-
1Academic Journal
Θεματικοί όροι: некодирующие РНК, посттранскрипционная регуляция генов, экспрессия генов
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.vsu.by/handle/123456789/46416
-
2Academic Journal
Πηγή: Journal of Bioinformatics and Genomics, Vol 25, Iss 3 (2024)
Θεματικοί όροι: long non-coding rnas, genetic variants, head and neck paraganglioma, high-throughput sequencing, QH426-470, высокопроизводительное секвенирование, параганглиома головы и шеи, длинные некодирующие рнк, long non-coding RNAs, длинные некодирующие РНК, генетические варианты, Genetics, экзом, exome
Σύνδεσμος πρόσβασης: https://doaj.org/article/3ab73394b29840bd8da7280c3cc7f6a2
-
3Academic Journal
Συγγραφείς: A. O. Sherbacheva, D. M. Sibirtsev, N. N. Savin, Ya. V. Rumyantseva, A. E. Brazhkina, V. M. Kachalova, A. V. Mamay, D. D. Tipteva, Yu. V. Khitrina, N. G. Zhukov, R. A. Izotov, E. R. Yuldasheva, Ya. A. Anokhina, А. О. Щербачева, Д. М. Сибирцев, Н. Н. Савин, Я. В. Румянцева, А. Е. Бражкина, В. М. Качалова, А. В. Мамай, Д. Д. Типтева, Ю. В. Хитрина, Н. Г. Жуков, Р. А. Изотов, Э. Р. Юлдашева, Я. А. Анохина
Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Θεματικοί όροι: онкогинекология, EVs, exosomes, gynecological cancers, cervical cancer, endometrial cancer, ovarian cancer, biomarkers, microRNAs, long non-coding RNAs, diagnosis, prognosis, gynecologic oncology, ВВ, экзосомы, гинекологические опухоли, рак шейки матки, рак эндометрия, рак яичников, биомаркеры, микроРНК, длинные некодирующие РНК, диагностика, прогнозирование
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2514/1357; Жилина Н.И., Шрамко С.В. Злокачественные новообразования женских репродуктивных органов в динамике 2011–2020 на примере Новокузнецка. Социальные аспекты здоровья населения. 2022;68(3):11. https://doi.org/10.21045/2071-5021-2022-68-3-11.; Zhu B., Gu H., Mao Z. et al. Global burden of gynaecological cancers in 2022 and projections to 2050. J Glob Health. 2024;14:04155. https://doi.org/10.7189/jogh.14.04155.; Кононова Г.А., Жуйкова Л.Д., Ананина О.А. и др. Рак репродуктивной системы у женщин Республики Тыва. Эпидемиологические особенности. Сибирский онкологический журнал. 2024;23(3):5–14. https://doi.org/10.21294/1814-4861-2024-23-3-5-14.; Чернобровкина А.Е. Заболеваемость злокачественными новообразованиями женской половой сферы населения Санкт-Петербурга. Здоровье населения и среда обитания – ЗНиСО. 2022;1(1):29–35. https://doi.org/10.35627/2219-5238/2022-30-1-29-35.; Александрова Л.М., Грецова О.П., Петрова Г.В. и др. Выявление злокачественных новообразований молочной железы и органов женской репродуктивной системы при диспансеризации определенных групп взрослого населения. Профилактическая медицина. 2016;19(3):4–11. https://doi.org/10.17116/profmed20161934-11.; Краевая Е.Е., Силачев Д.Н., Безнощенко О.С. и др. Влияние внеклеточных везикул фолликулярной жидкости на коагуляционный гемостаз яичника. Проблемы репродукции. 2020;26(2):18–26. https://doi.org/10.17116/repro20202602118.; Rafieezadeh D., Rafieezadeh A. Extracellular vesicles and their therapeutic applications: a review article (part1). Int J Physiol Pathophysiol Pharmacol. 2024;16(1):1–9. https://doi.org/10.62347/QPAG5693.; Zeng Y., Qiu Y., Jiang W. et al. Biological features of extracellular vesicles and challenges. Front Cell Dev Biol. 2022;10:816698. https://doi.org/10.3389/fcell.2022.816698.; Fusco C., De Rosa G., Spatocco I. et al. Extracellular vesicles as human therapeutics: a scoping review of the literature. J Extracell Vesicles. 2024;13(5):e12433. https://doi.org/10.1002/jev2.12433.; Zheng M., Hou L., Ma Y. et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer. 2019;18(1):76. https://doi.org/10.1186/s12943-019-0999-x.; Jiang L., Huang Q., Chang J. et al. MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res. 2011;37(7):387–98. https://doi.org/10.3109/01902148.2010.492068.; Bi Q., Tang S., Xia L. et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One. 2012;7(6):e40169. https://doi.org/10.1371/journal.pone.0040169.; Lv A., Tu Z., Huang Y. et al. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett. 2021;21(1):54. https://doi.org/10.3892/ol.2020.12316.; Wang X., Tang S., Le S.Y. et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3(7):e2557. https://doi.org/10.1371/journal.pone.0002557.; Yao Q., Xu H., Zhang Q.Q. et al. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009;388(3):539–42. https://doi.org/10.1016/j.bbrc.2009.08.044.; Liu J., Sun H., Wang X. et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73. https://doi.org/10.3390/ijms15010758.; Zhang J., Liu S.C., Luo X.H. et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30(6):1116–21. https://doi.org/10.1002/jcla.21990.; Yang L., Bai H.-S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur Rev Med Pharmacol Sci. 2015;19(17):3187–93.; Kim H.J., Lee D.W., Yim G.W. et al. Long non-coding RNA HOTAIR is associated with human cervical cancer progression. Int J Oncol. 2015;46(2):521–30. https://doi.org/10.3892/ijo.2014.2758.; Zhang J., Yao T., Wang Y. et al. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13. https://doi.org/10.1080/15384047.2015.1108496.; Liang L.J., Yang Y., Wei W.F. et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression. Oncogenesis. 2021;10(3):30. https://doi.org/10.1038/s41389-021-00319-w.; Someya M., Hasegawa T., Tsuchiya T. et al. Predictive value of an exosomal microRNA-based signature for tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med Mol Morphol. 2023;56(1):38–45. https://doi.org/10.1007/s00795-022-00338-5.; Zhou C.F., Ma J., Huang L. et al. Correction to: cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2022;41(8):1231–33. https://doi.org/10.1038/s41388-021-02165-x.; Zhou C., Wei W., Ma J. et al. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther. 2021;29(4):1512–28. https://doi.org/10.1016/j.ymthe.2020.12.034.; Zhou C., Zhang Y., Yan R. et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021;28(2):715–29. https://doi.org/10.1038/s41418-020-00618-6.; Ding X.Z., Zhang S.Q., Deng X.L., Qiang J.H. Serum exosomal lncRNA DLX6-AS1 is a promising biomarker for prognosis prediction of cervical cancer. Technol Cancer Res Treat. 2021;20:1533033821990060. https://doi.org/10.1177/1533033821990060.; Guo Y., Wang X., Wang K., He Y. Appraising the value of serum and serum-derived exosomal LncRNA-EXOC7 as a promising biomarker in cervical cancer. Clin Lab. 2020;66(7). https://doi.org/10.7754/Clin.Lab.2019.191203.; Qiu J.J., Sun S.G., Tang X.Y. et al. Extracellular vesicular Wnt7b mediates HPV E6-induced cervical cancer angiogenesis by activating the β-catenin signaling pathway. J Exp Clin Cancer Res. 2020;39(1):260. https://doi.org/10.1186/s13046-020-01745-1.; Shi Y, Wang W, Yang B, Tian H. ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer. Cell Biochem Funct. 2017;35(7):477–83. https://doi.org/10.1002/cbf.3307.; Zhang L., Li H., Yuan M. et al. Cervical cancer cells-secreted exosomal microRNA-221-3p promotes invasion, migration and angiogenesis of microvascular endothelial cells in cervical cancer by down-regulating MAPK10 expression. Cancer Manag Res. 2019;11:10307–19. https://doi.org/10.2147/CMAR.S221527.; Wang W., Wu L., Tian J. et al. Cervical cancer cells-derived extracellular vesicles containing microRNA-146a-5p affect actin dynamics to promote cervical cancer metastasis by activating the Hippo-YAP signaling pathway via WWC2. J Oncol. 2022;2022:4499876. https://doi.org/10.1155/2022/4499876.; Yan X., Zhang S., Jia J. et al. Exosomal MiR-423-3p inhibits macrophage M2 polarization to suppress the malignant progression of cervical cancer. Pathol Res Pract. 