Showing 1 - 20 results of 242 for search '"нефротический синдром"', query time: 0.92s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 5 (2025); 137-143 ; Российский вестник перинатологии и педиатрии; Том 70, № 5 (2025); 137-143 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2266/1636; Noone DG., Iijima K., Parekh R. Idiopathic nephrotic syndrome in children. Lancet 2018; 392: 61–74. DOI:10.1016/S0140-6736(18)30536-1; Tullus K., Webb H., Bagga A. Management of steroidresistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health 2018; 2: 880–890. DOI:10.1016/S2352-4642(18)30283-9; Tarshish P., Tobin JN., Bernstein J., Edelmann CM. Jr. Prognostic significance of the early course of minimal change nephrotic syndrome: report of the International Study of Kidney Disease in Children. J Am Soc Nephrol 1997; 8: 769–776. DOI:10.1681/ASN.V85769; Carter SA., Mistry S., Fitzpatrick J., Banh T., Hebert D., Langlois V. et al. Prediction of short- and long-term outcomes in childhood nephrotic syndrome. Kidney Int Rep 2020; 5: 426–434. DOI:10.1016/j.ekir.2019.12.015; Arbeitsgemeinschaft für Pädiatrische Nephrologie (APN). Effect of cytotoxic drugs in frequently relapsing nephrotic syndrome with and without steroid dependence. N Engl J Med 1982; 306: 451–454. DOI:10.1056/NEJM198202253060803; Rüth E.M., Kemper M.J., Leumann E.P., Laube G.F., Neuhaus T.J. Children with steroid-sensitive nephrotic syndrome come of age: long-term outcome. J Pediatr 2005; 147: 202–207. DOI:10.1016/j.jpeds.2005.03.050; Korsgaard T., Andersen RF., Joshi S., Hagstrom S., Rittig S. Childhood onset steroid-sensitive nephrotic syndrome continues into adulthood. Pediatr Nephrol 2019; 34: 641–648. DOI:10.1007/s00467-018-4119-8; Marchel D.M., Gipson D.S. Adult survivors of idiopathic childhood onset nephrotic syndrome. Pediatr Nephrol 2021; 36: 1731–1737. DOI:10.1007/s00467-020-04773-3; Vivarelli M., Massella L., Ruggiero B., Emma F. Minimal Change Disease. Clin J Am Soc Nephrol 2017; 12: 332–345. DOI:10.2215/CJN.05000516; Rovin B.H., Adler S.G., Barratt J., Bridoux F., Burdge K.A., Chan T.M. et al. Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int 2021; 100: 753–779. DOI:10.1016/j.kint.2021.05.015; Trautmann A., Boyer O., Hodson E., Bagga A., Gipson Debbie S., Samue S., еt al. on behalf of the International Pediatric Nephrology Association. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatric Nephrology 2023; 38: 877–919. DOI.org/10.1007/s00467–022–05739–3; Hahn D., Samuel S.M., Willis N.S., Craig J.C., Hobson E.M. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev. 2020; 2020; 8: CD001533. DOI:10.1002/14651858.CD001533.pub6; Gellermann J., Querfeld U. Frequently relapsing nephrotic syndrome: treatment with mycophenolate mofetil. Pediatr Nephrol 2004; 19: 101–104. DOI:10.1007/s00467-003-1300-4; Larkins N.G., Liu I.D., Willis N.S., Craig J.C., Hodson E.M. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children. Cochrane Database Syst Rev. 2020; 4:CD002290. DOI:10.1002/14651858.CD002290.pub5; Latta K., von Schnakenburg C., Ehrich J.H. A meta-analysis of cytotoxic treatment for frequently relapsing nephritic syndrome in children. Pediatr Nephrol 2001; 16: 271–282. DOI:10.1007/s004670000523; Webb N.J.A., Woolley R.L., Lambe T., Frew E., Brettell E.A., Barsoum E.N. et al. Long term tapering versus standard prednisolone treatment for first episode of childhood nephrotic syndrome: phase III randomised controlled trial and economic evaluation. BMJ 2019; 365:l1800. DOI:10.1136/bmj.l1800; Basu B., Babu B.G., Mahapatra T.K. Long-term efficacy and safety of common steroid-sparing agents in idiopathic nephrotic children. Clin Exp Nephrol 2017; 21: 143–151. DOI:10.1007/s10157-016-1266-8.; Gruppen M.P., Bouts A.H., Jansen-van der Weide M.C., Merkus M.P., Zurowska A., Maternik M. et al. A randomized clinical trial indicates that levamisole increases the time to relapse in children with steroid-sensitive idiopathic nephrotic syndrome. Kidney Int 2018; 93: 510–518. DOI:10.1016/j.kint.2017.08.011; Donia A.F., Ammar H.M., El-Agroudy Ael B., Moustafa Fel H., Sobh M.A. Long-term results of two unconventional agents in steroid-dependent nephrotic children. Pediatr Nephrol 2005; 20: 1420–1425. DOI:10.1007/s00467-005-1943-4; Alsaran K., Grisaru S., Stephens D., Arbus G. Levamisole vs. cyclophosphamide for frequently-relapsing steroid-dependent nephrotic syndrome. Clin Nephrol 2001; 56(4): 289–294; Sinha A., Puraswani M., Kalaivani M., Goyal P., Hari P., Bagga A. Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: an openlabel randomized controlled trial. Kidney Int 2019; 95: 210–218 DOI:10.1016/j.kint.2018.08.039; Ekambaram S., Mahalingam V., Nageswaran P., Udani A., Geminiganesan S., Priyadarshini S. Efficacy of levamisole in children with frequently relapsing and steroid-dependent nephritic syndrome. Ind Pediatr 2014; 51: 371–373. DOI:10.1007/s13312-014-0419-7; Moorani K.N., Zubair A.M., Veerwani N.R., Hotchandani H.J. Efficacy of Levamisole in children with frequent relapsing and steroid dependent nephrotic syndrome at tertiary care Center-Karachi. Pak J Med Sci 2020; 36: 1193–1198. DOI:10.12669/pjms.36.6.2337; Sümegi V., Haszon I., Iványi B., Bereczki C., Papp F., Túri S. Long-term effects of levamisole treatment in childhood nephritic syndrome. Pediatr Nephrol 2004; 19: 1354–1360. DOI:10.1007/s00467-004-1608-8; Kiruba Samuel E.M., Krishnamurthy S., Bhanudeep S., Muske S. Levamisole in Frequently-relapsing and Steroid-dependent Nephrotic Syndrome. Ind Pediatr 2017; 54: 831–834. DOI:10.1007/s13312-017-1144-9.; Fu L.S., Shien C.Y., Chi C.S. Levamisole in steroid-sensitive nephrotic syndrome children with frequent relapses and/or steroid dependency: comparison of daily and every-other-day usage. Nephron Clin Pract 2004; 97: 137–141. DOI:10.1159/000079172; Abeyagunawardena A.S., Karunadasa U., Jayaweera H., Thalgahagoda S., Tennakoon S., Abeyagunawardena S. Efficacy of higher-dose levamisole in maintaining remission in steroiddependant nephrotic syndrome. Pediatr Nephrol 2017; 32: 1363–1367. DOI:10.1007/s00467-017-3616-5; Папиж С.В., Москалева Е.С., Фокеева Е.В., Ружицкая Е.А., Турпитко О.Ю., Катышева О.В. Левамизол в лечении гормонозависимого и часторецидивирующего нефротического синдрома у детей. Педиатрическая фармакология. 2003; 1(2): 14–18.

