-
1Book
Authors: Lyndin, Mykola Serhiiovych, Romaniuk, Anatolii Mykolaiovych, Sikora, Vladyslav Volodymyrovych
Subject Terms: клеточная адгезия, неопластическая трансформация, neoplastic transformation, раково-эмбриональный антиген, cancer-embryonic antigen, клітинна адгезія, cell adhesion, раково-ембріональний антиген, неопластична трансформація
File Description: application/pdf
-
2Academic Journal
Authors: V. B. Dugina, G. S. Shagieva, N. V. Khromova, P. B. Kopnin, В. Б. Дугина, Г. С. Шагиева, Н. В. Хромова, П. Б. Копнин
Source: Advances in Molecular Oncology; Том 4, № 1 (2017); 8-16 ; Успехи молекулярной онкологии; Том 4, № 1 (2017); 8-16 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2017-4-1
Subject Terms: цитоскелет, β-actin, γ-actin, neoplastic transformation, tumor cell, cytoskeleton, β-актин, γ-актин, неопластическая трансформация, опухолевая клетка
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/82/97; Vandekerckhove J., Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 1978;126(4):783–802. DOI:10.1016/0022-2836(78)90020-7.; Kabsch W., Vandekerckhove J. Structure and function of actin. Annu Rev Biophys Biomol Struct 1992;21:49–76. DOI:10.1146/annurev.bb.21.060192.000405.; Gunning P., Ponte P., Kedes L. et al. Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc Natl Acad Sci U S A 1984;81(6):1813–7.; Hightower R.C., Meagher R.B. The molecular evolution of actin. Genetics 1986;114:315–32.; 5Garrels J.I., Gibson W. Identification and characterization of multiple forms of actin. Cell 1976;9(4 Pt 2):793–805.; Rubenstein P.A. The functional importance of multiple actin isoforms. Bioessays 1990;12:309–15. DOI:10.1002/bies.950120702.; Schutt C.E., Myslik J.C., Rozycki M.D. et al. The structure of crystalline profilinbeta- actin. Nature 1993;365(6449):810–6. DOI:10.1038/365810a0.; Sheterline P., Clayton J., Sparrow J. Actin. Protein Profile 1995;2(1):1–103.; Müller M., Diensthuber R.P., Chizhov I. et al. Distinct functional interactions between actin isoforms and nonsarcomeric myosins. PLoS One 2013;8(7):e70636. DOI:10.1371/journal.pone.0070636.; Larsson H., Lindberg U. The effect of divalent cations on the interaction between calf spleen profilin and different actins. Biochim Biophys Acta 1988;953(1):95–105.; Ohshima S., Abe H., Obinata T. Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms. J Biochem 1989;105(6):855–7.; Weber A., Nachmias V.T., Pennise C.R. et al. Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 1992;31(27): 6179–85.; Namba Y., Ito M., Zu Y. et al. Human T cell L-plastin bundles actin filaments in a calcium- dependent manner. J Biochem 1992;112(4):503–7.; Shuster C.B., Herman I.M. Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J Cell Biol 1995;128(5):837–48.; Yao X., Cheng L., Forte J.G. Biochemical characterization of ezrin-actin interaction. J Biol Chem 1996;271(12):7224–9.; Shuster C.B., Lin A.Y., Nayak R., Herman I.M. Beta cap73: a novel beta actin-specific binding protein. Cell Motil Cytoskeleton 1996;35(3):175–87. DOI:10.1002/(SICI)1097-0169(1996)35:33.0.CO;2-8.; Winder S.J., Hemmings L., Maciver S.K. et al. Utrophin actin binding domain: analysis of actin binding and cellular targeting. J Cell Sci 1995;108(Pt 1):63–71.; Tzima E., Trotter P.J., Orchard M.A., Walker J.H. Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. Eur J Biochem 2000;267(15):4720–30.; Gunning P., Weinberger R., Jeffrey P., Hardeman E. