Showing 1 - 20 results of 83 for search '"неразъемные соединения"', query time: 0.72s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Conference

    Contributors: Солодский, Сергей Анатольевич

    File Description: application/pdf

    Relation: Инновационные технологии в машиностроении : сборник трудов XII Международной научно-практической конференции, 27–29 мая 2021 г., Юрга; http://earchive.tpu.ru/handle/11683/67833

  5. 5
  6. 6
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 2 (2022); 32-44 ; Новые огнеупоры; № 2 (2022); 32-44 ; 1683-4518 ; 10.17073/1683-4518-2022-2

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1730/1453; Hanbook of ceramic composites; ed. by P. Narottam. ― Bansal : Boston, Dordrecht, London : Kluver Academic Publishers, 2005. ― 554 p.; Гаршин, А. П. Анализ современного состояния и перспектив коммерческого применения волокнистоармированной карбидкремниевой керамики / А. П. Гаршин, В. И. Кулик, А. С. Нилов // Новые огнеупоры. ― 2012. ― № 2. ― С. 43‒52.; Mergia, K. Joining of C f/C and Cf/SiC composites to metals / K. Mergia // Nanocomposites with unique properties and applications in medicine and industry; еd. by Dr. John Cuppoletti. InTech, 2011. ― P. 239‒266.; Zhang, K. Joining of Cf/SiC ceramic matrix composites : a review / K. Zhang, L. Zhang, R. He // Advances in Materials Science and Engineering. ― 2018. ― Vol. 2018. ― Article ID 6176054.; Кулик, В. И. Методы пайки для получения не разъемных соединений керамических композиционных материалов с металлами (Обзорная статья)/ В. И. Кулик, А.С. Нилов, Е. А. Богачев, Н. В. Ларионов // Новые огнеупоры. ― 2021. ― № 4. ― С. 42‒52.; Гаршин, А. П. Современные технологии полу чения волокнисто-армированных композиционных материалов с керамической огнеупорной матрицей (Обзор) / А. П. Гаршин, В. И. Кулик, С. А. Матвеев, А. С. Нилов // Новые огнеупоры. ― 2017. ― № 4. ― С. 20‒35.; Morozumi, S. Bonding mechanism between silicon carbide and thin foils of reactive metals / S. Morozumi, M. Endo, M. Kikuchi // Journal of Materials Science. ― 1985. ― Vol. 20, № 11. ― P. 3976‒3982.; Fan, X. M. Oxidation behavior of C/SiC‒Ti3SiC2 at 800‒1300 оC in air / X. M. Fan, X. W. Yin, Y. Z. Ma [et al.] // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36. ― P. 2427‒2433.; Dong, H. Y. Joining of SiC ceramic-based materials with ternary carbide Ti3SiC2 / H. Y. Dong, S. J. Li, Y. Y. Teng, W. Ma // Materials Science and Engineering: B. ― 2011. ― Vol. 176, № 1. ― P. 60‒64.; Fan, D. Correlation between microstructure and mechanical properties of active brazed Cf/SiC composite joints using Ti‒Zr‒Be / D. Fan, J. Huang, X. Sun [et al.] // Materials Science and Engineering: A. ― 2016. ― Vol. 667. ― P. 332‒339.; Wang, J. Effects of bonding temperature on the microstructures and mechanical properties of the C/C‒ Cf/SiC composite joint prepared by in situ hot-press diffusion bonding using Ti‒Si‒C compound as interlayer / J. Wang, Y. Xiong, H. Li [et al.] // Materials Research Express. ― 2019. ― Vol. 6, № 11. ― Аrticle № 115620.; Tokita, M. Spark plasma sintering (SPS) method, systems, and applications / M. Tokita // Handbook of Advanced Ceramics. ― 2013. ― Ch. 11.2.3. ― P. 1149‒1177.; Rizzo, S. Joining of C/SiC composites by spark plasma sintering technique / S. Rizzo, S. Grasso, M. Salvo [et al.] // J. Eur. Ceram. Soc. ― 