  5. 5
    Academic Journal

    Contributors: First Pavlov State Medical University of St. Petersburg, Saint Petersburg, Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова

    Source: Vestnik dermatologii i venerologii; Vol 101, No 1 (2025); 123-132 ; Вестник дерматологии и венерологии; Vol 101, No 1 (2025); 123-132 ; 2313-6294 ; 0042-4609 ; 10.25208/vdv.1011

    File Description: application/pdf

  6. 6
    Academic Journal

    Contributors: Not specified., Отсутствует.

    Source: Current Pediatrics; Том 24, № 1 (2025); 45-53 ; Вопросы современной педиатрии; Том 24, № 1 (2025); 45-53 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3685/1431; Gawron K, Łazarz-Bartyzel K, Potempa J, Chomyszyn-Gajewska M. Gingival fibromatosis: clinical, molecular and therapeutic issues. Orphanet J Rare Dis. 2016;11:9. doi: https://doi.org/10.1186/s13023-016-0395-1; Янушевич О.О., Золотницкий И.В., Алямовский В.В. Болезни пародонта: тактика ведения больных и нормативно-правовые аспекты. — М.: ГЭОТАР-Медиа; 2023. — 224 с.; Strzelec K, Dziedzic A, Łazarz-Bartyzel K, et al. Clinics and genetic background of hereditary gingival fibromatosis. Orphanet J Rare Dis. 2021;16(1):492. doi: https://doi.org/10.1186/s13023-021-02104-9; Costa CRR, Braz SV, de Toledo IP, et al. Syndromes with gingival fibromatosis: A systematic review. Oral Dis. 2021;27(4):881–893. doi: https://doi.org/10.1111/odi.13369; Sharan J, Mohapatra S, Chhabra G, et al. Gingival hyperplasia: An initial oral manifestation of acute myeloid leukemia. J Indian Soc Periodontol. 2023;27(2):201–206. doi: https://doi.org/10.4103/jisp.jisp_54_22; de Bode CJ, Dogterom EJ, Rozeboom AVJ, et al. Orofacial abnormalities in mucopolysaccharidosis and mucolipidosis type II and III: A systematic review. JIMD Rep. 2022;63(6):621–629. doi: https://doi.org/10.1002/jmd2.12331; Hatahira H, Abe J, Hane Y, et al. Drug-induced gingival hyperplasia: a retrospective study using spontaneous reporting system databases. J Pharm Health Care Sci. 2017;3:19. doi: https://doi.org/10.1186/s40780-017-0088-5; Dongari-Bagtzoglou A. Drug-associated gingival enlargement. J Periodontol. 2004;75(10):1424–1431. doi: https://doi.org/10.1902/jop.2004.75.10.1424; Lima RB, Benini V, Sens YA. Gingival overgrowth in renal transplant recipients: a study concerning prevalence, severity, periodontal, and predisposing factors. Transplant Proc. 2008;40(5):1425–1428. doi: https://doi.org/10.1016/j.transproceed.2008.01.071; Vincent-Bugnas S, Borsa L, Gruss A, Lupi L. Prioritization of predisposing factors of gingival hyperplasia during orthodontic treatment: the role of amount of biofilm. BMC Oral Health. 2021;21(1):84. doi: https://doi.org/10.1186/s12903-021-01433-2; Tungare S, Paranjpe AG. Drug-Induced Gingival Overgrowth. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.; Ritchhart C, Joy A. Reversal of drug-induced gingival overgrowth by UV-mediated apoptosis of gingival fibroblasts — an in vitro study. Ann Anat. 2018;217:7–11. doi: https://doi.org/10.1016/j.aanat.2018.01.001; Lauritano D, Moreo G, Limongelli L, et al. Drug-Induced Gingival Overgrowth: The Effect of Cyclosporin A and Mycophenolate Mophetil on Human Gingival Fibroblasts. Biomedicines. 2020;8(7):221. doi: https://doi.org/10.3390/biomedicines8070221; Chojnacka-Purpurowicz J, Wygonowska E, Placek W, Owczarczyk-Saczonek A. Cyclosporine-induced gingival overgrowthReview. Dermatol Ther. 2022;35(12):e15912. doi: https://doi.org/10.1111/dth.15912; Gandhi M, Rai E, Shirley A, Suda NK. Massive gingival bleed: a rare manifestation of cyclosporine toxicity. BMJ Case Rep. 2020;13(12):e236828. doi: https://doi.org/10.1136/bcr-2020-236828; Kumar S, Guliani A, Vinay K. Cyclosporine-Induced Gingival Hypertrophy. JAMA Dermatol. 2019;155(4):487. doi: https://doi.org/10.1001/jamadermatol.2018.3588; Ballardin BS, Mobile RZ, Coracin FL, et al. A case series of medication-related fibrovascular hyperplasia following hematopoietic stem cell transplantation for Fanconi anemia. Pediatr Transplant. 2021;25(6):e13947. doi: https://doi.org/10.1111/petr.13947; Cazzolla AP, Zhurakivska K, Ciavarella D, et al. Primary hyperoxaluria: Orthodontic management in a pediatric patient: A case report. Spec Care Dentist. 2018;38(4):259–265. doi: https://doi.org/10.1111/scd.12302; Webb NJ, Coulthard MG, Trompeter RS, et al. Correlation between finger-prick and venous ciclosporin levels: association with gingival overgrowth and hypertrichosis. Pediatr Nephrol. 2007;22(12):2111–2118. doi: https://doi.org/10.1007/s00467-007-0586-z; Balci YI, Tavil B, Karabulut E, et al. Cyclosporine level at the second hour in pediatric hematopoietic stem cell transplant patients. Exp Clin Transplant. 2011;9(5):329–335.; Нефротический синдром у детей: клинические рекомендации / Союз педиатров России. — Минздрав России; 2016. — 31 с.Нефротический%20синдром%20дети%20СПР.v1_испр_28.02.17.pdf. Ссылка активна на 11.11.2024.; Jaber BA, Azat NFA, Al-Daffaie AA. Complications of nephrotic syndrome in children. Wiad Lek. 2022;75(9 pt 2):2226–2232. doi: https://doi.org/10.36740/WLek202209209; Dorresteijn EM, Kist-van Holthe JE, Levtchenko EN, et al. Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome. Pediatr Nephrol. 2008;23(11):2013–2020. doi: https://doi.org/10.1007/s00467-008-0899-6; McKaig SJ, Kelly D, Shaw L. Investigation of the effect of FK506 (tacrolimus) and cyclosporin on gingival overgrowth following paediatric liver transplantation. Int J Paediatr Dent. 2002;12(6): 398–403. doi: https://doi.org/10.1046/j.1365-263x.2002.00397.x; Smith JM, Wong CS, Salamonik EB, et al. Sonic tooth brushing reduces gingival overgrowth in renal transplant recipients. Pediatr Nephrol. 2006;21(11):1753–1759. doi: https://doi.org/10.1007/s00467-006-0214-3

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Source: Translational Medicine; Том 11, № 4 (2024); 364-370 ; Трансляционная медицина; Том 11, № 4 (2024); 364-370 ; 2410-5155 ; 2311-4495