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 1998;14:339–72. DOI:10.1146/annurev.cellbio.14.1.339.; Manstein D.J., Mulvihill D.P. Tropomyosin-mediated regulation of cytoplasmic myosins. Traffic 2016;17(8):872–7. DOI:10.1111/tra.12399.; von der Ecken J., Heissler S.M., Pathan-Chhatbar S. et al. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 2016;534(7609):724–8. DOI:10.1038/nature18295.; Gunning P., Mohun T., Ng S.Y. et al. Evolution of the human sarcomeric-actin genes: evidence for units of selection within the 3’ untranslated regions of the mRNAs. J Mol Evol 1984;20(3–4): 202–14.; Yaffe D., Nudel U., Mayer Y., Neuman S. Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res 1985;13(10):3723–37.; Treisman R., Alberts A.S., Sahai E. Regulation of SRF activity by Rho family GTPases. Cold Spring Harb Symp Quant Biol 1998;63:643–51.; Posern G., Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006;16(11):588–96. DOI:10.1016/j.tcb.2006.09.008.; Singer R.H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol 1992;4(1):15–9.; Gunning P., Hardeman E., Wade R. et al. Differential patterns of transcript accumulation during human myogenesis. Mol Cell Biol 1987;7(11):4100–14.; Latham V.M., Kislauskis E.H., Singer R.H., Ross A.F. Beta-actin mRNA localization is regulated by signal transduction mechanisms. J Cell Biol 1994;126(5):1211–9.; Oleynikov Y., Singer R.H. Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 2003;13(3):199–207.; Kislauskis E.H., Li Z., Singer R.H., Taneja K.L. Isoform-specific 3’-untranslated sequences sort alphacardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol 1993;123(1):165–72.; Lawrence J.B., Singer R.H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 1986;45: 407–15.; Shestakova E.A., Singer R.H., Condeelis J. The physiological significance of betaactin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 2001;98(13):7045–50. DOI:10.1073/pnas.121146098.; Ross A.F., Oleynikov Y., Kislauskis E.H. et al. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 1997;17(4):2158–65.; Kislauskis E.H., Zhu X., Singer R.H. beta-Actin messenger RNA localization and protein synthesis augment cell motility. J Cell Biol 1997;136(6): 1263–70.; Wang W., Goswami S., Lapidus K. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004;64(23):8585–94. DOI:10.1158/0008-5472.CAN-04-1136.; Condeelis J., Singer R.H. How and why does beta-actin mRNA target? Biol cell 2005;97(1):97–110. DOI:10.1042/BC20040063.; Katz Z.B., Wells A.L., Park H.Y. et al. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 2012;26(17):1885–90. DOI:10.1101/gad.190413.112.; Hill M.A., Gunning P. Beta and gamma actin mRNAs are differentially located within myoblasts. J Cell Biol 1993;122(4):825–32.; Hannan A.J., Gunning P., Jeffrey P.L., Weinberger R.P. Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 1998;11(5–6):289–304. DOI:10.1006/mcne.1998.0693.; Karakozova M., Kozak M., Wong C.C. et al. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 2006;313(5784):192–6. DOI:10.1126/science.1129344.; Kashina A.S. Differential arginylation of actin isoforms: the mystery of the actin N- terminus. Trends Cell Biol 2006;16(12):610–5. DOI:10.1016/j.tcb.2006.10.001.; Wong C.C., Xu T., Rai R. et al. Global analysis of posttranslational protein arginylation. PLoS Biol 2007;5(10):e258. DOI:10.1371/journal.pbio.0050258.; Zhang F., Saha S., Shabalina S.A., Kashina A. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 2010;329(5998):1534–7. DOI:10.1126/science.1191701.; Otey C.A., Kalnoski M.H., Bulinski J.C. Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 1987;34(2):113–24. DOI:10.1002/jcb.240340205.; Chaponnier C., Gabbiani G. Pathological situations characterized by altered actin isoform expression. J Pathol 2004;204(4):386–95. DOI:10.1002/path.1635.; Lambrechts A., Van Troys M., Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 2004;36(10):1890–909. DOI:10.1016/j.biocel.2004.01.024.; Shawlot W., Deng J.M., Fohn L.E., Behringer R.R. Restricted betagalactosidase expression of a hygromycinlacZ gene targeted to the beta-actin locus and embryonic lethality of beta-actin mutant mice. Transgenic Res 1998;7(2):95–103.; Perrin B.J., Ervasti J.M. The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 2010;67(10):630–4. DOI:10.1002/cm.20475.; Belyantseva I.A., Perrin B.J., Sonnemann K.J. et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci USA 2009;106:9703–8. DOI:10.1073/pnas.0900221106.; Bunnell T.M., Ervasti J.M. Delayed embryonic development and impaired cell growth and survival in ACTG1 null mice. Cytoskeleton (Hoboken) 2010;67(9):564–72. DOI:10.1002/cm.20467.; Dugina V., Zwaenepoel I., Gabbiani G. et al. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci 2009;122(Pt 16): 2980–8. DOI:10.1242/jcs.041970.; Franke W.W., Stehr S., Stumpp S. et al. Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells. Differentiation 1996;60(4):245–50. DOI:10.1046/j.1432-0436.1996.6040245.x.; Шагиева Г.С., Домнина Л.В., Чипышева Т.А. и др. Реорганизация изоформ актина и адгезионных контактов при эпителиально-мезенхимальном переходе в клетках цервикальных карцином. Биохимия 2012;77(11):1513–25. [Shagieva G.S., Domnina L.V., Chipysheva T.A. et al. Actin isoforms and reorganization of adhesion junctions in epithelial- to-mesenchymal transition of cervical carcinoma cells. Biokhimiya = Biochemistry 2012;77(11):1513–25. (In Russ.)].; Baranwal S., Naydenov N.G., Harris G. et al. Nonredundant roles of cytoplasmic β- and γ- actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 2012;23(18):3542– 53. DOI:10.1091/mbc.E12-02-0162.; Дугина В.Б., Чипышева Т.А., Ермилова В.Д. и др. Распределение изоформ актина в клетках нормальной, диспластической и опухолевой ткани молочной железы. Архив патологии 2008;(70):28–31. [Dugina V.B., Chipysheva T.A., Ermilova V.D. et al. Distribution of actin isoforms in normal, dysplastic and cancer breast cells. Arkhiv patologii = Pathology Archive 2008;70(2):28–31. (In Russ.)].; Dugina V., Arnoldi R., Janmey P.A. Chaponnier C. Actin. In: The Cytoskeleton and Human Disease. Ed. by M. Cavallaris. Humana Press- Springer, 2012. Pp. 3–28.; Brockmann C., Huarte J., Dugina V. et al. Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes. Biol Reprod 2011;85(5):1025–39. DOI:10.1095/biolreprod.111.091736.; Pokorná E., Jordan P.W., O’Neill C.H. et al. Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential. Cell Motil Cytoskeleton 1994;28(1):25– 33. DOI:10.1002/cm.970280103.; Sahai E., Marshall C.J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003;5(8):711–9. DOI:10.1038/ncb1019.; Leavitt J., Gunning P., Kedes L., Jariwalla R. Smooth muscle alpha-action is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. Nature 1985;316(6031):840–2.; Witt D.P., Brown D.J., Gordon J.A. Transformation-sensitive isoactin in passaged chick embryo fibroblasts transformed by Rous sarcoma virus. J Cell Biol 1983;96(6):1766–71.; Okamoto-Inoue M., Taniguchi S., Sadano H. et al. Alteration in expression of smooth muscle alpha-actin associated with transformation of rat 3Y1 cells. J Cell Sci 1990;96(Pt 4):631–7.; Vandekerckhove J., Leavitt J., Kakunaga T., Weber K. Coexpression of a mutant betaactin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line. Cell 1980;22(3):893–9.; Leavitt J., Ng S.Y., Aebi U. et al. Expression of transfected mutant betaactin genes: alterations of cell morphology and evidence for autoregulation in actin pools. Mol Cell Biol 1987;7(7):2457–66.; Sadano H., Taniguchi S., Kakunaga T., Baba T. cDNA cloning and sequence of a new type of actin in mouse B16 melanoma. J Biol Chem 1988;263(31):15868–71.; Lapidus K., Wyckoff J., Mouneimne G. et al. ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci 2007;120(Pt 18):3173–8. DOI:10.1242/jcs.000638.; Shum M.S., Pasquier E., Po’uha S.T. et al. γ-Actin regulates cell migration and modulates the ROCK signaling pathway. FASEB J 2011;25(12):4423–33. DOI:10.1096/fj.11-185447.; Tondeleir D., Lambrechts A., Müller M. et al. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics 2012;11(8):255–71. DOI:10.1074/mcp.M111.015099.; Pawlak G., Helfman D.M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001;11(1):41–7.; Pollack R., Osborn M., Weber K. Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc Natl Acad Sci U S A 1975;72(3):994–8.; Rubin R.W., Warren R.H., Lukeman D.S., Clements E. Actin content and organization in normal and transformed cells in culture. J Cell Biol 1978;78(1):28–35.; Verderame M., Alcorta D,. Egnor M. et al. Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. Proc Natl Acad Sci U S A 1980;77(11):6624–8.; Shagieva G., Domnina L., Makarevich O. et al. Depletion of mitochondrial reactive oxygen species downregulates epithelialto- mesenchymal transition in cervical cancer cells. Oncotarget 2017;8(3):4901– 13, in print.; Дугина В.Б., Ермилова В.Д., Чемерис Г.Ю., Чипышева Т.А. Актины и кератины в диагностике базальноподобного рака молочной железы человека. Архив патологии 2010;(72):12–5. [Dugina V.B., Ermilova V.D., Chemeris G.Yu., Chipysheva T.A. Actins and keratins in diagnostics of human basal-like breast cancer. Arkhiv patologii = Pathology Archive 2010;72(2):12–5. (In Russ.)].; Агапова Л.С., Черняк Б.В., Домнина Л.В. и др. Производное пластохинона, адресованное в митохондрии как средство, прерывающее программу старения. SKQ1 подавляет развитие опухолей из P53-дефицитных клеток. Биохимия 2008;73(12):1300– 16. [Agapova L.S., Chernyak B.V., Domnina L.V. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. Inhibitory effect of SKQ1 on tumor development from P53-deficient cells. Biokhimiya = Biochemistry 2008;73(12):1300–16. (In Russ.)].; Dugina V., Khromova N., Rybko V. et al. Tumor promotion by γ and suppression by β non- muscle actin isoforms. Oncotarget 2015;6(16):14556–71. DOI:10.18632/oncotarget.3989.; Dugina V., Alieva I., Khromova N. et al. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1- containing + TIPs and γ-actin in epithelial cells. Oncotarget 2016;7(45):72699–715. DOI:10.18632/oncotarget.12236.; https://umo.abvpress.ru/jour/article/view/82
-
3Academic Journal
Authors: Gloushankova N.A., Zhitnyak I.Y., Ayollo D.V., Rubtsova S.N.