2014. ― Vol. 34, № 4. ― P. 903‒913.; Tatarko, P. Flash joining of CVD-SiC coated C f/SiC composites with a Ti interlayer / P. Tatarko, S. Grasso, T. G. Saunders [et al.] // J. Eur. Ceram. Soc. ― 2017. ― Vol. 37. ― P. 3841‒3848.; Zhao, X. Improved shear strength of SiC-coated 3D C/SiC composite joints with a tailored Ti‒Si‒C interlayer / X. Zhao, L. Duan, Y. Wang // J. Eur. Ceram. Soc. ― 2018. ― Vol. 39, № 4. ― P. 788‒797.; Tatarko, P. Joining of CVD-SiC coated and uncoated fibre reinforced ceramic matrix composites with pre-sintered Ti3SiC2 MAX phase using Spark Plasma Sintering / P. Tatarko, V. Casalegno, C. Hu [et al.] // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36. ― Р. 3957‒3967.; Zhao, X. Fast-diffusion joining of SiC-coated threedimensional C/SiC composites with a Mo‒W‒Mo interlayer by spark plasma sintering / X. Zhao, L. Duan, W. Liu, Y. Wang // Ceram. Int. ― 2019. ― Vol. 45, № 17. ― Part B. ― P. 23111‒23118.; Zhao, X. Fast interdiffusion and Kirkendall effects of SiC-coated C/SiC composites joined by a Ti‒Nb‒Ti interlayer via spark plasma sintering / X. Zhao, L. Duan, Y. Wang // J. Eur. Ceram. Soc. ― 2019. ― Vol. 39, № 5. ― P. 1757‒1765.; Zhao, X. Shear strength enhancement of SiC-coated 3D C/SiC composite joints with a Ni‒Ti‒Nb multiinterlayer by interfacial microstructure tailoring / X. Zhao, L. Duan, W. Liu, Y. Wang // J. Eur. Ceram. Soc. ― 2019. ― Vol. 39, № 16. ― P. 5473‒5478.; Fernie, J. A. Joining of engineering ceramics / J. A. Fernie, R. A. L. Drew, K. M. Knowles // International Materials Reviews. ― 2009. ― Vоl. 54, № 5. ― P. 283‒331.; Todt, A. Joining of glassy carbon with a C/C‒SiC composite by brazing for an Innovative high temperature sensor / A. Todt, K. Roder, D. Nestler, B. Wielage // Ceramic Transactions. ― 2014. ― Vol. 248. ― P. 661‒667.; Chen, B. Microstructure and strength of Cf/SiC joints with Ag‒Cu‒Ti brazing fillers / B. Chen, H. P. Cheng, W. Mao [et al.] // Journal of Materials Engineering. ― 2010. ― Vol. 329. ― P. 27‒31.; Xiong, H. P. Joining of Cf/SiC composite with Pd‒ Co‒V brazing filler / H. P. Xiong, B. Chen, W. Mao, X.-Н. Li // Welding in the World. ― 2012. ― Vol. 56, № 1/2. ― Р. 76‒80.; Xiong, H.-P. Joining of Cf/SiC composite with a Cu‒ Au‒Pd‒V brazing filler and interfacial reactions / H.-P. Xiong, B. Chen, Y. Pan, H.-Sh. Zhao // J. Eur. Ceram. Soc. ― 2014. ― Vol. 34, № 6. ― P. 1481‒1486.; Li, W.-W. Reactive brazing Cf/SiC to itself and to Mo using the NiPdPtAu-Cr filler alloy / W.-W. Li, B. Chen, H.P. Xiong, W.-J. Zou // J. Eur. Ceram. Soc. ― 2017. ― Vol. 37, № 13. ― Р. 3849‒3859.; Chen, J. In situ-strengthened C/SiC joint brazed with Cu-based active filler and its performance / J. Chen, S. Dong, X. Zhang // International Journal of Applied Ceramic Technology. ― 2015. ― Vol. 12, № s3. ― Р. E197‒E207.; Chen, B. Joining of Cf/SiC composite with AuNi(Cu)‒ Cr brazing fillers and interfacial reactions / B. Chen, H.-P. Xiong, X. Wu, Y.-Y. Cheng // Welding in the World. ― 2016. ― Vol. 60, № 4. ― P. 813‒819.; Tong, Q. Liquid infiltration joining of 2D C/SiC / Q. Tong, L. Cheng // Composite Science and Engineering of Composite Materials. ― 2006. ― Vol. 13. ― P. 31‒36.; Patent WO 2011/113760 Al. Method of joining parts made of SiC-based materials by non-reactive brazing with addition of a reinforcement, brazing compositions and joint and assembly that are obtained by such a method / V. Chaumat, J. Henne. Опубл. 