    File Description: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/905/584; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/905/2019; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/905/2020; Koneczny I. A New Classification System for IgG4 Autoantibodies. Front Immunol. 2018; 9: 97. DOI:10.3389/fimmu.2018.00097.; Huijbers MG, Querol LA, Niks EH, et al. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur J Neurol. 2015; 22(8): 1151–1161. DOI:10.1111/ene.12758.; Зыкова А.С., Новиков П.И., Бровко М.Ю. и др. IgG4-ассоциированное заболевание: что изменилось к 2020 году. Клиническая фармакология и терапия, 2020;29(3):4–13. DOI:10.32756/0869-5490-2020-3-4-13.; Zakharova EV, Vorobjova OA. Immunoglobulin g4-related disease, presented with retroperitoneal fibrosis and monoclonal gammopathy: case report and mini review. Urol Nephrol Open Access J. 2015;2(5):168‒173. DOI:10.15406/unoaj.2015.02.00058.; Волошинова Е.В., Воробьева О.А., Цатурова К.Н. Поражение почек при IgG4-ассоциированной болезни (Клиническое наблюдение). Нефрология и диализ. 2018;20(1): 92‒99. DOI:10.28996/1680-4422-2018-1-92-99.; Huijbers MG, Plomp JJ, van der Maarel SM, et al. IgG4-mediated autoimmune diseases: a niche of antibodymediated disorders. Ann N Y Acad Sci. 2018;1413(1): 92‒103. DOI:10.1111/nyas.13561.; Василенко В.В., Виноградов Д.Л., Бурлакова А.С. IgG4-сопряженная патология: состояние проблемы. Архивъ внутренней медицины. 2017;7(2):95‒106]. DOI:10.20514/2226-6704-2017-7-2-95-106.; Takahashi N, Ghazale AH, Smyrk TC, et al. Possible association between IgG4-Associated systemic disease with or without autoimmune pancreatitis and nonHodgkin lymphoma. Pancreas. 2009;38(5):523‒526. DOI:10.1097/MPA.0b013e31819d73ca.; Saeki T, Nishi S, Imai N, et al. Clinicopathological characteristics of patients with IgG4-related tubulointerstitial nephritis. Kidney Int. 2010;78(10):1016‒1023. DOI:10.1038/ki.2010.271.; Седышев С.Х., Васильев В.И., Ковригина А.М. Диагностика новой нозологической группы: IgG4-ассоциированное системное заболевание. Научно-практическая ревматология. Сборник материалов II конгресса ревматологов России, 26–29 апреля 2011. Ярославль. С. 70].; Wallace ZS, Deshpande V, Mattoo H, et al. IgG4-Related Disease: Clinical and Laboratory Features in One Hundred Twenty-Five Patients. Arthritis Rheumatol. 2015;67(9):2466–2475. DOI:10.1002/art.39205.; Cheuk W, Lee KC, Chong LY, et al. IgG4-related Sclerosing disease: a potential new etiology of cutaneous pseudolymphoma. Am J Surg Pathol. 2009;33(11):1713–1719. DOI:10.1097/PAS.0b013e3181b201de.; https://transmed.almazovcentre.ru/jour/article/view/905