2022;235:153882. https://doi.org/10.1016/j.prp.2022.153882.; Jiang L., Hong L., Yang W. et al. Co-expression network analysis of the lncRNAs and mRNAs associated with cervical cancer progression. Arch Med Sci. 2019;15(3):754–64. https://doi.org/10.5114/aoms.2019.84740.; Huang X., Liu X., Du B. et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer. Aging (Albany NY). 2021;13(15):19230–42. https://doi.org/10.18632/aging.202565.; Hu Y., Sun X., Mao C. et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 2017;6(2):471–82. https://doi.org/10.1002/cam4.994.; Lei L., Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther. 2020;21(8):717–25. https://doi.org/10.1080/15384047.2020.1764318.; Mo Y., Liang Z., Lan L. et al. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res. 2023;428(2):113621. https://doi.org/10.1016/j.yexcr.2023.113621.; Bhat A., Yadav J., Thakur K. et al. Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer. 2022;22(1):164. https://doi.org/10.1186/s12885-022-09262-4.; Acevedo-Sánchez V., Martínez-Ruiz R.S., Aguilar-Ruíz S.R. et al. Quantitative proteomics for the identification of differentially expressed proteins in the extracellular vesicles of cervical cancer cells. Viruses. 2023;15(3):702. https://doi.org/10.3390/v15030702.; Zhou L., Wang W., Wang F. et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol Cancer. 2021;20(1):57. https://doi.org/10.1186/s12943-021-01352-4.; Fan X., Cao M., Liu C. et al. Three plasma-based microRNAs as potent diagnostic biomarkers for endometrial cancer. Cancer Biomark. 2021;31(2):127–38. https://doi.org/10.3233/CBM-200972.; Daugaard I., Sanders K.J., Idica A. et al. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells. Oncogenesis. 2017;6(7):e366. https://doi.org/10.1038/oncsis.2017.66.; Hu H., Jiang L., Kang X. et al. Extracellular vesicles derived from lung cancer cells promote the progression of lung cancer by delivering miR-151a-5p. Exp Cell Res. 2023;425(1):113526. https://doi.org/10.1016/j.yexcr.2023.113526.; Fan X., Zou X., Liu C. et al. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci Rep. 2021;41(6):BSR20210111. https://doi.org/10.1042/BSR20210111.; Jing L., Hua X., Yuanna D. et al. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag Res. 2020;12:13541–52. https://doi.org/10.2147/CMAR.S283747.; Zhang N., Wang Y., Liu H., Shen W. Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp Cell Res. 2020;394(2):112113. https://doi.org/10.1016/j.yexcr.2020.112113.; Fan J.T., Zhou Z.Y., Luo Y.L. et al. Exosomal lncRNA NEAT1 from cancer-associated fibroblasts facilitates endometrial cancer progression via miR-26a/b-5p-mediated STAT3/YKL-40 signaling pathway. Neoplasia. 2021;23(7):692–703. https://doi.org/10.1016/j.neo.2021.05.004.; Seagle B.L., Alexander A.L., Lantsman T., Shahabi S. Prognosis and treatment of positive peritoneal cytology in early endometrial cancer: matched cohort analyses from the National Cancer Database. Am J Obstet Gynecol. 2018;218(3):329.e1–329.e15. https://doi.org/10.1016/j.ajog.2017.11.601.; Roman-Canal B., Moiola C.P., Gatius S. et al. EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel). 2019;11(6):839. https://doi.org/10.3390/cancers11060839.; Xu H., Gong Z., Shen Y. et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97. https://doi.org/10.2217/epi-2017-0109.; Wakabayashi I., Marumo M., Ekawa K., Daimon T. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract Lab Med. 2024;39:e00376. https://doi.org/10.1016/j.plabm.2024.e00376.; Cheng L., Sun X., Scicluna B.J. et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86(2):433–44. https://doi.org/10.1038/ki.2013.502.; Whitehouse J.S., Weigelt J.A. Diagnostic peritoneal lavage: a review of indications, technique, and interpretation. Scand J Trauma Resusc Emerg Med. 2009;17:13. https://doi.org/10.1186/1757-7241-17-13.; Mariscal J., Fernandez-Puente P., Calamia V. et al. Proteomic characterization of epithelial-like extracellular vesicles in advanced endometrial cancer. J Proteome Res. 2019;18(3):1043–53. https://doi.org/10.1021/acs.jproteome.8b00750.; Herrero C., de la Fuente A., Casas-Arozamena C. et al. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer. Cancers (Basel). 2019;11(12):2000. https://doi.org/10.3390/cancers11122000.; Li B.L., Lu W., Qu J.J. et al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol. 2019;234(3):2943–53. https://doi.org/10.1002/jcp.27111.; Srivastava A., Moxley K., Ruskin R. et al. A non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 2018;20(5):82. https://doi.org/10.1208/s12248-018-0220-y.; Li F., Liang A., Lv Y. et al. MicroRNA-200c inhibits epithelial-mesenchymal transition by targeting the BMI-1 gene through the phospho-AKT pathway in endometrial carcinoma cells in vitro. Med Sci Monit. 2017;23:5139–49. https://doi.org/10.12659/msm.907207.; Liu Y., Sánchez-Tilló E., Lu X. et al. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem. 2014;289(7):4116–25. https://doi.org/10.1074/jbc.M113.533505.; Song Y., Wang M., Tong H. et al. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene. 2021;40(3):633–46. https://doi.org/10.1038/s41388-020-01555-x.; Sommella E., Capaci V., Aloisio M. et al. A label-free proteomic approach for the identification of biomarkers in the exosome of endometrial cancer serum. Cancers (Basel). 2022;14(24):6262. https://doi.org/10.3390/cancers14246262.; Wang J., Gong X., Yang L. et al. Loss of exosomal miR-26a-5p contributes to endometrial cancer lymphangiogenesis and lymphatic metastasis. Clin Transl Med. 2022;12(5):e846. https://doi.org/10.1002/ctm2.846.; Maida Y., Takakura M., Nishiuchi T. et al. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium. Cancer Med. 2016;5(2):304–14. https://doi.org/10.1002/cam4.545.; Gu X., Shi Y., Dong M. еt al. Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 2021;12(9):818. https://doi.org/10.1038/s41419-021-04087-8.; Ding D.C., Chen W., Wang J.H., Lin S.Z. Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: a population-based cohort study in Taiwan. Medicine (Baltimore). 2018;97(39):e12608. https://doi.org/10.1097/MD.0000000000012608.; Che X., Jian F., Chen C. et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol. 2020;64(1):1–12. https://doi.org/10.1530/JME-19-0159.; Zhao M., Mishra L., Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14(2):111–23. https://doi.org/10.7150/ijbs.23230.; Xiao L., He Y., Peng F. et al. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res. 2020;2020:9731049. https://doi.org/10.1155/2020/9731049.; Peres L.C., Cushing-Haugen K.L., Köbel M. et al. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst. 2019;111(1):60–8. https://doi.org/10.1093/jnci/djy071.; McAlarnen L.A., Gupta P., Singh R. et al. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics. 2022;26:347–59. https://doi.org/10.1016/j.omto.2022.08.005.; Li L., Zhang F., Zhang J. et al. Identifying serum small extracellular vesicle microRNA as a noninvasive diagnostic and prognostic biomarker for ovarian cancer. ACS Nano. 2023;17(19):19197–210. https://doi.org/10.1021/acsnano.3c05694.; Wang W., Jo H., Park S. et al. Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett. 2022;542:215735. https://doi.org/10.1016/j.canlet.2022.215735.; Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 2016;7(13):16923–35. https://doi.org/10.18632/oncotarget.7850.; Kim S., Choi M.C., Jeong J.Y. et al. Serum exosomal miRNA-145 and miRNA-200c as promising biomarkers for preoperative diagnosis of ovarian carcinomas. J Cancer. 2019;10(9):1958–67. https://doi.org/10.7150/jca.30231.; Su Y.Y., Sun L., Guo Z.R. et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res. 2019;12(1):6. https://doi.org/10.1186/s13048-018-0477-x.; Pan C., Stevic I., Müller V. et al. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 2018;12(11):1935–48. https://doi.org/10.1002/1878-0261.12371.; Xiong J., He X., Xu Y. et al. MiR-200b is upregulated in plasma-derived exosomes and functions as an oncogene by promoting macrophage M2 polarization in ovarian cancer. J Ovarian Res. 2021;14(1):74. https://doi.org/10.1186/s13048-021-00826-9.; Cappellesso R., Tinazzi A., Giurici T. et al. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122(9):685–93. https://doi.org/10.1002/cncy.21442.; Cao J., Zhang Y., Mu J. et al. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell. 2021;34(4):1185–96. https://doi.org/10.1007/s13577-021-00522-2.; Mitra A., Yoshida-Court K., Solley T.N. et al. Extracellular vesicles derived from ascitic fluid enhance growth and migration of ovarian cancer cells. Sci Rep. 2021;11(1):9149. https://doi.org/10.1038/s41598-021-88163-1.; Zhou J., Gong G., Tan H. et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 2015;33(6):2915–23. https://doi.org/10.3892/or.2015.3937.; Ying X., Wu Q., Wu X. et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87. https://doi.org/10.18632/oncotarget.9246.; Yunusova N., Dzhugashvili E., Yalovaya A. et al. Comparative analysis of tumor-associated microRNAs and tetraspanines from exosomes of plasma and ascitic fluids of ovarian cancer patients. Int J Mol Sci. 2022;24(1):464. https://doi.org/10.3390/ijms24010464.; Xu Y., Xu L., Zheng J. et al. MiR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio. 2017;7(9):1258–66. https://doi.org/10.1002/2211-5463.12257.; Lai Y., Dong L., Jin H. et al. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging (Albany NY). 2021;13(20):23726–38. https://doi.org/10.18632/aging.203645.; Ma R., Ye X., Cheng H. et al. Tumor-derived exosomal circRNA051239 promotes proliferation and migration of epithelial ovarian cancer. Am J Transl Res. 2021;13(3):1125–39.; Yamamoto C.M., Oakes M.L., Murakami T. et al. Comparison of benign peritoneal fluid- and ovarian cancer ascites-derived extracellular vesicle RNA biomarkers. J Ovarian Res. 2018;11(1):20. https://doi.org/10.1186/s13048-018-0391-2.; Keserű J.S., Soltész B., Lukács J. et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015.; Szajnik M., Derbis M., Lach M. et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale). 2013;Suppl 4:3. https://doi.org/10.4172/2161-0932.S4-003.; Czystowska-Kuzmicz M., Sosnowska A., Nowis D. et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10(1):3000. https://doi.org/10.1038/s41467-019-10979-3.; Lai H., Guo Y., Tian L. et al. Protein panel of serum-derived small extracellular vesicles for the screening and diagnosis of epithelial ovarian cancer. Cancers (Basel). 2022;14(15):3719. https://doi.org/10.3390/cancers14153719.; Trinidad C.V., Pathak H.B., Cheng S. et al. Lineage specific extracellular vesicle-associated protein biomarkers for the early detection of high grade serous ovarian cancer. Sci Rep. 2023;13(1):18341. https://doi.org/10.1038/s41598-023-44050-5.; Yokoi A., Ukai M., Yasui T. et al. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. Sci Adv. 2023;9(27):eade6958. https://doi.org/10.1126/sciadv.ade6958.; Zhang P., Zhou X., He M. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3(6):438–51. https://doi.org/10.1038/s41551-019-0356-9.; Kong L., Xu F., Yao Y. et al. Ascites-derived CDCP1+ extracellular vesicles subcluster as a novel biomarker and therapeutic target for ovarian cancer. Front Oncol. 2023;13:1142755. https://doi.org/10.3389/fonc.2023.1142755.; Gupta P., Kadamberi I.P., Mittal S. et al. Tumor derived extracellular vesicles drive T cell exhaustion in tumor microenvironment through sphingosine mediated signaling and impacting immunotherapy outcomes in ovarian cancer. Adv Sci (Weinh). 2022;9(14):e2104452. https://doi.org/10.1002/advs.202104452.; Li N., Lin G., Zhang Y. et al. Exosome-related protein CRABP2 is upregulated in ovarian carcinoma and enhances cell proliferation. Discov Oncol. 2022;13(1):33. https://doi.org/10.1007/s12672-022-00492-3.; Dorayappan K.D.P, Gardner M.L., Hisey C.L. et al. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res. 2019;79(13):3503–13. https://doi.org/10.1158/0008-5472.CAN-18-3538.; Vaksman O., Tropé C., Davidson B., Reich R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis. 2014;35(9):2113–20. https://doi.org/10.1093/carcin/bgu130.; Filippov-Levy N., Cohen-Schussheim H., Tropé C.G. et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 2018;148(3):559–66. https://doi.org/10.1016/j.ygyno.2018.01.004.; Qiu J.J., Lin X.J., Tang X.Y. et al. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 2018;14(14):1960–73. https://doi.org/10.7150/ijbs.28048.; Asare-Werehene M., Hunter R.A., Gerber E. et al. The application of an extracellular vesicle-based biosensor in early diagnosis and prediction of chemoresponsiveness in ovarian cancer. Cancers (Basel). 2023;15(9):2566. https://doi.org/10.3390/cancers15092566.; Gerber E., Asare-Werehene M., Reunov A. et al. Predicting chemoresponsiveness in epithelial ovarian cancer patients using circulating small extracellular vesicle-derived plasma gelsolin. J Ovarian Res. 2023;16(1):14. https://doi.org/10.1186/s13048-022-01086-x.; Li W., Lu Y., Yu X. et al. Detection of exosomal tyrosine receptor kinase B as a potential biomarker in ovarian cancer. J Cell Biochem. 2019;120(4):6361–9. https://doi.org/10.1002/jcb.27923.; Yokoi A., Yoshioka Y., Hirakawa A. et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017;8(52):89811–23. https://doi.org/10.18632/oncotarget.20688.; Jo A., Green A., Medina J.E. et al. High-throughput profiling of extracellular vesicles for earlier ovarian cancer detection. Adv Sci (Weinh). 2023;10(27):e2301930. https://doi.org/10.1002/advs.202301930.; Yoshimura A., Sawada K., Nakamura K. et al. Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 2018;18(1):1065. https://doi.org/10.1186/s12885-018-4974-5.; Kobayashi M., Sawada K., Nakamura K. et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 2018;11(1):81. https://doi.org/10.1186/s13048-018-0458-0.; Au Yeung C.L., Co N.N., Tsuruga T. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150. https://doi.org/10.1038/ncomms11150.; Wang C., Wang J., Shen X. et al. LncRNA SPOCD1-AS from ovarian cancer extracellular vesicles remodels mesothelial cells to promote peritoneal metastasis via interacting with G3BP1. J Exp Clin Cancer Res. 2021;40(1):101. https://doi.org/10.1186/s13046-021-01899-6.; Cheng L., Zhang K., Qing Y. et al. Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 2020;13(1):9. https://doi.org/10.1186/s13048-020-0609-y.; Černe K., Kelhar N., Resnik N. et al. Characteristics of extracellular vesicles from a high-grade serous ovarian cancer cell line derived from a platinum-resistant patient as a potential tool for aiding the prediction of responses to chemotherapy. Pharmaceuticals (Basel). 2023;16(6):907. https://doi.org/10.3390/ph16060907.; Gao Q., Fang X., Chen Y. et al. Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res. 2021;47(1):73–87. https://doi.org/10.1111/jog.14418.; https://www.gynecology.su/jour/article/view/2514
-
4Academic Journal
Συγγραφείς: Kovaleva O.V., Podlesnaya P.A., Kudinova E.S., Rashidova M.A., Mochalnikova V.V., Gratchev A.N.
Συνεισφορές: The research was carried out at the expense of a grant from the Russian Science Foundation (grant No. 24-15-00356, https://rscf.ru/project/24-15-00356)., Исследование выполнено за счет гранта Российского научного фонда (грант № 24-15-00356, https://rscf.ru/project/24-15-00356).
Πηγή: Advances in Molecular Oncology; Vol 11, No 4 (2024); 93-101 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 93-101 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: esophageal squamous cell carcinoma, non-coding RNAs, lncRNA, microenvironment, macrophages, плоскоклеточный рак пищевода, некодирующие РНК, длинные некодирующие РНК, микроокружение, макрофаг
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/732/374; https://umo.abvpress.ru/jour/article/view/732
-
5Academic Journal
Συγγραφείς: Bogdanova V.A., Spirina L.V., Chizhevskaya S.Y., Kovaleva I.V., Nikulnikov K.V.