Source: Advances in Molecular Oncology; Vol 1, No 1 (2014); 12-17 ; Успехи молекулярной онкологии; Vol 1, No 1 (2014); 12-17 ; 2413-3787 ; 2313-805X
Subject Terms: neoplastic transformation, carcinomas, E-cadherin, cell migration, неопластическая трансформация, карциномы, Е-кадхерин, клеточная миграция
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/12/14; https://umo.abvpress.ru/jour/article/view/12
-
4Academic Journal
Authors: A. A. Rzhaninova, D. O. Omelchenko, I. A. Fedunina, А. А. Ржанинова, Д. О. Омельченко, И. А. Федюнина
Source: Medical Genetics; Том 12, № 3 (2013); 20-28 ; Медицинская генетика; Том 12, № 3 (2013); 20-28 ; 2073-7998
Subject Terms: неопластическая трансформация клеток in vitro, immortalization, neoplastic transformation of cells in vitro, иммортализация
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/29/58; Ржанинова А.А., Горностаева С.Н., Гольдштейн Д.В. Получение и фенотипическая характеристика мезенхимальных стволовых клеток из тимусов плодов человека. // Клеточные технологии в биологии и медицине. — 2005. — №1. — С. 34—41.; Abdallaha B.M., Haack-Sirensena M., Burnsa J.S. et al. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene in despite of extensive proliferation // Biochemical and Biophysical Research Communications. — 2005. — Vol. 326. — P. 527—538.; Aguilar S., Nye E., Chan J. et al. Murine but not human mesenchymal stem cells generate osteosarcoma- like lesions in the lung // Stem Cells. — 2007. — Vol. 25, №6. — P. 1586—1594.; Armesilla-Diaz A., Elvira G., Silva A. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells // Exp. Cell Res. — 2009. — Vol. 315, №20. — P. 3598—3610.; Bernardo M.E., Zaffaroni N., Novara F. et al. Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation after Long-term In vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms // Cancer Res. — 2007. — Vol. 67. — P. 9142—9149.; Blau O., Baldus C.D., Hofmann W.K., Thiel G., Nolle F., Burmeister T. et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. // Blood. — 2011. — Vol. 118, №20. — P. 5583—5592.; Blackburn E.H. Switching and signaling at the telomere // Cell. — 2001. — Vol. 106, №6. — P. 661—673.; Blagosklonny M.V. Cell senescence and hypermitogenic arrest // EMBO Rep. — 2003. — Vol. 4. — P. 358—362.; Burns J.S., Abdallah B.M., Guldberg P., Rygaard J., Schroder H.D., Kassem M. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortali-zed Human Merenchymal Stem Cells // Cancer Res. — 2005. — Vol. 65, №8. — P. 3126—3135.; Campagnoli C., Roberts I.A., Kumar S. et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow // Blood. — 2001. — Vol. 98. — P. 2396—3402.; Choumerianou D.M., Dimitriou H., Perdikogianni C., Mar-timianaki G., Riminucci M., Kalmanti M. Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow // Cell Prolif. — 2008. — Vol. 41, №6. — P. 909—922.; De Bari C., Dell’Accio F., Tylzanowski P. et al. Multipotent mesenchymal stem cells from adult human synovial membrane // Arthritis Rheum. — 2001. — Vol. 44. — P. 1928—1942.; de Lange T., Shiue L., Myers R.M., Cox D.R., Naylor S.L. et al. Structure and variability of human chromosome ends // Mol. Cell. Biol. — 1990. — Vol. 10. — P. 518—527.; Deng C., Zhang P., Harper J.W., Elledge S.J., Leder. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control // Cell. — 1995. Vol.82. — P. 675—684.; Deng Q., Liao R., Wu B.-L., Sun P. High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts // J. Biol. Chem. — 2004. — Vol. 279. — P. 1050—1059.; Deng Y., Chan S.S., Chang S. Telomere dysfunction and tumour suppression: the senescence connection // Nat. Rev. Cancer. — 2008. — Vol. 8, №6. — P. 450—458.; Durant S.T. Telomerase-Independent Paths to Immortality in Prediclable Cancer Sub-types // Journal of Cancer. — 2012. — Vol. 3. — P. 67—82.; Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood // Br. J. Haematol. — 2000. — Vol. 109. — P. 235—242.; Evan G.I., Vousden K.H. Proliferation, cell cycle and apop-tosis in cancer // Nature. — 2001. — Vol. 411. — P. 342—348.; Fan C.G., Tang F.W., Zhang Q.J. et al. Characterization and neural differentiation of fetal lung mesenchymal stem cells // Cell Transplant. — 2005. — Vol. 14. — P. 311—321.; Ferbeyre G., de Stanchina E., Lin A.W., Querido E., McCurrach M.E., Hannon G.J., Lowe S.W. Oncogenic ras and p53 cooperate to induce cellular senescence // Mol. Cell. Biol. — 2002.