  12. 12
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 65-74 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 65-74 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2067/1533; Pal A., Kaskel F. History of Nephrotic Syndrome and Evolution of its Treatment. Front Pediatr 2016; 4: 56. DOI:10.3389/fped.2016.00056; Cameron J.S., Hicks J. The origins and development of the concept of a “nephrotic syndrome”. Am J Nephrol 2002; 22(2–3): 240–247. DOI:10.1159/000063768; Hahn D., Samuel S.M., Willis N.S., Craig J.C., Hobson E.M. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev 2020; 2020(8): CD001533. DOI:10.1002/14651858.CD001533.pub6; Морозов С.Л., Курсова Т.С., Петросян Э.К., Пирузиева О.Р., Длин В.В. Микофенолата мофетил в терапии первичного нефротического синдрома у детей. Российский вестник перинатологии и педиатрии 2023; 68(2): 22–28.; Banaszak B., Banaszak P. The increasing incidence of initial steroid resistance in childhood nephrotic syndrome. Pediatr Nephrol 2012; 27(6): 927–932. DOI:10.1007/s00467–011–2083–7; Морозов С.Л., Длин В.В., Садыков А.Р., Воронкова А.С., Сухоруков В.С. Механизмы резистентности к иммуносупрессивной терапии у пациентов с нефротическим синдромом. Российский вестник перинатологии и педиатрии 2017; 62(4): 19–24.; Filler G., Alvarez-Elías A.C., McIntyre C., Medeiros M. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol 2017; 32(1): 21–29. DOI:10.1007/s00467–016–3352–2; Lamba V., Sangkuhl K., Sanghavi K., Fish A., Altman R.B., Klein T.E. PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics 2014; 24(1): 73–79. DOI:10.1097/FPC.0000000000000010; McMurray R.W., Harisdangkul V. Mycophenolate mofetil: selective T cell inhibition. Am J Med Sci 2002; 323(4): 194–196. DOI:10.1097/00000441–200204000–00005; Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 2009; 109(7): 2903–2928. DOI:10.1021/cr900021w; Jonsson C.A., Carlsten H. Mycophenolic acid inhibits inosine 5’-monophosphate dehydrogenase and suppresses immunoglobulin and cytokine production of B cells. Int Immunopharmacol 2003; 3(1): 31–37. DOI:10.1016/s1567–5769(02)00210–2; Betonico G.N., Abudd-Filho M., Goloni-Bertollo E.M., Pavarino-Bertelli E. Pharmacogenetics of mycophenolate mofetil: a promising different approach to tailoring immunosuppression? J Nephrol 2008; 21(4): 503–509.; Michelon H., König J., Durrbach A., Quteineh L., Verstuyft C., Furlan V. et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics 2010; 11(12): 1703–1713. DOI:10.2217/pgs.10.132; Kiberd B.A., Lawen J., Fraser A.D., Keough-Ryan T., Belitsky P. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant 2004; 4(7): 1079–1083. DOI:10.1111/j.1600–6143.2004.00455.x; Na Takuathung M., Sakuludomkan W., Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60(10): 1291–1302. DOI:10.1007/s40262–021–01037–7; Meng H.Y., Luo Z.H., Hu B., Jin W.L., Yan C.K., Li Z.B. et al. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018; 19(5): 495–511. DOI:10.2217/pgs-2017–0182; Joy M.S., Boyette T., Hu Y., Wang J., La M. Effects of uridine diphosphate glucuronosyltransferase 2B7 and 1A7 pharmacogenomics and patient clinical parameters on steady-state mycophenolic acid pharmacokinetics in glomerulonephritis. Eur J Clin Pharmacol 2010; 66(11): 1119–30. DOI:10.1007/s00228–010–0846-x; Морозов С.Л., Пахомова В.П., Войнова В.Ю. Профиль экспрессии генов, ассоциированных со стероидной зависимостью, у детей с идиопатическим нефротическим синдромом. Практическая медицина 2024; 22(3): 57–62.; Bergan S., Brunet M., Hesselink D.A., Johnson-Davis K.L. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43(2): 150–200. DOI:10.1097/FTD.0000000000000871; Wang J., Figurski M., Shaw L.M., Burckart G.J. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice. Transpl Immunol 2008; 19(3–4): 192–196. DOI:10.1016/j.trim.2008.05.009; Rosso Felipe C., de Sandes T.V., Sampaio E.L., Park S.I., Silva H.T., Jr, Medina Pestana J.O. Clinical impact of polymorphisms of transport proteins and enzymes involved in the metabolism of immunosuppressive drugs. Transplant Proc 2009; 41(5): 1441–1455. DOI:10.1016/j.transproceed.2009.03.024; Yap D.Y.H., Tam C.H., Yung S., Wong S., Tang C.S.O., Mok T.M.Y. et al. Pharmacokinetics and pharmacogenomics of mycophenolic acid and its clinical correlations in maintenance immunosuppression for lupus nephritis. Nephrol Dial Transplant 2020; 35(5): 810–818. DOI:10.1093/ndt/gfy284; Bernard O., Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 2004; 32(8): 775–778. DOI:10.1124/dmd.32.8.775; Rong Y., Jun H., Kiang T.K.L. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87(4): 1730–1757. DOI:10.1111/bcp.14590; Djebli N., Picard N., Rérolle J.P., Le Meur Y., Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007; 17(5): 321–330. DOI:10.1097/FPC.0b013e32801430f8

  13. 13
    Academic Journal

    Contributors: The authors of this article confirmed the lack of conflict of interest and financial support, which should be reported, Авторы данной статьи подтвердили отсутствие конфликта интересов и финансовой поддержки, о которых необходимо сообщить