22.09.2011.; Patent US 8678269-B2. Method for assembling, joining parts made of SiC-based materials by nonreactive brazing, brazing compositions, and joint and assembly obtained by said method / V. Chaumat, J.-F. Henne, Miloud-Ali N. Опубл. 25.03.2014.; Patent US 7318547 B2. Method for assembling parts made of materials based on SiC by non-reactive refractory brazing, brazing compositions, and joint and assembly obtained by said method / A. Gasse. Опубл. 15.01.2008.; Riccardi, B. Joining of SiC based ceramics and composites with Si–16Ti and Si–18Cr eutectic alloys / B. Riccardi, C. A. Nannetti, J. Woltersdorf [et al.] // International Journal of Materials and Product Technology. ― 2004. ― Vol. 20. ― Р. 440‒451.; Patent US 2006/0006212. Method of brazing composite materials parts sealed with a silicon-based composition / J. Thebault, C. Bouquet. Опубл. 12.01.2006.; Gianchandani, P. K. Pressure-less joining of C/SiC and SiC/SiC by a MoSi2/Si composite / P. K. Gianchandani, V. Casalegno, F. Smeacetto, M. Ferraris // International Journal of Applied Ceramic Technology. ― 2017. ― Vol. 14, № 3. ― P. 305‒312.; Smeacetto, F. Ytterbium disilicate-based glassceramic as joining material for ceramic matrix composites / F. Smeacetto, F. D’Isanto, V. Casalegno [et al.] // J. Eur. Ceram. Soc. ― 2021. ― Vol. 41. ― P. 1099‒1106.; Bacos, M. P. Carbon–сarbon composites: oxidation behavior and coatings protection / M. P. Bacos // Journal de Physique IV. ― 1993. ― Vol. 3. ― P. 1895‒1903.; Fu, Q. A multi-interlayer LMAS joint of C/C‒SiC composites and LAS glass ceramics / Q. Fu, F. Zhao, H. Li [et al.] // Journal of Materials Science & Technology. ― 2015. ― Vol. 31. ― Р. 467‒472.; Ferraris, M. Joining of machined SiC/SiC composites for thermonuclear fusion reactors / M. Ferraris, M. Salvo, V. Casalegno [et al.] // Journal of Nuclear Materials. ― 2008. ― Vol. 375. ― Р. 410‒415.; Katoh, Y. Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites / Y. Katoh, M. Kotani, A. Kohyama [et al.] // Journal of Nuclear Materials. ― 2000. ― Vol. 283. ― Р. 1262‒1266.; Salvo, M. Advanced manufacturing routes for metal/composite components for aerospace / М. Salvo // ECCM16 ‒ 16TH European conference on composite materials, Seville, Spain, 22‒26 June 2014. ― Conference Paper, 2014. ― 6 р.; Krenkel, W. Carbon fiber reinforced CMC for highperformance structures / W. Krenkel // International Journal of Applied Ceramic Technology. ― 2004. ― Vol. 1, № 2. ― Р. 188‒200.; Wu, X. Joining of the Cf/SiC composites by a one-step Si infiltration reaction bonding / X. Wu, B. Pei, Y. Zhu, Zh. Huang // Materials Characterization. ― 2019. ― Vol. 155. ― Article ID 109799.; Singh, M. Affordable, robust ceramic joining technology (ARCJoinT) for high temperature applications. In Proceedings of Joining of Advanced and Specialty Materials / M. Singh // ASM International, Materials Park, OH, 1998. ― Р. 1‒5.; Пат. 2604530 Российская Федерация. Композиция для соединения керамических композиционных материалов на основе карбида кремния / Каблов Е. Н., Гращенков Д. В., Солнцев С. С., Ваганнова М. Л., Сорокин О. Ю. ― № 2015145235/03; заявл. 21.10.15; опубл. 