Συνεισφορές: The work was performed without external funding, Работа выполнена без спонсорской поддержки
Πηγή: Advances in Molecular Oncology; Vol 11, No 1 (2024); 22-30 ; Успехи молекулярной онкологии; Vol 11, No 1 (2024); 22-30 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: melanoma of the skin, MAPK, BRAF, autophagy, melanocyte-inducing transcription factor, microRNAs, long non-coding RNAs, меланома кожи, аутофагия, меланоцитиндуцирующий транскрипционный фактор, микроРНк, длинные некодирующие РНК
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/646/335; https://umo.abvpress.ru/jour/article/view/646
-
6Academic Journal
Συγγραφείς: S. V. Timofeeva, A. O. Sitkovskaya, S. Yu. Filippova, T. V. Chembarova, I. A. Nоvikova, O. I. Kit, L. N. Vashchenko, S. M. Babieva, S. M. Bakulina, E. E. Kechedzhieva, E. A. Andreiko, S. S. Mezentsev, Yu. V. Przhedetsky, E. N. Kolesnikov, С. В. Тимофеева, А. О. Ситковская, С. Ю. Филиппова, Т. В. Чембарова, И. А. Новикова, О. И. Кит, Л. Н. Ващенко, С. М. Бабиева, С. М. Бакулина, Э. Э. Кечеджиева, Е. А. Андрейко, С. С. Мезенцев, Ю. В. Пржедецкий, Е. Н. Колесников
Συνεισφορές: The study was performed without external funding, Исследование проведено без спонсорской поддержки
Πηγή: Medical Genetics; Том 23, № 1 (2024); 52-59 ; Медицинская генетика; Том 23, № 1 (2024); 52-59 ; 2073-7998
Θεματικοί όροι: rs3741219, long non-coding RNAs, breast cancer, meta-analysis, rs2107425, rs2839698, rs217727, длинные некодирующие РНК, рак молочной железы, мета-анализ
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2410/1768; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660; Yuan Y., Wang Y., Niu X. et al. Association of lncRNA H19 polymorphisms with cancer susceptibility: An updated meta-analysis based on 53 studies. Frontiers in genetics. 2022;(13):1051766. doi:10.3389/fgene.2022.1051766; Taniue K., Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci. 2021;22(2):632. doi:10.3390/ijms22020632; Ghahramani Almanghadim H., Ghorbian S., Khademi N.S. et al. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA and cell biology. 2021;40(12):1476–1494. doi:10.1089/dna.2021.0563; Kallen A.N., Zhou X.B., Xu J. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Molecular cell. 2013;52(1):101–112. doi:10.1016/j.molcel.2013.08.027; Yoshimizu T., Miroglio A., Ripoche M.A. et al. The H19 locus acts in vivo as a tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(34):2417–12422. doi:10.1073/pnas.0801540105; Zhang L., Yang F., Yuan J.H. et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–586. doi:10.1093/carcin/bgs381; Moher D., Shamseer L., Clarke M. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi:10.1186/2046-4053-4-1; Barnholtz-Sloan J.S., Shetty P.B., Guan X. et al. FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis. 2010;31(8):1417–1423. doi:10.1093/carcin/bgq128; Butt S., Harlid S., Borgquist S. et al. Genetic predisposition, parity, age at first childbirth and risk for breast cancer. BMC research notes. 2012;(5):414. URL: https://www.researchgate.net/publication/230621915_Genetic_predisposition_parity_age_at_first_childbirth_and_risk_for_breast_cancer; Gong W.J., Yin J.Y., Li X.P. et al. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(6):8349–8358. doi:10.1007/s13277-015-4497-5; Xia Z., Yan R., Duan F. et al. Genetic Polymorphisms in Long Noncoding RNA H19 Are Associated With Susceptibility to Breast Cancer in Chinese Population. Medicine. 2016;95(7):e2771. doi:10.1097/MD.0000000000002771; Hassanzarei S., Hashemi M., Sattarifard H. et al. Genetic polymorphisms in long noncoding RNA H19 are associated with breast cancer susceptibility in Iranian population. Meta Gene. 2017 Dec;(14):1-5. doi:10.2147/OTT.S127962; Lin Y., Fu F., Chen Y. et al. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. OncoTargets and therapy. 2017;(10):4369–4378. doi:10.2147/OTT.S127962; Cui P., Zhao Y., Chu X. et al. SNP rs2071095 in LincRNA H19 is associated with breast cancer risk. Breast cancer research and treatment. 2018;171(1):161–171. URL: https://link.springer.com/article/10.1007/s10549-018-4814-y; Abdollahzadeh S., Ghorbian S. Association of the study between LncRNA-H19 gene polymorphisms with the risk of breast cancer. Journal of clinical laboratory analysis. 2019;33(3):e22826. doi:10.1002/jcla.22826; Safari M.R., Mohammad Rezaei F., Dehghan A. et al. Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in Iranian population. Gene. 2019;(701):121–124. doi:10.1016/j.gene.2019.03.036; Li W., Jiang X., Jin X. et al. Significant association between long non-coding RNA H19 polymorphisms and cancer susceptibility: A PRISMA-compliant meta-analysis and bioinformatics prediction. Medicine (Baltimore). 2020 Apr;99(15):e19322. doi:10.1097/MD.0000000000019322; Kit O.I, Timofeeva S.V., Sitkovskaya A.O. et al. Biobank of the “National Medical Research Centre for Oncology” as a resource for conducting research in the field of personalized medicine. Modern Oncology. 2022; (24):6-11. doi:10.26442/18151434.2022.1.201384; Chen L., Zhang S. Long noncoding RNAs in cell differentiation and pluripotency. Cell and tissue research. 2016;366(3):509–521. doi:10.1007/s00441-016-2451-5; Gao Y., Liu Y., Du L. et al. Down-regulation of miR-24-3p in colorectal cancer is associated with malignant behavior. Medical oncology (Northwood, London, England). 2015;32(1):362. doi:10.1007/s12032-014-0362-4; Liu X., Zhao Y., Li Y., Zhang J. Quantitative assessment of lncRNA H19 polymorphisms and cancer risk: a meta-analysis based on 48,166 subjects. Artificial cells, nanomedicine, and biotechnology. 2020;48(1):15–27. doi:10.1080/21691401.2019.1699804; Vladimirova L.Yu., Storozhakova A.E., Snezhko T.A., et al. Hormone-positive HER2-negative metastatic breast cancer: decision making in real clinical practice. South Russian Journal of Cancer. 2020;1(2):46-51. doi:10.37748/2687-0533-2020-1-2-6
-
7Academic Journal
Συγγραφείς: S. K. Miroshnichenko, O. A. Patutina, M. A. Zenkova, С. К. Мирошниченко, О. А. Патутина, М. А. Зенкова
Συνεισφορές: The study reported in this publication was funded by the Russian Science Foundation, Project No. 19-74-30011., Работа выполнена при финансовой поддержке Российского научного фонда в рамках гранта № 19-74-30011.
Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 140-156 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 140-156 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2
Θεματικοί όροι: миРНКазы, miRNA-targeted oligonucleotide constructs, carcinogenesis, small non-coding RNA, malignant neoplasms, miRNA-masking oligonucleotides, CRISPR/Cas, miRNA sponges, antisense oligonucleotides, miRNases, микроРНК-направленные олигонуклеотидные конструкции, канцерогенез, малые некодирующие РНК, злокачественные неоплазии, микроРНК-маскирующие олигонуклеотиды, микроРНК-спонжи, антисмысловые олигонуклеотиды
Περιγραφή αρχείου: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/578/859; https://www.biopreparations.ru/jour/article/view/578/841; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/864; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/950; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/951; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/952; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/953; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/974; Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://doi.org/10.1126/SCIENCE.1064921; Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50. https://doi.org/10.1016/J.DEVCEL.2006.09.009; Ilieva M, Panella R, Uchida S. MicroRNAs in cancer and cardiovascular disease. Cells. 2022;11(22):3551. https://doi.org/10.3390/cells11223551; Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, et al. Transitional insight into the RNA-based oligonucleotides in cancer treatment. Appl Biochem Biotechnol. 2024;196(3):1685–711. https://doi.org/10.1007/s12010-023-04597-5; Raue R, Frank AC, Syed SN, Brüne B. Therapeutic targeting of microRNAs in the tumor microenvironment. Int J Mol Sci. 2021;22(4):2210. https://doi.org/10.3390/ijms22042210; Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel). 2021;13(11):2680. https://doi.org/10.3390/cancers13112680; Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–64. https://doi.org/10.1093/NAR/GKZ097; Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/GR.082701.108; Dexheimer PJ, Cochella L. MicroRNAs: from mechanism to organism. Front Сell Dev Biol. 2020;8:409. https://doi.org/10.3389/FCELL.2020.00409; Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol. 2024;21(1):1–8. https://doi.org/10.1080/15476286.2023.2288741; Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019; 20(1):5–20. https://doi.org/10.1038/S41580-018-0059-1; Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006; Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37. https://doi.org/10.1038/S41580-018-0045-7; Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res. 2022;50(12):6618–38. https://doi.org/10.1093/nar/gkac519; Chen CYA, Shyu A. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA. 2011;2(2):167–83. https://doi.org/10.1002/WRNA.40; Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57. https://doi.org/10.1093/NAR/GKAD1142; Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol. 2023;14:1097491. https://doi.org/10.3389/FIMMU.2023.1097491; Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018;17(1):64. https://doi.org/10.1186/S12943-018-0765-5; Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, et al. Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 2022;132(6):126155. https://doi.org/10.1172/JCI126155; Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10:665. https://doi.org/10.3389/FPHAR.2019.00665; Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol. 2023;39(1):53–83. https://doi.org/10.1007/s10565-022-09761-x; Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, et al. MicroRNAs in cardiovascular disease. Hell J Cardiol. 