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 4 (2024); 63-69 ; Российский вестник перинатологии и педиатрии; Том 69, № 4 (2024); 63-69 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2030/1514; Trautmann A., Boyer O., Hodson E., Bagga A., Gipson D.S., Samuel S. et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol [Internet] 2023; 38(3): 877–919. DOI:10.1007/s00467–022–05739–3; Ehren R., Benz M.R., Brinkkötter P.T., Dötsch J., Eberl W.R., Gellermann J. et al. Pediatric idiopathic steroid-sensitive nephrotic syndrome: diagnosis and therapy–short version of the updated German best practice guideline (S2e) — AWMF register no. 166–001, 6/2020. Pediatr Nephrol [Internet] 2021; 36(10): 2971–2985. DOI:10.1007/s00467–021–05135–3; Морозов С.Л., Курсова Т.С., Петросян Э.К., Пирузиева О.Р., Длин В.В. Микофенолата мофетил в терапии первичного нефротического синдрома у детей. Российский вестник перинатологии и педиатрии 2023; 68(2): 22–28. DOI:10.21508/1027–4065–2023–68–2–22–28; Морозов С.Л., Аксенова М.Е. Первичный нефротический синдром у детей. Перспективы персонализированной терапии. Практическая медицина 2018; 8: 39–42.; Морозов С.Л., Длин В.В. К вопросу о стероидной терапии первичного нефротического синдрома у детей. Практическая медицина. 2020; 18(3): 26–31.; Ostalska-Nowicka D., Malinska A., Silska M., Perek B., Zachwieja J., Nowicki M. Mycophenolate mofetil (MMF) treatment efficacy in children with primary and secondary glomerulonephritis. aoms. 2011; 6: 1042–1048. DOI:10.5114/aoms.2011.26618; Sobiak J., Resztak M., Chrzanowska M., Zachwieja J., Ostalska-Nowicka D. The Evaluation of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid in Children with Nephrotic Syndrome. Molecules 2021; 26(12): 3723. DOI:10.3390/molecules26123723; Kiang T.K.L., Ensom M.H.H. Population Pharmacokinetics of Mycophenolic Acid: An Update. Clin Pharmacokinet 2018; 57(5): 547–558. DOI:10.1007/s40262–017–0593–6; Chen B., Gu Z., Chen H., Zhang W., Fen X., Cai W. et al. Establishment of High-Performance Liquid Chromatography and Enzyme Multiplied Immunoassay Technology Methods for Determination of Free Mycophenolic Acid and Its Application in Chinese Liver Transplant Recipients. Therapeutic Drug Monitoring 2010; 32(5): 653–660. URL: https://ouci.dntb.gov.ua/en/works/4gXM3ZEl/; Rong Y., Jun H., Kiang T.K.L. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharma [Internet] 2021; 87(4): 1730–1757. DOI:10.1111/bcp.14590; Sobiak J., Resztak M., Ostalska-Nowicka D., Zachwieja J., Gąsiorowska K., Piechanowska W. et al. Monitoring of mycophenolate mofetil metabolites in children with nephrotic syndrome and the proposed novel target values of pharmacokinetic parameters. Eur J Pharmaceut Scie 2015; 77: 189–196. DOI:10.1016/j.ejps.2015.06.017; Resztak M., Sobiak J., Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics [Internet] 2021; 13(12): 1991. DOI:10.3390/pharmaceutics13121991; Ferreira P.C.L., Thiesen F.V., Pereira A.G., Zimmer A.R., Fröehlich P.E. A short overview on mycophenolic acid pharmacology and pharmacokinetics. Clinical Transplantation [Internet] 2020; 34(8): e13997. DOI:10.1111/ctr.13997; Staatz C.E., Tett S.E. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients: Clinical Pharmacokinetics [Internet] 2007; 46(1): 13–58. DOI:10.2165/00003088–200746010–00002; Filler G., Todorova E.K., Bax K., Alvarez-Elías A.C., Huang S-H.S., Kobrzynski M.C. Minimum mycophenolic acid levels are associated with donor-specific antibody formation. Pediatr Transplant 2016; 20(1): 34–38. DOI:10.1111/petr.12637; Hackl Á., Cseprekál O., Gessner M., Liebau M.C., Habbig S., Ehren R. et al. Mycophenolate Mofetil Therapy in Children With Idiopathic Nephrotic Syndrome: Does Therapeutic Drug Monitoring Make a Difference? Therapeutic Drug Monitoring [Internet] 2016; 38(2): 274–279. URL: https://www.researchgate.net/publication/283077655_Mycophenolate_Mofetil_Therapy_in_Children_With_Idiopathic_Nephrotic_Syndrome_Does_Therapeutic_Drug_Monitoring_Make_a_Difference; Gellermann J., Ehrich J.H.H., Querfeld U. Sequential maintenance therapy with cyclosporin A and mycophenolate mofetil for sustained remission of childhood steroid-resistant nephrotic syndrome. Nephrology Dialysis Transplantation [Internet] 2012; 27(5): 1970–1978. DOI:10.1093/ndt/gfr572; Tellier S., Dallocchio A., Guigonis V., Saint-Marcoux F., Llanas B., Ichay L. et al. Mycophenolic Acid Pharmacokinetics and Relapse in Children with Steroid–Dependent Idiopathic Nephrotic Syndrome. Clin J Am Soc Nephrol [Internet] 2016; 11(10): 1777–1782. URL: https://www.researchgate.net/publication/305518009_Mycophenolic_Acid_Pharmacokinetics_and_Relapse_in_Children_with_Steroid-Dependent_Idiopathic_Nephrotic_Syndrome; Djabarouti S., Breilh D., Duffau P., Lazaro E,. Greib C., Caubet O. et al. Steady-state mycophenolate mofetil pharmacokinetic parameters enable prediction of systemic lupus erythematosus clinical flares: an observational cohort study. Arthritis Res Ther [Internet] 2010; 12(6): R217. DOI:10.1186/ar3202; Weber L.T., Shipkova M., Armstrong V.W., Wagner N., Schütz E., Mehls O. et al. Comparison of the Emit immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal-transplant recipients on mycophenolate mofetil therapy. Clin Chem 2002; 48(3): 517–525.