10.12.16, Бюл. № 34.; Пат. 2415822 Российская Федерация. Способ неразъемного соединения деталей / Богачев Е. А., Лахин А. В., Тимофеев А. Н., Удинцев П. Г., Чунаев В. Ю. ― № 2008140680/03; заявл.15.10.08; опубл. 10.04.2011, Бюл. № 10.; Разина, А. С. Выбор состава металлоперехода для камеры сгорания жидкостного ракетного дви гателя малой тяги / А. С. Разина, Н. П. Асташева // Информационно-технологический вестник. ― 2018. ― № 2 (16). ― С. 149‒155.; Bogachev, E. A. MMS Technology: first results and prospects / E. A. Bogachev, A. V. Lahin, A. N. Timofeev // Ceramic Transactions. ― 2014. ― Vol. 248. ― P. 243‒253.; Srivastava, V. K. Adhesive bonded single lap and over-lap joints of C/C, C/C-SiC composites and titanium alloy / V. K. Srivastava, S. Singh // Journal of Mechanical Engineering Research. ― 2011. ― Vol. 3, № 5. ― Р. 162‒167.; Пат. 2473582 Российская Федерация. Клейкомпаунд / Сыздыков Е. К., Жаворонков А. В., Логинов А. И., Никитин В. В., Удинцев П. Г., Чунаев В. Ю., Воробьев А. С., Руденко Д. А. ― № 2011145927/05; заявл. 11.11.11; опубл.: 27.01.2013, Бюл. № 3.; Chen, X. The effect of high-treatment on the strength of C/C‒SiC joints / X. Chen, S. Li, Z. Chen, N. Wen // Journal of Material Science. ― 2011. ― Vol. 46. ― Р. 707‒714.; Chen, X. Joining of C/C‒SiC using boron-modified phenolic resin with SiO2 and B4C additives / X. Chen, S. Li, Zh. Chen // Materials at High Temperatures. ― 2011. ― Vol. 28, № 1. ― Р. 28‒32.; Li, S. The effect of high temperature heat-treatment on the strength of C/C to C/C–SiC joints / S. Li, X. Chen, Zh. Chen // Carbon. ― 2010. ― Vol. 48, № 11. ― P. 3042‒3049.; Гладких, С. Н. Термо- и жаростойкие клеи для соединения углеродных и керамических материалов / С. Н. Гладких, М. Г. Мокрушин // Клеи. Герметики. Технологии. ― 2010. ― № 3. ― С. 6‒12.; Гладких, С. Н. Новые клеи разработки ОАО «КОМПОЗИТ» для изделий ракетно-космической техники / С. Н. Гладких, А. Э. Дворецкий, А. И. Вялов // Адгезионные материалы : труды научно-технической конференции. ― Москва, ВИАМ, 27 апреля 2016 года, 2016. ― 13 с.; Сосунов, С. А. Термостойкие соединения углеродных материалов фенолофурфуролоформальдегидными клеями / С. А. Сосунов, Г. В. Комаров, С. В. Бухаров, Г. А. Кравецкий // Пластические массы. ― 2003. ― № 9. ― C. 40, 41.; Клей СТЭП-ТК2 [Электронный ресурс] https:// npkstep.ru/wp-content/uploads/2016/07/STEP-TK2NEW.pdf. Дата обращения. 20.12.2020.; Liu, H.-L. Technique of joining of Cf/SiC composite via preceramic silicone polysilazane and joining properties / H.-L. Liu, C.-Y. Tian, M.-Z. Wu // Chinese Journal of Nonferrous Metals. ― 2008. ― Vol. 18, № 2. ― Р. 278‒281.; Liu, H. Joining of C f/SiC ceramic matrix composite using SiC‒Si3N4 preceramic polymer / H. Liu, S. Li, Z. Chen // Materials Science Forum. ― 2005. ― Vol. 475. ― Р. 1267‒1270.; Lu, Y. W. Online-joining of C/SiC‒C/SiC via precursor infiltration and pyrolysis process / Y. W. Lu, Y. D. Zhang, H. F. Hu, Ch. R. Zhang // Key Engineering Materials. ― 2008. ― Vol. 368‒372. ― P. 1044‒1046.; Zhang, Y. D. Online-joining of C/SiC‒C/SiC via slurry reaction and precursor infiltration and pyrolysis process with C/SiC pins / Y. D. Zhang, H. F. Hu, Ch. R. Zhang, G. D. Li // Key Engineering Materials. ― 2012. ― Vol. 531/532. ― Р. 135‒140.; Петрова, А. П. Термостойкие клеи / А. П. Петрова. ― М. : Химия, 1977. ― 152 с.; https://newogneup.elpub.ru/jour/article/view/1730