— Vol. 22. — P. 3497—3508.; Fujiwara-Akita H., Maesawa C., Honda T., Kobayashi S., Masuda T. Expression of human telomerase reverse transcriptase splice variants is well correlated with low telomerase activity in oste-olarcoma cell lines // Int. J. Oncol. — 2005. — Vol. 26, №4. — P. 1009—10016.; Gronthos S., Mankani M., Brahim J. et al. Postnatal human denlal pulp stem cells (DPSCs) in vitro and in vivo // Proc. Natl. Acad. Sci. USA. — 2000. — Vol. 97. — P. 13625—13630.; Hakin-Smith V., Jellinek D.A., Levy D., Carroll T., Teo M. et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme // Lancet. — 2003. — Vol. 361, №9360. — P. 836—838.; Hanahan D., Weinberg R.A. The hallmarks of cancer // Cell. — 2000. — Vol. 100. — P.57—70.; Henderlon S., Allsopp R., Speclor D., Wang S.-S., Harley C. In situ analysis of changes in telomere size during replicative aging and cell transformation // J. Cell. Biol. — 1996. — Vol. 134. — P. 1—12.; Henson J.D., Neumann A.A., Yeager T.R., Reddel R.R. Alternative lengthening of telomeres in mammalian cells // Oncogene. — 2002. — Vol. 21. — P. 598—610.; Henlon J.D., Hannay J.A., McCarthy S.W., Royds J.A., Yeager T.R. et al. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas // Clin. Cancer Res. — 2005. — Vol. 11, №1. — P. 217—225.; Horwitz E.M., Le Blanc K., Dominici M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement // Cytotherapy. — 2005. — Vol. 7, №5. — P. 393—395.; Johnlon J.E., Varkonyi R.J., Schwalm J., Cragle R., Kle-in-Szanto A. et al. Multiple mechanisms of telomere maintenance exist in liposarcomas // Clin. Cancer Res. — 2005. — Vol. 11, №15. — P. 5347 — 5355.; Kuznetsov S.A., Mankani M.H., Gronthos S. et al. Circulating skelelal stem cells // J. Cell. Biol. — 2001. — Vol. 153. — P. 1133—1140.; Li H., Fan X., Kovi R.C. et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice // Cancer Res. — 2007. — Vol. 67. — P. 10889—10898.; Lin A.W., Barradas M., Stone J.C., van Aelst L., Serrano M., Lowe S.W. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling // Genes Develop. — 1998. — Vol. 12. — P. 3008—3019.; Liu L., Sun Z., Chen B., Han Q., Liao L. et al. Ex vivo expansion and in vivo infusion of bone marrow-derived Flk-1+CD31-CD34- mesenchymal stem cells: feasibility and safety from monkey to human // Stem Cells Dev. — 2006. — Vol. 15, №3. — P. 349—357.; Mareschi K., Ferrero I., Rustichelli D., Aschero S., Gam-maitoni L. et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow // J. Cell. Biochem. — 2006. — Vol. 97, №4. — P. 744—754.; Martens U.M., Chavez E.A., Poon S.S., Schmoor C., Lans-dorp P.M. Accumulation of short telomeres in human fibroblasts prior to replicative senescence // Exp. Cell Res. — 2000. — Vol. 256. — P. 291—299.; Matsuo T., Shimose S., Kubo T., Fuj imori J., Yasunaga Y., Ochi M. Telomeres and telomerase in sarcomas // Anticancer Res. — 2009. — Vol. 29. — Vol. 10. — P. 3833—3836.; Meza-Zepeda L.A., Noer A., Dahl J.A., Micci F., Mykle-bost O., Collas P. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence // J. Cell. Mol. Med. — 2008. — Vol. 12, №2. — P. 553—563.; Miura M., Miura Y., Padilla-Nash H.M., Molinolo A.A., Fu B. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation // Stem Cells. — 2006. — Vol. 24. — P. 1095—1103.; Momin E.N., Vela G., Zaidi H.A., Quinones-Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research // Curr. Immunol. Rev. — 2010. — Vol. 6, №2. — P. 137—148.; Murnane J.P., Sabatier L., Marder B.A., Morgan W.F. Telomere dynamics in an immortal human cell line // EMBO J. — 1994. — Vol. 13. — P. 4953—4962.; Naka K., Tachibana A., Ikeda K., Motoyama N. Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibriblasts // J. Biol. Chem. — 2004. — Vol. 279. — P. 2030—2037.; Ning H., Liu G., Lin G., Garcia M., Li L., Lue T.F., Lin C.-S. Identification of an aberrant cell line among human adipose tissue-derived stem cell isolates // Differentiation. — 2009. — Vol. 77, №2. — P. 172—180.; Nittis T., Guittat L., Stewart S.A. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? // Biochi-mie. — 2008. — Vol. 90, №1. — P. 5—12.; Noort W.A., Krulsselbrink A.B., in’t Anker P.S. et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(-) cells in NOD/SCID mice // Exp Hematol. — 2002. — Vol. 30. — P. 870—878.; Prusa A.R., Marton E., Rosner M., Bernaschek G., Hengsts-chlаger M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? // Hum Reprod. — 2003. — Vol. 18, №7. — P. 1489—1493.; Redaelli S., Bentivegna A., Foudah D., Miloso M., Redondo J. et al. // Stem Cell Res Ther. — 2012. — Vol. 3, №6. — P. 47.; Reddel R.R., Bryan T.M., Colgin L.M., Perrem K.T., Yeager T.R. Alternative lengthening of telomeres in human cells // Radiat. Res. — 2001. — Vol. 155. — P. 194—200.; Rodriguez R., Rubio R., Masip M., Catalina P., Nieto A. et al. Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells // Neoplasia. — 2009. — Vol. 11, №4. — P. 397—407.; Rosland G.V., Svendsen A., Torsvik A., Sobala E., McCormack E. et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. // Cancer Res. — 2009. — Vol. 69, №13. — P. 5331—5339.; Rubio D., Garcia-Castro J., Martin M.C. et al. Spontaneous human adult stem cell tranllormalion // Cancer Res. — 2005. — Vol. 65. — P. 3035—3039.; Rubio D., Garcia S., Paz M.F. et al. Molecular characterization of spontaneous mesenchymal stem cell transformation // PLoS ONE. — 2008. — Vol. 3, №1. — P. e1398.; Serrano M., Lin A.W., McCurach M.E., Beach D., L> we S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16/INK4a // Cell. — 1997. — Vol. 88. — P. 593—602.; Soukup T., Mokry J., Karbanova J., Pytlik R., Suchomel P., Kucerova L. Mesenchymal stem cells isolated from the human bone marrow: cultivation, phenotypic analysis and changes in proliferation kinetics // Acta Medica (Hradec Kralove). — 2006. — Vol. 49, №1. — P. 27—33.; Takeuchi M., Takeuchi K., Kohara A. et al. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes // In Vitro Cell Dev. Biol. Anim. — 2007. — Vol. 43, №3—4. — P. 129—138.; Tarle K., Galllard J., de Latalllaet J., Foulllard L., Becker M. et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation // Blood. — 2010. — Vol. 115, №8. — P. 1549—1553.; Torsvik A., Rоsland G.V., Svendsen A., Molven A., Immer-voll H., McCormack E. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track — letter // Cancer Res. — 2010. — Vol. 70, №15. — P. 6393—6396.; Tolar J., Nauta A.J., Osborn M.J., Panoskaltsis Mortari A., McElmurry R.T., Bell S. et al. Sarcoma derived from cultured mesenchymal stem cells // Stem Cells. — 2007. — Vol. 25. — P. 371—379.; Tsai M.S., Lee J.L., Chang Y.J., Hwang S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol // Hum. Reprod. — 2004. — Vol. 19, №(6). — P. 1450—1456.; Wang Y., Huso D.L., Harrington J. et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell cultare // Cytotherapy. — 2005. — Vol. 7. — P. 509—519.; Williams J.T., Southerland S.S., Souza J. et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes // Am. Surg. — 1999. — Vol. 65. — P. 22—26.; Zhang Z.X., Guan L.X., Zhang K., Wang S., Cao P.C. et al. Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro // Cell. Biol. Int. — 2007. — Vol. 31, №6. — P. 645—648.; Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I. et al. Human adipose tissue is a source of multipotent stem cells // Mol. Biol. Cell. — 2002. — Vol. 13, №12. — P. 4279—4295.