  14. 14
    Academic Journal

    Contributors: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования

    Source: The Russian Archives of Internal Medicine; Том 14, № 3 (2024); 206-212 ; Архивъ внутренней медицины; Том 14, № 3 (2024); 206-212 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1797/1327; https://www.medarhive.ru/jour/article/view/1797/1334; Лысенко (Козловская) Л.В., Рамеев В. В., Моисеев С. В. и др. Клинические рекомендации по диагностике и лечению системного амилоидоза. Клин. фармакол. тер. 2020; 29(1): 13-24 DOI:10.32756/0869-5490-2020-1-13-24.; Desport E., Bridoux F., Sirac C., et al. Centre national de référence pour l’amylose AL et les autres maladies par dépôts d’immunoglobulines monoclonales. Al amyloidosis. Orphanet J Rare Dis. 2012 Aug 21; 7: 54. DOI:10.1186/1750-1172-7-54.; Manwani R., Cohen O., Sharpley F., et al. A prospective observational study of 915 patients with systemic AL amyloidosis treated with upfront bortezomib. Blood. 2019; 134(25): 2271-2280. DOI:10.1182/blood.2019000834.; Pinney J. H., Smith C. J., Taube J. B., et al. Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013 May; 161(4): 525-32. DOI:10.1111/bjh.12286.; Kyle R. A., Larson D. R., Kurtin P. J., et al. Incidence of AL Amyloidosis in Olmsted County, Minnesota, 1990 through 2015. Mayo Clin Proc. 2019 Mar; 94(3): 465-471. DOI:10.1016/j.mayocp.2018.08.041.; Falk R. H., Comenzo R. L., Skinner M. The systemic amyloidoses. N Engl J Med. 1997; 337(13): 898-909. DOI:10.1056/NEJM199709253371306.; Vaxman I., Gertz M. When to Suspect a Diagnosis of Amyloidosis. Acta Haematol. 2020; 143(4): 304-311. DOI:10.1159/000506617.; Gertz M. A., Comenzo R., Falk R. H., et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10 th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol. 2005; 79(4): 319-28. DOI:10.1002/ajh.20381.; Loustaud-Ratti V. R., Cypierre A., Rousseau A., et al. Non-invasive detection of hepatic amyloidosis: FibroScan, a new tool. Amyloid. 2011; 18(1): 19-24. DOI:10.3109/13506129.2010.543443.; Михалева Л. М., Гиоева З. В., Рёкен К. Гистологическое и иммуногистохимическое исследования в диагностике амилоидоза печени. Архив патологии. 2015; 77(4):11-16. DOI:10.17116/patol201577411-16.; Picken M. M. New insights into systemic amyloidosis: the importance of diagnosis of specific type. Curr Opin Nephrol Hypertens. 2007; 16(3): 196-203. DOI:10.1097/MNH.0b013e3280bdc0db.; Zhang X., Tang F., Gao Y. Y., et al. Hepatomegaly and jaundice as the presenting symptoms of systemic light-chain amyloidosis: A case report. World J Gastrointest Oncol. 2024 Feb 15; 16(2): 550-556. DOI:10.4251/wjgo.v16.i2.550.; Kottavadakkeel N., Rajaram A. Hepatic Involvement as the Sole Presentation of Systemic Amyloid Light Chain (AL) Amyloidosis: A Diagnostic Challenge. Cureus. 2023 Oct 19; 15(10): e47310. DOI:10.7759/cureus.47310.; https://www.medarhive.ru/jour/article/view/1797