  7. 7
  8. 8
  9. 9
  10. 10
    Conference
  11. 11
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 4 (2021); 42-52 ; Новые огнеупоры; № 4 (2021); 42-52 ; 1683-4518 ; 10.17073/1683-4518-2021-4

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1608/1375; Hanbook of ceramic composites; ed. by P. Narottam. ― Bansal. ― Boston, Dordrecht, London : Kluver Academic Publishers, 2005. ― 554 p.; Garshin, A. P. Analysis of the status and prospects for the commercial use of fiber-reinforced silicon-carbide ceramics / A. P. Garshin, V. I. Kulik, A. S. Nilov // Refract. Ind. Ceram. ― 2012. ― Vol. 53, № 1. ― P. 62‒70. [Гаршин, А. П. Анализ современного состояния и перспектив коммерческого применения волокнисто-армированной карбидкремниевой керамики / А. П. Гаршин, В. И. Кулик, А. С. Нилов // Новые огнеупоры. ― 2012. ― № 2. ― С. 43‒52.]; Zhang, K. Joining of Cf/SiC ceramic matrix composites: A Review / K. Zhang, Lu Zhang, Rujie He [et al.] // Advances in Materials Science and Engineering. ― Vol. 2018. ― 15 p.; Mergia, K. Joining of Cf/C and Cf/SiC composites to metals / K. Mergia // Nanocomposites with Unique Properties and Applications in Medicine and Industry : ed. by Dr. John Cuppoletti. InTech, 2011. ― P. 239‒266.; Garshin, A. P. Contemporary technology for preparing fiber-reinforced composite materials with a ceramic refractory matrix (review) / A. P. Garshin, V. I. Kulik, S. A. Matveev, A. S. Nilov // Refract. Ind. Ceram. ― 2017. ― Vol. 58, № 2. ― P. 148‒161. [Гаршин, А. П. Современные технологии получения волокнисто-армированных композиционных материалов с керамической огнеупорной матрицей (Обзор) / А. П. Гаршин, В. И. Кулик, С. А. Матвеев, А. С. Нилов // Новые огнеупоры. ― 2017. ― № 4. ― С. 20‒35.]; Park, J.-W. Strain energy distribution in ceramic-tometal joints / J.-W. Park, P. F. Mendez, T. W. Eagar // Acta Materialia. ― 2002. ― Vol. 50, № 5. ― P. 883‒899.; Shirzadi, A. A. Joining ceramics to metals using metallic foam / A. A. Shirzadi, Y. Zhu, H. K. D. H. Bhadeshia // Materials Science and Engineering: A. ― 2008. ― Vol. 496, № 1/2. ― P. 501‒506.; Galli, M. Relief of the residual stresses in ceramic-metal joints by a layered braze structure / M. Galli, J. Botsis, J. Janczak-Rusch // Advanced Engineering Materials. ― 2006. ― Vol. 8, № 3. ― P. 197‒201.; Morozumi, S. Bonding mechanism between silicon carbide and thin foils of reactive metals / S. Morozumi, M. Endo, M. Kikuchi // Journal of Materials Science. ― 1985. ― Vol. 20, № 11. ― P. 3976‒3982.; Fernie, J. A. Joining of engineering ceramics / J. A. Fernie, R. A. L. Drew, K. M. Knowles // International Materials Reviews. ― 2009. ― Vоl. 54, № 5. ― P. 283‒331.; Liu, Y. Effects of surface state of C/SiC composites on brazing of C/SiC to Nb / Y. Liu, L. Zhang, Z. Yang, J. Feng // Тransactions of the China Welding Institution. ― 2010. ― Vol. 31, № 10. ― Р. 31‒34.; Xiong, J. H. Joining of 3D C/SiC composites to niobium alloy / J. H. Xiong, J. Li, F. Zhang, W. Huang // Scripta Mater. ― 2006. ― Vol. 55, № 2. ― P. 151‒154.; Liu, Y. Reaction brazing of C/SiC composites to Nb with equiatomic composite foils / Y. Liu, J. Feng, L. Xhang [et al.] // in Proceeding from the 5th international brazing and soldering conference, 22‒25.04.2012, Las Vegas, Nevada, USA. ― 6 p.; Sun, Y. In-situ stabilized β-Ti in Ti-base alloys to enhance Cf/SiC-Nb heterogenous joint / Y. Sun, J. Zhang, M. Yuan // J. Alloys Compds. ― 2018. ― Vol. 773. ― P. 217‒226.; Liu, Y. Z. Brazing C/SiC composites and Nb with TiNiNb active filler metal / Y. Z. Liu, L. X. Zhang, C. B. Liu [et al.] // Science and Technology of Welding & Joining. ― 2011. ― Vol. 16, № 