2020;61(3):165–73. https://doi.org/10.1016/j.hjc.2020.03.003; Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https://doi.org/10.1038/SIGTRANS.2015.4; Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. https://doi.org/10.1016/J.YDBIO.2006.08.028; Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76(13):3666–70. https://doi.org/10.1158/0008-5472.CAN-16-0359; Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–84. https://doi.org/10.1002/JCP.28058; Ragan C, Zuker M, Ragan MA. Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput Biol. 2011;7(2):1001090. https://doi.org/10.1371/journal.pcbi.1001090; Kingston ER, Bartel DP. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 2019;29(11):1777–90. https://doi.org/10.1101/gr.251421.119; Zlotorynski E. Insights into the kinetics of microRNA biogenesis and turnover. Nat Rev Mol Cell Biol. 2019;20(9):511. https://doi.org/10.1038/S41580-019-0164-9; Sultan S, Rozzi A, Gasparello J, Manicardi A, Corradini R, Papi C, et al. A peptide nucleic acid (PNA) masking the miR-145-5p binding site of the 3’UTR of the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA enhances CFTR expression in Calu-3 cells. Molecules. 2020;25(7):1677. https://doi.org/10.3390/molecules25071677; Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7(2):2108. https://doi.org/10.1038/cddis.2016.29; Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, et al. Downregulation of miR-522 suppresses proliferation and metastasis of nonsmall cell lung cancer cells by directly targeting DENN/ MADD domain containing 2D. Sci Rep. 2016;6(1):19346. https://doi.org/10.1038/srep19346; Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063–72. https://doi.org/10.1182/blood-2012-04-423004; Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190–201. https://doi.org/10.18632/oncotarget.2778; Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096; Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023;10(1):32. https://doi.org/10.1186/S40779-023-00468-6; Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(1):22312. https://doi.org/10.1038/srep22312; Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62. https://doi.org/10.1038/NM.3802; Jiang Q, Meng X, Meng L, Chang N, Xiong J, Cao H, et al. Small indels induced by CRISPR/Cas9 in the 5’ region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol. 2014;11(10):1243–9. https://doi.org/10.1080/15476286.2014.996067; Kurata JS, Lin RJ. MicroRNA-focused CRISPRCas9 library screen reveals fitness-associated miRNAs. RNA. 2018;24(7):966–81. https://doi.org/10.1261/rna.066282.118; Wu Q, Michaels YS, Fulga TA. Interrogation of functional miRNA-target interactions by CRISPR/Cas9 genome engineering. Methods Mol Biol. 2023;2630:243–64. https://doi.org/10.1007/978-1-0716-2982-6_16; Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–7. https://doi.org/10.1158/0008-5472.CAN-17-2142; Nieland L, van Solinge TS, Cheah PS, Morsett LM, El Khoury J, Rissman JI, et al. CRISPR-Cas knockout of miR21 reduces glioma growth. Mol Ther Oncolytics. 2022;25:121–36. https://doi.org/10.1016/j.omto.2022.04.001; Ahi Y, Bangari D, Mittal S. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–20. https://doi.org/10.2174/156652311796150372; Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6. https://doi.org/10.1038/nmeth1079; Jie J, Liu D, Wang Y, Wu Q, Wu T, Fang R. Generation of MiRNA sponge constructs targeting multiple MiRNAs. J Clin Lab Anal. 2022;36(7):24527. https://doi.org/10.1002/jcla.24527; Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41. https://doi.org/10.1126/science.1102513; Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A. Generation of miRNA sponge constructs. Methods. 2012;58(2):113–7. https://doi.org/10.1016/j.ymeth.2012.07.019; Rama AR, Quiñonero F, Mesas C, Melguizo C, Prados J. Synthetic circular miR-21 sponge as tool for lung cancer treatment. Int J Mol Sci. 2022;23(6):2963. https://doi.org/10.3390/ijms23062963; Gao S, Tian H, Guo Y, Li Y, Guo Z, Zhu X, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–193. https://doi.org/10.1016/j.actbio.2015.07.020; Liang AL, Zhang TT, Zhou N, Wu CY, Lin MH, Liu YJ. miRNA-10b sponge: an anti-breast cancer study in vitro. Oncol Rep. 2016;35(4):1950–8. https://doi.org/10.3892/or.2016.4596; Mignacca L, Saint-Germain E, Benoit A, Bourdeau V, Moro A, Ferbeyre G. Sponges against miR-19 and miR-155 reactivate the p53-Socs1 axis in hematopoietic cancers. Cytokine. 2016;82:80–6. https://doi.org/10.1016/j.cyto.2016.01.015; Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, et al. A microRNA 221– and 222–mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells. Gastroenterology. 2014;147(4):847–59. https://doi.org/10.1053/j.gastro.2014.06.006; Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37(3):24. https://doi.org/10.1093/nar/gkn1053; Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43(9):854–9. https://doi.org/10.1038/ng.905; Alkan AH, Akgül B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91–104. https://doi.org/10.1007/978-1-0716-1170-8_5; Olesen MT, Kristensen L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65(4):685–96. https://doi.org/10.1042/EBC20200060; Meng L, Liu C, Lü J, Zhao Q, Deng S, Wang G, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964. https://doi.org/10.1038/ncomms13964; Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27Kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–60. https://doi.org/10.3892/ijo_00000296; Quan J, Jin L, Pan X, He T, Lai Y, Chen P, et al. Oncogenic miR-23a-5p is associated with cellular function in RCC. Mol Med Rep. 2017;16(2):2309–17. https://doi.org/10.3892/mmr.2017.6829; Zhang R, Li F, Wang W, Wang X, Li S, Liu J. The effect of antisense inhibitor of miRNA 106b~25 on the proliferation, invasion, migration, and apoptosis of gastric cancer cell. Tumor Biol. 2016;37(8):10507–15. https://doi.org/10.1007/s13277-016-4937-x; Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Mol Med. 2016;8(3):268–87. https://doi.org/10.15252/emmm.201505495; Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Darvishian F, Chiriboga L, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2011;30(12):1481–8. https://doi.org/10.1038/onc.2010.523; Patutina OA, Gaponova (Miroshnichenko) SK, Sen’kova AV, Savin IA, Gladkikh DV, Burakova EA, et al. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc Natl Acad Sci. 2020;117(51):32370–9. https://doi.org/10.1073/pnas.2016158117; Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, Vlassov VV, et al. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci USA. 2019;116(4):1229–34. https://doi.org/10.1073/pnas.1813376116; Gaponova S, Patutina O, Sen’kova A, Burakova E, Savin I, Markov A, et al. Single shot vs. cocktail: a comparison of mono- and combinative application of miRNA-targeted mesyl oligonucleotides for efficient antitumor therapy. Cancers (Basel). 2022;14(18):4396. https://doi.org/10.3390/cancers14184396; Costa PM, Cardoso AL, Custódia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9. https://doi.org/10.1016/j.jconrel.2015.04.002; Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017;108(7):1493–503. https://doi.org/10.1111/cas.13267; Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 2023;16(1):68. https://doi.org/10.1186/s13045-023-01468-8; Gaglione M, Milano G, Chambery A, Moggio L, Romanelli A, Messere A. PNA-based artificial nucleases as antisense and anti-miRNA oligonucleotide agents. Mol Biosyst. 2011;7(8):2490–9. https://doi.org/10.1039/c1mb05131h; Dogandzhiyski P, Ghidini A, Danneberg F, Strömberg R, Göbel MW. Studies on tris(2-aminobenzimidazole)-PNA based artificial nucleases: a comparison of two analytical techniques. Bioconjug Chem. 2015;26(12):2514–9. https://doi.org/10.1021/acs.bioconjchem.5b00534; Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, et al. miRNases: novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials. 2017;122:163–78. https://doi.org/10.1016/j.biomaterials.2017.01.018; Patutina O, Chiglintseva D, Bichenkova E, Gaponova S, Mironova N, Vlassov V, et al. Dual miRNases for triple incision of miRNA target: design concept and catalytic performance. Molecules. 2020;25(10):2459. https://doi.org/10.3390/MOLECULES25102459; Patutina O, Chiglintseva D, Amirloo B, Clarke D, Gaponova S, Vlassov V, et al. Bulge-forming miRNases cleave oncogenic miRNAs at the central loop region in a sequence-specific manner. Int J Mol Sci. 2022;23(12):6562. https://doi.org/10.3390/ijms23126562; Patutina OA, Miroshnichenko SK, Mironova NL, Sen’kova AV, Bichenkova EV, Clarke DJ, et al. Catalytic knockdown of MIR-21 by artificial ribonuclease: biological performance in tumor model. Front Pharmacol. 2019;10:879. https://doi.org/10.3389/fphar.2019.00879; https://www.biopreparations.ru/jour/article/view/578
-
8Academic Journal
Συγγραφείς: Kovaleva O.V., Podlesnaya P.A., Kudinova E.S., Mochalnikova V.V., Kushlinskii N.E., Gratchev A.N.
Συνεισφορές: 0
Πηγή: Almanac of Clinical Medicine; Vol 52, No 4 (2024); 189-196 ; Альманах клинической медицины; Vol 52, No 4 (2024); 189-196 ; 2587-9294 ; 2072-0505
Θεματικοί όροι: long non-coding RNAs, non-small cell lung cancer, marker, prognosis, длинные некодирующие РНК, немелкоклеточный рак легкого, маркер, прогноз
Περιγραφή αρχείου: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17232/1683; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160156; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160157; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160158; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160159; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160160; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160161; https://almclinmed.ru/jour/article/view/17232
-
9Academic Journal
Συγγραφείς: Мустафин, Р. Н., Хуснутдинова, Э. К.
Θεματικοί όροι: медицина, медицинская генетика, вирусная мимикрия, длинные некодирующие РНК, злокачественные новообразования, канцерогенез, микроРНК, мобильные генетические элементы, таргетная терапия, транспозоны
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/62805
-
10Academic Journal
Συγγραφείς: I.A. Novikova, N.N. Timoshkina, D.S. Kutilin
Πηγή: Yakut Medical Journal. :74-82
Θεματικοί όροι: некодирующие РНК, 4. Education, колоректальный рак, микроРНК, экспрессия, 3. Good health
-
11Academic Journal
Συγγραφείς: Mustafin R.N.