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/14371

  20. 20
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 2 (2023); 22-28 ; Российский вестник перинатологии и педиатрии; Том 68, № 2 (2023); 22-28 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1797/1357; Trautmann A., Boyer O., Hodson E., Bagga A., Gipson D.S., Samuel S. et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2023; 38(3): 877–919. DOI:10.1007/s00467–022–05739–3; Trautmann A., Vivarelli M., Samuel S., Gipson D., Sinha A., Schaefer F. et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2020; 35(8): 1529–1561. DOI:10.1007/s00467–020–04519–1; Noone D.G., Iijima K., Parekh R. Idiopathic nephrotic syndrome in children. The Lancet 2018; 392(10141): 61–74. DOI:10.1016/S0140–6736(18)30536–1; Ehren R., Benz M.R., Brinkkötter P.T., Dötsch J., Eberl W.R., Gellermann J. et al. Pediatric idiopathic steroid-sensitive nephrotic syndrome: diagnosis and therapy — short version of the updated German best practice guideline (S2e) — AWMF register no. 166–001, 6/2020. Pediatr Nephrol 2021; 36(10): 2971–2985. DOI:10.1007/s00467–021–05135–3; Морозов С.Л., Длин В.В., Садыков А.Р., Воронкова А.С., Сухоруков В.С. Механизмы резистентности к иммуносупрессивной терапии у пациентов с нефротическим синдромом. Российский вестник перинатологии и педиатрии 2017; 62(4): 19–24. DOI:10.21508/1027–4065–2017–62–4–19–24; Hackl A., Zed S., Diefenhardt P., Binz-Lotter J., Ehren R., Weber L.T. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8(1): 18. DOI:10.1186/s40348–021–00128–6; Shalhoub R.J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. The Lancet 1974; 304(7880): 556–560. DOI:10.1016/S0140–6736(74)91880–7; Морозов С.Л., Длин В.В. К вопросу о стероидной терапии первичного нефротического синдрома у детей. Практическая медицина. 2020; 18(3): 26–31.; Морозов С.Л., Воронкова А.С., Длин В.В. Значение экспрессии гена ABCB1 у детей с идиопатическим нефротическим синдромом. Нефрология 2021; 25(1): 83–89. DOI:10.36485/1561– 6274–2021–25–1–83–89; Barbarino J.M., Staatz C.E., Venkataramanan R., Klein T.E., Altman R.B. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenetics and Genomics 2013; 23(10): 563–585. DOI:10.1097/FPC.0b013e328364db84; Dai Y., Hebert M.F., Isoherranen N., Davis C.L., Marsh C., Shen D.D. et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34(5): 836–847. DOI:10.1124/dmd.105.008680; Морозов С.Л., Воронкова А.С., Длин В.В., Туркина Т.И., Сухоруков В.С. Анализ экспрессии генов по технологии nCounter Nanostring в медицинских исследованиях: опыт использования у детей с нефротическим синдромом. Российский вестник перинатологии и педиатрии 2019; 64(1): 110–115. DOI:10.21508/1027–4065–2019–64–1–110–115); Rong Y., Jun H., Kiang T.K.L. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87(4): 1730–1757. DOI:10.1111/bcp.14590; Игнатова М. С., Длин В.В. Нефротический синдром: прошлое, настоящее и будущее. Российский вестник перинатологии и педиатрии 2017; 62(6): 29–44. DOI:10.21508/1027–4065–2017–62–5–29–44; Na Takuathung M., Sakuludomkan W., Koonrungsesomboon N. The impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of mycophenolic acid: systematic review and meta-analysis. Clin Pharmacokinet 2021; 60(10): 1291–1302. DOI:10.1007/s40262–021–01037–7; Zhao W., Fakhoury M., Deschênes G., Roussey G., Brochard K., Niaudet P. et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol 2010; 50(11): 1280–1291. DOI:10.1177/0091270009357429; Funatogawa T., Narita Y., Tamura A., Mii K., Sugitani Y., Uchida T. Use of mycophenolate mofetil in patients with pediatric and adult primary nephrotic syndrome: information from a Japanese hospital claims database. Clin Exp Nephrol 2022; 26(10): 1005–1013. DOI:10.1007/s10157–022–02233-w; Игнатова М.