2. ― P. 193‒198.; Zhang, Q. Effect of brazing parameters on microstructure and mechanical properties of Cf/SiC and Nb‒1Zr joints brazed with Ti‒Co‒Nb filler alloy / Q. Zhang, L. Sun, Q. Liu [et al.] // J. Eur. Ceram. Soc. ― 2017. ― Vol. 37, № 3. ― P. 931‒937.; Liang, C. Joining of Cf/SiC composites with niobium alloy / C. Liang, Y. Du, W. Zhang [et al.] // Aerospace Materials & Technology. ― 2009. ― № 3. ― Р. 45‒48.; Sun, Y. Microstructure and formation mechanism of Cf/SiC and Nb joint brazed with laminated amorphous Ti‒Zr‒Cu‒Ni/crystalline Ti composite filler / Y. Sun, J. Zhang, C. Liu // Vacuum. ― 2020. ― Vol. 179. ― Article 109480.; Xiong, J. H. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag‒Cu‒Ti active brazing alloy / J. H. Xiong, J. H. Huang, H. Zhang, X. K. Zhao // Materials Science and Engineering: A. ― 2010. ― Vol. 527, № 4/5. ― P. 1096‒1101.; Xiong, J. H. Joining of Cf/SiC composite and TC4 using Ag‒Al‒Ti active brazing alloy / J. H. Xiong, J. H. Huang, H. Zhang, X. K. Zha // Journal of Materials Engineering and Performance. ― 2011. ― Vol. 20, № 6. ― P. 1084‒1089.; Cui, B. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti‒Zr‒Cu‒Ni) + W composite filler materials / B. Cui, J. H. Huang, C. Cai [et al.] // Composites Science and Technology. ― 2014. ― Vol. 97. ― P. 19‒26.; Wang, W. Microstructural mechanism and mechanical properties of Cf/SiC composite/TC4 alloy joints composite-diffusion brazed with TiZrCuNi + TiCp composite filler / W. Wang, D. Fan, J. Huang [et al.] // Materials Science and Engineering: A. ― 2018. ― Vol. 728. ― P. 1‒9.; Lin, G. Joints of Cf/SiC Composite to Ti-alloy with in-situ synthesized TiCx improved brazing layers / G. Lin, J. Huang, H. Zhang, X. Zhao // Materials Transactions. ― 2006. ― Vol. 47, № 4. ― Р. 1261‒1263.; Lin, G. B. Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag‒Cu‒Ti short carbon fibers / G. B. Lin, J. H. Huang, H. Zhang // Journal of Materials Processing Technology. ― 2007. ― Vol. 189, № 1‒3. ― P. 256‒261.; Xiong, J. H. Joining of Cf/SiC composite to TC4 using Ag–Cu–Ti–SiC composite filler material / J. H. Xiong, J. H. Huang, G. B. Lin [et al.] // Powder Metallurgy. ― 2011. ― Vol. 54, № 3. ― Р. 269‒272.; Fan, D. Y. Joining of Cf/SiC composite to Ti‒6Al‒4V with (Ti‒Zr‒Cu‒Ni) + Ti filler based on in-situ alloying concept / D. Y. Fan, J. H. Huang, X. P. Zhao [et al.] // Ceram. Int. ― 2017. ― Vol. 43, № 5. ― P. 4151‒4158.; Ban, Y. H. Microstructure of reactive composite brazing joints of Cf/SiC composite to Ti‒6Al‒4V alloy with Cu‒Ti‒C filler material / Y. H. Ban, J. H. Huang, H. Zhang [et al.] // Rare Metal Materials and Engineering. ― 2009. ― Vol. 38, № 4. ― P. 713‒716.; Xiong, J. H. Brazing of carbon fiber reinforced SiC composite and Ti alloy using Cu‒Ti‒C filler materials / J. H. Xiong, J. H. Huang, Z. P. Wang [et al.] // Materials Science and Technology. ― 2010. ― Vol. 26, № 3. ― P. 356‒360.; Lin, G. B. Microstructure and mechanical performance of brazed joints of Cf/SiC composite and Ti alloy using Ag‒Cu‒Ti‒W / G. B. Lin, J. H. Huang, H. Zhang, H. Y. Liu // Science and Technology of Welding & Joining. ― 2006. ― Vol. 11, № 4. ― P. 379‒383.; Singh, M. Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers / M. Singh, R. Asthana, T. P. Shpargel // Materials science and engineering A. ― 2008. ― Vol. 198. ― Р. 19‒30.; Li, S. Joining of carbon fiber reinforced SiC (Cf/SiC) to Ni-based superalloy with multiple interlayers / S. Li, J. Zhang, X. Liang [et al.] // International Journal of Modern Physics B. ― 2003. ― Vol. 17, № 8/9. ― Р. 1777‒1781.; Zhang, J. J. Joining of Cf/SiC to Ni-based superalloy with Zr/Ta composite interlayers by hot-pressing diffusion welding / J. J. Zhang, S. J. Li, H. P. Duan, Y. Zhang // Rare Metal Materials and Engineering. ― 2002. ― Vol. 31, № s1. ― P. 393‒396.; Xiong, H. P. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si,B)CrTi filler metal / H. P. Xiong, W. Mao, Y. H. Xie [et al.] // Mater. Lett. ― 2007. ― Vol. 61, № 25. ― Р. 4662‒4665.; Wang, W. A novel process with the characteristics of low-temperature bonding and high-temperature resisting for joining Cf/SiC composite to GH3044 alloy / W. Wang, J. Huang, Y. Wang [et al.] // J. Eur. Ceram. Soc. ― 2019. ― Vol. 39, № 16. ― P. 5468‒5472.; Jimenes, C. Joining of Cf/SiC ceramics to nimonic alloys / C. Jimenes, K. Mergia, N. V. Moutis [et al.] // Journal of material engineering and performance. ― 2012. ― Vol. 21, № 5. ― Р. 683‒689.; Li, W.-W. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu‒Cr filler alloy and a Mo interlayer / W.-W. Li, B. Chen, H.-P. Xiong [et al.] // Journal of Materials Science & Technology. ― 2019. ― Vol. 35, № 9. ― P. 2099‒2106.; Song, Y. Microstructure and mechanical properties of Cf/SiC composite/GH99 joints brazed with BNi2-Ti composite filler / Y. Song, D. Liu, X. Li // Journal of Manufacturing Processes. ― 2020. ― Vol. 58. ― P. 905‒913.; Lei, Zh. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag–Cu eutectic and Cu interlayer / Zh. Lei, X. Li, J. Hou [et al.] // Applied Surface Science. ― 2012. ― Vol. 258. ― Р. 10053‒10057.; Li, Wen-Wen. Reactive brazing Cf/SiC to itself and to Mo using the NiPdPtAu-Cr filler alloy / Wen-Wen Li, Bo Chen, Hua-Ping Xiong [et al.] // J. Eur. Ceram. Soc. ― 2017. ― Vol. 37. ― P. 3849‒3859.; Singh, M. Active metal brazing and characterization of brazed joints in C‒C and C‒SiC composites to copper-clad-molybdenum system / M. Singh, R. Asthana // NASA Technical Reports Server (NTRS) 20090008499. ― 2008. ― 17 р. [Электронный ресурс] : https://ia801206.us.archive.org/22/items/NASA_NTRS_Archive_20090008499/NASA_NTRS_Archive_20090008499.pdf.; Asthana, R. Active metal brazing of advanced ceramic composites to metallic systems / R. Asthana, M. Singh // in Advances in Brazing: Science, Technology and Applications : by ed. D. P. Sekulić. ― Woodhead Publishing Ltd., Philadelphia, PA, USA, 2013. ― P. 333‒360.; Wang, W. Joining of high thermal-expansion mismatched C‒SiC composite and stainless steel by an Ag + Ti + Mo mixed powder filler / W. Wang, Y. Wang, J. Huang [et al.] // Mater. Lett. ― 2019. ― Vol. 256. ― Article № 126632.; Wang, Y. Reactive composite-diffusing brazing of Cf/SiC composite and stainless steel with (Cu‒15Ti) + C filler material / Y. Wang, W. Wang, Zh. Ye [et al.] // Materials Science and Engineering: A. ― 2020. ― Vol. 788. ― Article № 139582.; Fan, D. Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti‒Zr‒Be / D. Fan, J. Huang, Y. Wang // Materials Science and Engineering: A. ― 2014. ― Vol. 617. ― P. 66‒72.; Петрунин, И. Е. Справочник по пайке / И. Е. Петрунин. ― М. : Машиностроение-1, 2003. ― 480 с.; Пат. 2415822 Российская Федерация. Способ неразъемного соединения деталей / Е. А. Богачев, А. В. Лахин, А. Н. Тимофеев, Удинцев П. Г., Чунаев В. Ю.; заявл. 15.10.08; опубл. 10.04.2011, Бюл. № 10.; Разина, А. С. Выбор состава металлоперехода для камеры сгорания жидкостного ракетного двигателя малой тяги / А. С. Разина, Н. П. Асташева // Информационно-технологический вестник. ― 2018. ― Т. 16, № 2. ― С. 149‒155.; Bogachev, E. A. MMS Technology: first results and prospects / E. A. Bogachev, A. V. Lahin, A. N. Timofeev // Ceramic transactions. ― 2014. ― Vol. 248. ― P. 243‒253.; https://newogneup.elpub.ru/jour/article/view/1608