Πηγή: Advances in Molecular Oncology; Vol 10, No 4 (2023); 21-30 ; Успехи молекулярной онкологии; Vol 10, No 4 (2023); 21-30 ; 2413-3787 ; 2313-805X
Θεματικοί όροι: long non-coding RNAs, malignant neoplasms, carcinogenesis, miRNAs, transposons, retroelements, длинные некодирующие РНК, злокачественные новообразования, канцерогенез, микроРНК, транспозоны, ретроэлементы
Περιγραφή αρχείου: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/603/319; https://umo.abvpress.ru/jour/article/view/603
-
12Academic Journal
Συγγραφείς: M. N. Ammar, N. P. Milutina, E. V. Butenko, R. M. Ali, T. P. Shkurat, М. Н. Аммар, Н. П. Милютина, Е. В. Бутенко, Р. М. Али, Т. П. Шкурат
Πηγή: Medical Genetics; Том 22, № 3 (2023); 3-9 ; Медицинская генетика; Том 22, № 3 (2023); 3-9 ; 2073-7998
Θεματικοί όροι: длинные некодирующие РНК, obesity, gluconeogenesis, lipid metabolism, insulin resistance, hypoxia, Н19, ожирение, глюконеогенез, липидный обмен, резистентность к инсулину, гипоксия
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2274/1699; Ajlouni K., Khader Y., Batieha A., et al. An alarmingly high and increasing prevalence of obesity in Jordan. Epidemiol Health. 2020;42:e2020040. doi:10.4178/epih.e2020040.; Safaei M., Sundararajan E.A., Driss M. et al. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. ComputBiol Med. 2021; 136: 104754. doi:10.1016/j.compbiomed.2021.104754.; Shi Y., Qu J., Gai L., et al. Long Non-coding RNAs in Metabolic and Inflammatory Pathways in Obesity. Curr Pharm Des. 2020; (26):3317–3325.; Chen S., Liu D. Zhou Z., Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27(1):122. doi:10.1186/s10020-021-00386-0.; Liu C., Yang Z., Wu J., et al. lncRNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology. 2018; (67):1768.; Wu H.Y., Cheng Y, Jin L.Y, et al. Paternal obesity impairs hepatic gluconeogenesis of offspring by altering Igf2/H19 DNA methylation. Mol Cell Endocrinol. 2021;529:111264. doi:10.1016/j.mce.2021.111264.; Wang Y., Hylemon P.B., Zhou H. Long Noncoding RNA H19: A Key Player in Liver Diseases. Hepatology. 2021; (74):1652–1659.; Özgür E., Ferhatoǧlu F., Sen F., et al. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 2020; (27):11–17.; Goshen R., Rachmilewitz J., Schneider T, et al. The expression of the H-19 and IGF-2 genes during human embryogenesis and placental development. MolReprod Dev. 1993; (34):374–379.; Lustig O., Ariel I., Ilan J., et al. Expression of the imprinted gene H19 in the human fetus. MolReprod Dev. 1994; (38):239–246.; Gabory A., Ripoche M.A., Yoshimizu T., Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006; (113):188–193.; Gabory A., Jammes H., Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010; (32):473–480.; Goyal N., Sivadas A., Shamsudheen K. V., et al. RNA sequencing of db/db mice liver identifies lncRNA H19 as a key regulator of gluconeogenesis and hepatic glucose output. Sci Rep. 2017;7(1):8312. doi:10.1038/s41598-017-08281-7.; Zhang N, Geng T, Wang Z, et al. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia. JCI Insight. 2018;3(10):e120304. doi:10.1172/jci.insight.120304.; Knoch K.P., Nath-Sain S., Petzold A., et al. PTBP1 is required for glucose-stimulated cap-independent translation of insulin granule proteins and Coxsackieviruses in beta cells. MolMetab. 2014; (3):518– 530.; Gao Y…, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014; (42):13799–13811.; Gui W., Zhu W.F., Zhu Y., et al. LncRNAH19 improves insulin resistance in skeletal muscle by regulating heterogeneous nuclear ribonucleoprotein A1. Cell Commun Signal. 2020;18(1):173. doi:10.1186/s12964-020-00654-2.; Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013; (93):1–21.; Lefere S., Van Steenkiste C., Verhelst X., et al. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci. 2016; (73):3419–3431.; Xia Q.S., Lu F.E., Wu F., et al. New role for ceramide in hypoxia and insulin resistance. World J Gastroenterol. 2020; (26):2177.; Kayser B., Verges S. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev. 2013; (14):579–592.; Arcidiacono B., Chiefari E., Foryst-Ludwig A., et al. Obesity-related hypoxia via miR-128 decreases insulin-receptor expression in human and mouse adipose tissue promoting systemic insulin resistance. EBioMedicine. 2020;59:102912. doi:10.1016/j.ebiom.2020.102912.; Ji E., Kim C., Kim W., Lee E.K. Role of long non-coding RNAs in metabolic control. BiochimBiophysActa - Gene Regul Mech. 2020; (1863):194348.; Tech K., Deshmukh M., Gershon T.R. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma. Cancer Lett. 2015; (356):268–272.; Luan W., Zhou Z., Ni X., et al. Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. J Cancer Res ClinOncol. 2018; (144):531–542.; Rotman Y., Sanyal A.J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017; (66):180–190.; Liu J., Tang T., Wang G.D., Liu B. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in nonalcoholic fatty liver disease. Biosci Rep. 2019; (39):20181722.; Guo J., Fang W., Sun L., et al. Ultraconserved element uc.372 drives hepatic lipid accumulation by suppressing miR-195/miR4668 maturation. Nat Commun. 2018; (9): 612. Doi:10.1038/s41467-018-03072-8; Wang H., Cao Y., Shu L., et al. Long non-coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes. J Cell Mol Med. 2020; (24):1399.; Kallen A.N., Zhou X.B., Xu J., et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013; (52):101–112.; Geng T., Liu Y., Xu Y., et al. H19 lncRNA Promotes Skeletal Muscle Insulin Sensitivity in Part by Targeting AMPK. Diabetes. 2018; (67):2183–2198.; Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol. 2012; (44):33–45.; Goyal N., Tiwary S., Kesharwani D., Datta M. Long non-coding RNA H19 inhibition promotes hyperglycemia in mice by upregulating hepatic FoxO1 levels and promoting gluconeogenesis. J Mol Med (Berl). 2019; (97):115–126.; Schmidt E., Dhaouadi I., Gaziano I., et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun. 2018; 9(1):3622. doi:10.1038/s41467-018-05933-8.; Huang Y., Zheng Y., Jin C., et al. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci Rep. 2016; (6):28897. Doi:10.1038/srep28897; Corrado C., Costa V., Giavaresi G., et al. Long Non Coding RNA H19: A New Player in Hypoxia-Induced Multiple Myeloma Cell Dissemination. Int J Mol Sci. 2019; 20(4):801. doi:10.3390/ijms20040801.; Wu W., Hu Q., Nie E., et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep. 2017; 7:45029. doi:10.1038/srep45029.; Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ). 2015; (3):83.; Kawai T., Autieri M. V., Scalia R. Inflammation: From Cellular Mechanisms to Immune Cell Education: Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol - Cell Physiol. 2021; (320):C375.; Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019; (234):8152–8161.; Wang S.H., Zhu X.L., Wang F., et al. LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/ Parkin signaling during obesity. Cell Death Dis. 2021; 12(6):557. doi:10.1038/s41419-021-03821-6.; Ghafouri-Fard S., Esmaeili M., Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother. 2020; 123:109774. doi:10.1016/j.biopha.2019.109774.; Yau M.Y.C., Xu L., Huang C.L., Wong C.M. Long Non-Coding RNAs in Obesity-Induced Cancer. Non-Coding RNA. 2018; 4(3):19. doi:10.3390/ncrna4030019.; Daneshmoghadam J., Omidifar A., Akbari Dilmaghani N., et al. The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. J Clin Lab Anal. 2021; 35(5):e23741. doi:10.1002/jcla.23741.
-
13Academic Journal
Συγγραφείς: G. F. Korytina, I. A. Gibadullin, Sh. R. Zulkarneev, A. I. Gimazovа, V. A. Markelov, R. Kh. Zulkarneev, A. A. Bakirov, A. M. Avzaletdinov, N. Sh. Zagidullin, Г. Ф. Корытина, И. А. Гибадуллин, Ш. Р. Зулкарнеев, А. И. Гимазова, В. А. Маркелов, Р. Х. Зулкарнеев, А. А. Бакиров, А. М. Авзалетдинов, Н. Ш. Загидуллин
Συνεισφορές: The study was carried out with support from the Russian Science Foundation, Contract No. 22-25-00019 dated 16.12.2021., Исследование было выполнено при поддержке гранта РНФ, договор № 22-25-00019 от 16.12.2021 г.