-
5Academic Journal
Subject Terms: неопластическая трансформация, neoplastic transformation, пролиферация клеток, cell proliferation, antioxidants, активированный N-ras онкоген, activated N-ras oncogene, 14. Life underwater, антиоксиданты, 3. Good health
Access URL: https://research-journal.org/en/biology-en/normalizaciya-rostovyx-xarakteristik-kletok-fibrosarkomy-v-kulture-pri-dejstvii-mitoxondrialno-napravlennyx-antioksidantov/
https://cyberleninka.ru/article/n/normalizatsiya-rostovyh-harakteristik-kletok-fibrosarkomy-v-kulture-pri-deystvii-mitohondrialno-napravlennyh-antioksidantov
https://research-journal.org/wp-content/uploads/2011/10/10-4-52.pdf#page=49 -
6Academic Journal
Authors: Мнихович, Максим
Subject Terms: АПОПТОЗ, ПРОЛИФЕРАЦИЯ, ФИБРОЗНО-КИСТОЗНАЯ БОЛЕЗНЬ, НЕОПЛАСТИЧЕСКАЯ ТРАНСФОРМАЦИЯ
File Description: text/html
-
7Book
Authors: Линдін, Микола Сергійович, Лындин, Николай Сергеевич, Lyndin, Mykola Serhiiovych, Романюк, Анатолій Миколайович, Романюк, Анатолий Николаевич, Romaniuk, Anatolii Mykolaiovych, Сікора, Владислав Володимирович, Сикора, Владислав Владимирович, Sikora, Vladyslav Volodymyrovych, Зінгер, Б.Б.
Subject Terms: клітинна адгезія, клеточная адгезия, cell adhesion, раково-ембріональний антиген, раково-эмбриональный антиген, cancer-embryonic antigen, неопластична трансформація, неопластическая трансформация, neoplastic transformation
File Description: application/pdf
Availability: https://essuir.sumdu.edu.ua/handle/123456789/78862
-
8Academic Journal
Source: Российский медико-биологический вестник имени академика И.П. Павлова.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, АПОПТОЗ, ПРОЛИФЕРАЦИЯ, ФИБРОЗНО-КИСТОЗНАЯ БОЛЕЗНЬ, НЕОПЛАСТИЧЕСКАЯ ТРАНСФОРМАЦИЯ, 3. Good health
File Description: text/html
-
9Dissertation/ Thesis
Authors: Ивина Анастасия Анатольевна
Subject Terms: автореферат диссертации, медицина, патологическая анатомия, гиперплазия эпителия, эпителиальная дисплазия, рак in situ, плоскоклеточный рак, веррукозная гиперплазия, веррукозная карцинома, красный плоский лишай, псевдоэпителиоматозная гиперплазия, пиогенная гранулема, некротическая сиалометаплазия, слизистая оболочка рта, эпителий, неопластическая трансформация, молекулярные механизмы
Availability: https://repository.rudn.ru/records/dissertation/record/71632/
-
10Dissertation/ Thesis
Authors: Ивина Анастасия Анатольевна
Subject Terms: диссертация, медицина, патологическая анатомия, гиперплазия эпителия, эпителиальная дисплазия, рак in situ, плоскоклеточный рак, веррукозная гиперплазия, веррукозная карцинома, красный плоский лишай, псевдоэпителиоматозная гиперплазия, пиогенная гранулема, некротическая сиалометаплазия, слизистая оболочка рта, эпителий, неопластическая трансформация, молекулярные механизмы
Availability: https://repository.rudn.ru/records/dissertation/record/75287/