  12. 12
  13. 13
  14. 14
    Conference

    Contributors: Тарасов, Сергей Юльевич

    Relation: Перспективы развития фундаментальных наук : сборник научных трудов XVI Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 23-26 апреля 2019 г. Т. 1 : Физика. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/55851

  15. 15
  16. 16
    Academic Journal

    Source: Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY); № 1 (2020); 56-64 ; Литье и металлургия; № 1 (2020); 56-64 ; 2414-0406 ; 1683-6065 ; 10.21122/1683-6065-2020-1

    File Description: application/pdf

    Relation: https://lim.bntu.by/jour/article/view/3181/3100; Fabrizio M. Friction Stir Welding as an effective alternative technique for light structural alloys mixed joints / M. Fabrizio, B. Gianluca, S. Pellegrino, L. Fratini // 11th International Conference on Technology of Plasticity, ICTP 2014, 19–24 October 2014, Nagoya Congress Center, Nagoya, Japan. Procedia Engineering 81 (2014), pp. 74–83.; Winiowski A. Brazing of titanium with aluminium alloys / A. Winiowski, D. Majewski // Arch. Metall. Mater. 2017. Vol. 62 (2). P. 763–770.; Modi S. Mixed Material Joining Advancements and Challenges / S. Modi, M. Stevens, M. Chess // Center for Automotive Research, Ann Arbor, MI. May 2017. 29 p.; The website of the International Aluminium Institute (IAI): http:// www. world-aluminium. org; 28.08.2019.; Kah P. Techniques for joining dissimilar materials: metals and polimers / P. Kah, R. Suoranta, J. Martikainen, C. Magnus // Rev. Adv. Mater. Sci. 2014. Vol. 36. P. 152–164.; Weis S. Research trends in brazing and soldering / S Weis, V Fedorov, M Elssner, T Uhlig [et al.] // Przegląd Spawalnictwa. 2017. Vol. 89 (7). P. 37–44.; British Standards Institution, 1983 BS 499: Part 1 [Welding Terms and Symbols, Glossary of welding, brazing and thermal cutting].; Vaidya W. V. Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications / W. V. Vaidya, M. Horstmann, V. Ventzke [et al.] // Journal of Materials Science. 2010. Vol. 45 (22). P. 6242–6254.; Mishra R. S. Friction stir welding/processing studies of aluminum alloy & titanium 64 / R. S. Mishra, P. Rani // International Journal of Research in Engineering and Innovation. 2017. Vol. 1, no. 1. P. 209–217.; Карманов В. В. Сварка трением с перемешиванием алюминиевых сплавов: сущность и специфические особенности процесса, особенности структуры сварного шва / В. В. Карманов, А. Л. Каменева, В. В. Карманов // Вестн. ПНИПУ. Аэрокосмическая техника. 2012. № 32. С. 6780.; Lokesh R. Optimization of process parameters: tool pin profile, rotational speed and welding speed for submerged friction stir welding of AA6063 alloy / R. Lokesh, V. S. Senthil Kumar, C. Rathinasuriyan, R. Sankar // International Journal of Technical Research and Applications. 2015. Special Issue 12. P. 35–38.; Abdel-Wahab El-Morsy. Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of AA2024-T4 Aluminum Alloy / Abdel-Wahab El-Morsy, Mohamed M. Ghanem, Haitham Bahaitham // Engineering, Technology & Applied Science Research. 2018. Vol. 8, no. 1. P. 2493–2498.; Fall A. Tool Wear Characteristics and Effect on Microstructure in Ti-6Al-4V Friction Stir Welded Joints / Ameth Fall, Mostafa Hashemi Fesharaki, Ali Reza Khodabandeh, Mohammad Jahazi // Metals. 2016. Vol. 6, no. 275. 12 p.; Gangwar K. Microstructure and Mechanical Properties of Friction StirWelded Dissimilar Titanium Alloys: TIMET-54M and ATI-425 / K. Gangwar, M. Ramulu, A. Cantrell, D. G. Sanders // Metals. 2016. Vol. 6, no. 252. 14 p.; Gangwar K. Friction Stir Welding of near α and α+β Titanium Alloys: Metallurgical and Mechanical Characterization /Kapil Gangwar, Ramulu Mamidala, Daniel G. Sanders // Metals. 2017. Vol. 7, no. 565. 23 p.; Karna S. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview / Sivaji Karna, Muralimohan Cheepu, D. Venkateswarulu, V. Srikanth // IOP Conference Series: Materials Science and Engineering. 2018, Issue 330. 16 p.; Майстренко А. Л. Моделирование тепловых процессов для улучшения структуры металлов и сплавов методом трения с перемешиванием / А. Л. Майстренко, В. М. Нестеренков, В. А. Дутка [и др.] // Автоматическая сварка. 2015. № 1. С. 5–14.; Verma S. M. A critical review of friction stir welding process / S. M. Verma, & J. P. Misra // DAAAM International Scientific Book. 2015. P. 249–266.; Способ сварки металлов трением: а. с. 195846 / Ю. В. Клименко. Опубл. 04.05.1967.; Thomas W. M. Improvements relating to friction welding: pat. WO1993010935A1 GB / W. M. Thomas, E. D. Nicholas, J. C. Needham [et al.]. Priority data 06.12.1991.; Selamat N. F. M. Friction stir welding of similar and dissimilar aluminium alloys for automotive applications / N. F. M. Selamat, A. H. Baghdadi, Z. Sajuri, A. H. Kokabi // International Journal of Automotive and Mechanical Engineering. 2016. Vol. 13, Issue 2. P. 3401–3412.; JaiSingh. Optimization and Analysis of Hardness of Friction Stir Welding for Joining Aluminum Alloy 6105 using Taguchi Technique / JaiSingh, BikramJitSingh // Cikitusi Journal for Multidisciplinary Research. 2019. Vol. 6. Issue 3. P. 187–202.; Brassington W. D. P. Alternative Friction Stir Welding Technology for Titanium-6Al-4V Propellant Tanks within the Space Industry / W. D. P. Brassington, P. A. Colegrove // Science and Technology of Welding and Joining. 2017. Vol. 22, Issue 4. P. 300–318.; https://lim.bntu.by/jour/article/view/3181

  17. 17
  18. 18
  19. 19
  20. 20