С. Детская нефрология. Руководство для врачей. Москва: Медицинское информационное агентство; 2011: 696.; Lamba V., Sangkuhl K., Sanghavi K., Fish A., Altman R.B., Klein T.E. PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics 2014; 24(1): 73–79. DOI:10.1097/FPC.0000000000000010; Sherwin C.M.T., Fukuda T., Brunner H.I., Goebel J., Vinks A.A. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease: Clin Pharmacokin 2011; 50(1): 1–24. DOI:10.2165/11536640–000000000–00000; Sobiak J., Resztak M., Chrzanowska M., Zachwieja J., Ostalska-Nowicka D. The evaluation of multiple linear regression-based limited sampling strategies for mycophenolic acid in children with nephrotic syndrome Molecules [Internet] 2021; 26(12): 3723. DOI:10.3390/molecules26123723; Hackl Á., Cseprekál O., Gessner M., Liebau M.C., Habbig S., Ehren R. et al. Mycophenolate mofetil therapy in children with idiopathic nephrotic syndrome: does therapeutic drug monitoring make a difference? Therapeutic Drug Monitoring [Internet] 2016; 38(2): 274–279. DOI:10.1097/FTD.0000000000000258; Tellier S., Dallocchio A., Guigonis V., Saint-Marcoux F., Llanas B., Ichay L. et al. Mycophenolic Acid Pharmacokinetics and Relapse in Children with Steroid-Dependent Idiopathic Nephrotic Syndrome. CJASN [Internet] 2016; 11(10): 1777– 1782. DOI:10.2215/CJN.00320116; Querfeld U., Weber L.T. Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr Nephrol [Internet] 2018; 33(12): 2253–2265. DOI:10.1007/s00467–018–3970-y; Sobiak J., Jóźwiak A., Wziętek H., Zachwieja J., Ostalska-Nowicka D. The application of inosine 5′-monophosphate dehydrogenase activity determination in peripheral blood mononuclear cells for monitoring mycophenolate mofetil therapy in children with nephrotic syndrome. Pharmaceuticals [Internet] 2020; 13(8): 200. DOI:10.3390/ph13080200; Sobiak J., Resztak M., Zachwieja J., Ostalska-Nowicka D. Inosine monophosphate dehydrogenase activity and mycophenolate pharmacokinetics in children with nephrotic syndrome treated with mycophenolate mofetil. Clin Exp Pharma Physiol 2022; 49(11): 1197–1208. DOI:10.1111/1440–1681.13706; Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 2009; 109(7): 2903–2928. DOI:10.1021/cr900021w; Winnicki W., Fichtenbaum A., Mitulovič G., Herkner H., Regele F., Baier M. et al. Individualization of mycophenolic acid therapy through pharmacogenetic, pharmacokinetic and pharmacodynamic testing. Biomedicines 2022; 10(11): 2882. DOI:10.3390/biomedicines10112882; Kirpalani A., Rothfels L., Sharma A.P., Cuellar C.R., Filler G. Nephrotic state substantially enhances apparent mycophenolic acid clearance. Clin Nephrol [Internet] 2019; 91(3): 162– 171. DOI:10.5414/CN109583; Nishimura T., Uemura O., Hibino S., Tanaka K., Kitagata R., Yuzawa S. et al. Serum albumin level is associated with mycophenolic acid concentration in children with idiopathic nephrotic syndrome. Eur J Pediatr [Internet] 2022; 181(3): 1159–1165. DOI:10.1007/s00431–021–04294–7