Πηγή: Creative surgery and oncology; Том 13, № 4 (2023); 284-291 ; Креативная хирургия и онкология; Том 13, № 4 (2023); 284-291 ; 2076-3093 ; 2307-0501
Θεματικοί όροι: резекция легкого, COVID-19-induced pulmonary fibrosis, long non-coding RNA, non-invasive biomarkers, videothoracoscopy, biopsy, lung resection, COVID-19-индуцированнный легочный фиброз, длинные некодирующие РНК, неинвазивные биомаркеры, видеоторакоскопия, биопсия
Περιγραφή αρχείου: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/859/571; https://www.surgonco.ru/jour/article/view/859/578; Авдеев С.Н., Айсанов З.Р., Белевский А.С., Илькович М.М., Коган Е.А., Мержоева З.М. и др. Идиопатический легочный фиброз: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022;32(3):473–95. DOI:10.18093/0869-0189-2022-32-3-473-495; Giacomelli C., Piccarducci R., Marchetti L., Romei C., Martini C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol. 2021;193:114812. DOI:10.1016/j.bcp.2021.114812; Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52. DOI:10.1016/S0140-6736(17)30866-8; Tanni S.E., Fabro A.T., de Albuquerque A., Ferreira E.V.M., Verrastro C.G.Y., Sawamura M.V.Y., et al. Pulmonary fibrosis secondary to COVID-19: a narrative review. Expert Rev Respir Med. 2021;15(6):791–803. DOI:10.1080/17476348.2021.1916472; Phan T.H.G., Paliogiannis P., Nasrallah G.K., Giordo R., Eid A.H., Fois A.G., et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78(5):2031–57. DOI:10.1007/s00018-020-03693-7; Michalski J.E., Schwartz D.A. Genetic risk factors for idiopathic pulmonary fibrosis: insights into immunopathogenesis. J Inflamm Res. 2021;13:1305–18. DOI:10.2147/JIR.S280958; Tirelli C., Pesenti C., Miozzo M., Mondoni M., Fontana L., Centanni S. The genetic and epigenetic footprint in idiopathic pulmonary fibrosis and familial pulmonary fibrosis: a state-of-the-art review. Diagnostics (Basel). 2022;12(12):3107. DOI:10.3390/diagnostics12123107; Zhang S., Chen H., Yue D., Blackwell T.S., Lv C., Song X. Long noncoding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med. 2021;23(3):e3318. DOI:10.1002/jgm.3318; Zhang P., Wu W., Chen Q., Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3):20190027. DOI:10.1515/jib-2019-0027; Yan W., Wu Q., Yao W., Li Y., Liu Y., Yuan J., et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep. 2017;7(1):11313. DOI:10.1038/s41598-017-11904-8; Raghu G., Remy-Jardin M., Richeldi L., Thomson C.C., Inoue Y., Johkoh T., et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18–47. DOI:10.1164/rccm.202202-0399ST.; Duong-Quy S., Vo-Pham-Minh T., Tran-Xuan Q., Huynh-Anh T., Vo-Van T., Vu-Tran-Thien Q., et al. Post-COVID-19 pulmonary fibrosis: facts-challenges and futures: a narrative review. Pulm Ther. 2023;9(3):295–307. DOI:10.1007/s41030-023-00226-y; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. DOI:10.1006/meth.2001.1262; Ghafouri-Fard S., Abak A., Talebi S.F., Shoorei H., Branicki W., Taheri M., et al. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother. 2021;143:112132. DOI:10.1016/j.biopha.2021.112132; Lai X., Zhong J., Zhang A., Zhang B., Zhu T., Liao R. Focus on long non-coding RNA MALAT1: Insights into acute and chronic lung diseases. Front Genet. 2022;13:1003964. DOI:10.3389/fgene.2022.1003964; Wang F., Li P., Li F.S. Integrated analysis of a gene correlation network identifies critical regulation of fibrosis by lncRNAs and TFs in idiopathic pulmonary fibrosis. Biomed Res Int. 2020;2020:6537462. DOI:10.1155/2020/6537462; Xiao H., Liu Y., Liang P., Wang B., Tan H., Zhang Y., et al. TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci. 2018;8:23. DOI:10.1186/s13578-018-0221-7; Sun J., Guo Y., Chen T., Jin T., Ma L., Ai L., et al. Systematic analyses identify the anti-fibrotic role of lncRNA TP53TG1 in IPF. Cell Death Dis. 2022;13(6):525. DOI:10.1038/s41419-022-04975-7; Savary G., Dewaeles E., Diazzi S., Buscot M., Nottet N., Fassy J., et al. The long noncoding RNA DNM3OS is a reservoir of fibromirs with major functions in lung fibroblast response to TGF-β and pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200(2):184–98. DOI:10.1164/rccm.201807-1237OC; Fan Q., Jian Y. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Biosci Rep. 2020;40(2):BSR20192645. DOI:10.1042/BSR20192645; https://www.surgonco.ru/jour/article/view/859
-
14Academic Journal
Συγγραφείς: Мустафин, Р. Н., Хуснутдинова, Э. К.
Θεματικοί όροι: медицина, медицинская генетика, вирусы, длинные некодирующие РНК, микроРНК, пептиды, COVID-19, SARS-CoV-2
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/61194
-
15Academic Journal
Συγγραφείς: Чиркин, А. А., Данченко, Е. О.
Θεματικοί όροι: экспрессия генов, некодирующие РНК, посттранскрипционная регуляция генов
Περιγραφή αρχείου: application/pdf
Relation: Біялогія і хімія;№ 1 (109); Чиркин, А. А. Молекулярные механизмы контроля экспрессии генов: роль микроРНК / А. А. Чиркин, Е. О. Данченко // Біялогія і хімія. – 2025. – № 1 (109). – С. 28–35.; https://rep.vsu.by/handle/123456789/46416
Διαθεσιμότητα: https://rep.vsu.by/handle/123456789/46416
-
16Academic Journal
Πηγή: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :17-25
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, long non-coding RNA, TNRC6C-AS1, follicular adenoma, 3. Good health, рак щитовидной железы, 03 medical and health sciences, SLC26A4-AS1, длинные некодирующие РНК, CRNDE, papillary thyroid carcinoma, follicular thyroid carcinomas, RMST, anaplastic thyroid cancer
-
17Academic Journal
Συγγραφείς: Воронина Валерия Вадимовна, ФГБОУ ВО «Ульяновский государственный технический университет», Valeriia V. Voronina, FSBEI of HE «Ulyanovsk State Technical University», Антонова Елена Ивановна, Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Elena I. Antonova,
Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO "Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova" Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 117-128 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 117-128
Θεματικοί όροι: вторичная структура РНК, третичная структура РНК, третичные мотивы, длинные некодирующие РНК, lncRNA
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907561-33-5; https://phsreda.com/e-articles/10364/Action10364-102503.pdf; Баулин Е.Ф. Классификация и идентификация структурных мотивов РНК: дис. … канд. биол. наук. 03.01.09 – математическая биология, биоинформатика. Научные руководители: д-р физ.-мат. наук Михаил Абрамович Ройтберг, канд. физ.-мат. наук, д-р биол. наук Иван Владимирович Кулаковский. – Пущино, 2021.; Eugene Baulin, Victor Yacovlev, Denis Khachko, Sergei Spirin, Mikhail Roytberg, URS DataBase: universe of RNA structures and their motifs, Database, Volume 2016, 2016.; Novikova I.V., Hennelly S.P., Sanbonmatsu K.Y. Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure? // Bioarchitecture 2, 2012. 189–199. – doi:10.4161/bioa.22592; Annotation of the local context of RNA secondary structure improves the classification and prediction of A-minors, Anna A. Shalybkova, Darya S. Mikhailova, Ivan V. Kulakovskiy, Iliia I. Fakhranurova, Eugene F. Baulin. RNA August 2021 27: 907–919. Published in Advance May 20, 2021.; Adams P.D., Afonine P.V., Baskaran K., Berman H.M., Berrisford J., Bricogne G., Brown D.G., Burley S.K., Chen M., Feng Z., Flensburg C., Gutmanas A., Hoch J.C., Ikegawa Y., Kengaku Y., Krissinel E., Kurisu G., Liang Y., Liebschner D., Mak L., Markley J.L., Moriarty N.W., Murshudov G.N., Noble M., Peisach E., Persikova I., Poon B.K., Sobolev O.V., Ulrich E.L., Velankar S., Vonrhein C., Westbrook J., Wojdyr M., Yokochi M. & Young J. Y. (2019). Acta Cryst. D75, 451–454.; Annotation of tertiary interactions in RNA structures reveals variations and correlations. Yurong Xin,Christian Laing,Neocles B. Leontis, Tamar Schlick. RNA 2008. 14: 2465–2477. Published in Advance October 28, 2008.; Classifying RNA pseudoknotted structures / A. Condon [et al.] // Theoretical Computer Science. – 2004. – June. – Vol. 320. №1. – P. 35–50. – DOI:10.1016/j.tcs.2004.03. 042.; Engreitz J.M., Ollikainen N., Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression // Nat. Rev. Mol. Cell Biol., 2016, 17, 756–770 https://doi.org/10.1038/nrm.2016.126.; Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics / A.P. Carter [et al.] // Nature. – 2000. – Sept. – Vol. 407. №6802. – P. 340–348. – DOI:10.1038/35030019.; Fürtig B., Richter C., Wöhnert J., Schwalbe, H. (2003). NMR spectroscopy of RNA. Chembiochem. 