекомендаций. Проблемы репродукции. 2022;28(5):90–9.; Liu Y., Wu L., Tong R. et al. PD-1/PD-L1 inhibitors in cervical cancer. Front Pharmacol. 2019;10:65. https://doi.org/10.3389/fphar.2019.00065.; Feng Y.C., Ji W.L., Yue N. et al. The relationship between the PD-1/PD-L1 pathway and DNA mismatch repair in cervical cancer and its clinical significance. Cancer Manag Res. 2018;10:105–13. https://doi.org/10.2147/CMAR.S152232.; Li C., Cang W., Gu Y. et al. The anti-PD-1 era of cervical cancer: achievement, opportunity, and challenge. Front Immunol. 2023;14:1195476. https://doi.org/10.3389/fimmu.2023.1195476.; Liu L., Wang A., Liu X. et al. Blocking TIGIT/CD155 signalling reverses CD8+ T cell exhaustion and enhances the antitumor activity in cervical cancer. J Transl Med. 2022;20(1):280. https://doi.org/10.1186/s12967-022-03480.; Wang Y., Wang C., Qiu J. et al. Targeting CD96 overcomes PD-1 blockade resistance by enhancing CD8+ TIL function in cervical cancer. J Immunother Cancer. 2022;10(3):e003667. https://doi.org/10.1136/jitc-2021-003667.; Kalampokas E., Giannis G., Kalampokas T. et al. Current approaches to the management of patients with endometrial cancer. Cancers (Basel). 2022;14(18):4500. https://doi.org/10.3390/cancers14184500.; Jamieson A., Bosse T., McAlpine J.N. The emerging role of molecular pathology in directing the systemic treatment of endometrial cancer. Ther Adv Med Oncol. 2021;13:17588359211035959. https://doi.org/10.1177/17588359211035959.; Rizzo A. Immune checkpoint inhibitors and mismatch repair status in advanced endometrial cancer: elective affinities. J Clin Med. 2022;11(13):3912. https://doi.org/10.3390/jcm11133912.; Cancer Genome Atlas Research Network; Kandoth C., Schultz N. et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.; Mullen M.M., Mutch D.G. Endometrial tumor immune response: predictive biomarker of response to immunotherapy. Clin Cancer Res. 2019;25(8):2366–8. https://doi.org/10.1158/1078-0432.CCR-18-4122.; Gargiulo P., Della Pepa C., Berardi S. et al. Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated endometrial cancers: nNew candidates for checkpoint blockade immunotherapy? Cancer Treat Rev. 2016;48:61–8. https://doi.org/10.1016/j.ctrv.2016.06.008.; Degos C., Heinemann M., Barrou J. et al. Endometrial tumor microenvironment alters human NK cell recruitment, and resident NK cell phenotype and function. Front Immunol. 2019;10:877. https://doi.org/10.3389/fimmu.2019.00877.; Jiang F., Mao M., Jiang S. et al. PD-1 and TIGIT coexpressing CD8 + CD103 + tissue-resident memory cells in endometrial cancer as potential targets for immunotherapy. Int Immunopharmacol. 2024;127:111381. https://doi.org/10.1016/j.intimp.2023.111381.; Kim T.W., Bedard P.L., LoRusso P. et al. Anti-TIGIT antibody tiragolumab alone or with atezolizumab in patients with advanced solid tumors: a phase 1a/1b nonrandomized controlled trial. JAMA Oncol. 2023;9(11):1574–82. https://doi.org/10.1001/jamaoncol.2023.3867.; Cho B.C., Abreu D.R., Hussein M. et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022;23(6):781–92. https://doi.org/10.1016/S1470-2045(22)00226-1.; https://www.gynecology.su/jour/article/view/2483