4, 936–962. – doi:10.1002/cbic.200300700.; Gorodkin J., Ruzzo W. L. RNA sequence, structure, and function: computational and Bioinformatic methods. – Springer, 2014. – DOI:10.1007/978-1-62703-709-9.; Hendrix D.K., Brenner S.E., Holbrook S.R. RNA structural motifs: building blocks of a modular biomolecule // Quarterly Reviews of Biophysics. – 2005. – Aug. – Vol. 38. №3. – P. 221–243. – DOI:10.1017/s0033583506004215.; Higgs P.G. (2000) RNA Secondary Structure: Physical and Computational Aspects. Quart. Rev. Biophys. 33, 199–253.; Leontis N.B., Zirbel C.L. (2012) Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In: Leontis N., Westhof E. (eds) RNA 3D Structure Analysis and Prediction. Nucleic Acids and Molecular Biology, vol 27. Springer, Berlin, Heidelberg.; Low J.T., Weeks K.M. SHAPE-directed RNA secondary structure prediction // Methods. – 2010. – Oct. – Vol. 52. №2. – P. 150–158. – DOI:10.1016/j.ymeth.2010.06.007.; Perkel J.M. Visiting «noncodarnia» // BioTechniques – 2013. – Vol. 54. N6. – P. 301, 303–304.; Regalia M. Prediction of signal recognition particle RNA genes // Nucleic Acids Research. – 2002. – Aug. – Vol. 30. №15. – P. 3368–3377. – DOI:10.1093/nar/gkf468.; Rossi J.J. Ribozyme diagnostics comes of age // Chemistry & Biology (англ.) рус. – 2004. – Т. 11. №7. – С. 894–895. – doi:10.1016/j.chembiol.2004.07.002.; Stephen K. Burley, Helen M. Berman, Charmi Bhikadiya, Chunxiao Bi, Li Chen, Luigi Di Costanzo, Cole Christie, Ken Dalenberg, Jose M. Duarte, Shuchismita Dutta, Zukang Feng, Sutapa Ghosh, David S. Goodsell, Rachel K. Green, Vladimir Guranović, Dmytro Guzenko, Brian P. Hudson, Tara Kalro, Yuhe Liang, Robert Lowe, Harry Namkoong, Ezra Peisach, Irina Periskova, Andreas Prlić, Chris Randle, Alexander Rose, Peter Rose, Raul Sala, Monica Sekharan, Chenghua Shao, Lihua Tan, Yi-Ping Tao, Yana Valasatava, Maria Voigt, John Westbrook, Jesse Woo, Huanwang Yang, Jasmine Young, Marina Zhuravleva, Christine Zardecki, RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy, Nucleic Acids Research, Volume 47, Issue D1, 08 January 2019, Pages D464-D474; Stochastic Sampling of Structural Contexts Improves the Scalability and Accuracy of RNA 3D Module Identification / R. Sarrazin-Gendron [et al.] // Lecture Notes in Computer Science. – Springer International Publishing, 2020. – P. 186–201. – DOI:10.1007/978-3-030–45257-5_12.; Xiang-Jun Lu, Harmen J. Bussemaker, Wilma K. Olson, DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Research, Volume 43, Issue 21, 2 December 2015, Page e142.; Zuker M., Mathews D. H., Turner D. H. Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide // RNA Biochemistry and Biotechnology. – Springer Netherlands, 1999. – P. 11–43. – DOI:10.1007/978-94-011-4485-8_2.; Воронина В.В. Анализ окружения дальнодействующих контактов в структурах некодирующих РНК / В.В. Воронина, Е.Ф. Баулин [Электронный ресурс]. – Режим доступа: https://www.9111.ru/questions/777777777775012/; https://phsreda.com/files/Books/62b19487cf261.jpg?req=102503; https://phsreda.com/article/102503/discussion_platform
-
18Academic Journal
Συγγραφείς: M. V. Nemtsova, I. V. Bure, D. V. Zaletaev, E. B. Kuznetsova, E. A. Vetchinkina, A. D. Molchanov, М. В. Немцова, И. В. Буре, Д. В. Залетаев, Е. Б. Кузнецова, Е. А. Ветчинкина, А. Д. Молчанов
Πηγή: Medical Genetics; Том 21, № 5 (2022); 3-17 ; Медицинская генетика; Том 21, № 5 (2022); 3-17 ; 2073-7998
Θεματικοί όροι: некодирующие РНК, epithelial-mesenchymal transition (EMT), aberrant gene expression, tumor progression, gastric cancer, noncoding RNAs, эпителиально-мезенхимальный переход (ЭМП), нарушение экспрессии, опухолевая прогрессия, рак желудка
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2177/1644; Canel M., Serrels A., Frame M.C., et al. E-Cadherin-Integrin Crosstalk in Cancer Invasion and Metastasis. J. Cell Sci. 2013;126(Pt 2):393-401. https://doi.org/10.1242/JCS.100115.; Ratheesh A., Yap A.S. A Bigger Picture: Classical Cadherins and the Dynamic Actin Cytoskeleton. Nat. Rev. Mol. Cell Biol. 2012;13(10):673-679. https://doi.org/10.1038/NRM3431.; Aban C.E., Lombardi A., Neiman G., et al. Downregulation of E-Cadherin in Pluripotent Stem Cells Triggers Partial EMT. Sci. Rep. 2021;11(1):. https://doi.org/10.1038/S41598-021-81735-1.; Nieto M.A., Huang R.Y.Y.J., Jackson R.A.A., et al. EMT: 2016. Cell 2016;166(1):21-45. https://doi.org/10.1016/J.CELL.2016.06.028.; Frías A., Lambies G., Viñas-Castells R., et al. A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death. Mol. Cell. Biol. 2016;36(6):923-940. https://doi.org/10.1128/MCB.01074-15/ASSET/8492B277-4B06-41CF-977E-E5B0BD7AA269/ASSETS/GRAPHIC/ZMB9991011590012.JPEG.; Chen A., Beetham H., Black M.A., et al. E-Cadherin Loss Alters Cytoskeletal Organization and Adhesion in Non-Malignant Breast Cells but Is Insufficient to Induce an Epithelial-Mesenchymal Transition. BMC Cancer 2014;14(1):. https://doi.org/10.1186/1471-2407-14-552.; Hollestelle A., Peeters J.K., Smid M., et al. Loss of E-Cadherin Is Not a Necessity for Epithelial to Mesenchymal Transition in Human Breast Cancer. Breast Cancer Res. Treat. 2013;138(1):47-57. https://doi.org/10.1007/S10549-013-2415-3.; Villarejo A., Cortés-Cabrera Á., Molina-Ortíz P., et al. Differential Role of Snail1 and Snail2 Zinc Fingers in E-Cadherin Repression and Epithelial to Mesenchymal Transition. J. Biol. Chem. 2014;289(2):930-941. https://doi.org/10.1074/JBC.M113.528026.; Zhang Z., Yang C., Gao W., et al. FOXA2 Attenuates the Epithelial to Mesenchymal Transition by Regulating the Transcription of E-Cadherin and ZEB2 in Human Breast Cancer. Cancer Lett. 2015;361(2):240-250. https://doi.org/10.1016/J.CANLET.2015.03.008.; Alotaibi H., Basilicata M.F., Shehwana H., et al. Enhancer Cooperativity as a Novel Mechanism Underlying the Transcriptional Regulation of E-Cadherin during Mesenchymal to Epithelial Transition. Biochim. Biophys. Acta 2015;1849(6):731-742. https://doi.org/10.1016/J.BBAGRM.2015.01.005.; Wong S.H.M., Fang C.M., Chuah L.H., et al. E-Cadherin: Its Dysregulation in Carcinogenesis and Clinical Implications. Crit. Rev. Oncol. Hematol. 2018;121:11-22. https://doi.org/10.1016/J.CRITREVONC.2017.11.010.; Christiansen J.J., Rajasekaran A.K. Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis. Cancer Res. 2006;66(17):8319-8326. https://doi.org/10.1158/0008-5472.CAN-06-0410.; Cavallaro U., Christofori G. Cell Adhesion and Signalling by Cadherins and Ig-CAMs in Cancer. Nat. Rev. Cancer 2004 42 2004;4(2):118-132. https://doi.org/10.1038/nrc1276.; Pan Y, Bi F, Liu N, et al. Expression of Seven Main Rho Family Members in Gastric Carcinoma. Biochem. Biophys. Res.Commun. 2004;315(3):686-691. https://doi.org/10.1016/J.BBRC.2004.01.108.; Zhan T., Rindtorff N., Boutros M. Wnt Signaling in Cancer. Oncogene 2017;36(11):1461-1473. https://doi.org/10.1038/ONC.2016.304.; Yong X., Tang B., Li B.S., et al. Helicobacter Pylori Virulence Factor CagA Promotes Tumorigenesis of Gastric Cancer via Multiple Signaling Pathways. Cell Commun. Signal. 2015;13(1):. https://doi.org/10.1186/S12964-015-0111-0.; Heasman S.J., Ridley A.J. Mammalian Rho GTPases: New Insights into Their Functions from in Vivo Studies. Nat. Rev. Mol. Cell Biol. 2008 99 2008;9(9):690-701. https://doi.org/10.1038/nrm2476.; Suriano G., Oliveira M.J., Huntsman D., et al. E-Cadherin Germline Missense Mutations and Cell Phenotype: Evidence for the Independence of Cell Invasion on the Motile Capabilities of the Cells. Hum. Mol. Genet. 2003;12(22):3007-3016. https://doi.org/10.1093/HMG/DDG316.; Bremm A., Walch A., Fuchs M., et al. Enhanced Activation of Epidermal Growth Factor Receptor Caused by Tumor-Derived E-Cadherin Mutations. Cancer Res. 2008;68(3):707-714. https://doi.org/10.1158/0008-5472.CAN-07-1588.; Mateus A.R., Seruca R., Machado J.C., et al. EGFR Regulates RhoA-GTP Dependent Cell Motility in E-Cadherin Mutant Cells. Hum. Mol. Genet. 2007;16(13):1639-1647. https://doi.org/10.1093/HMG/DDM113.; Soto E., Yanagisawa M., Marlow L.A., et al. P120 Catenin Induces Opposing Effects on Tumor Cell Growth Depending on E-Cadherin Expression. J. Cell Biol. 2008;183(4):737-749. https://doi.org/10.1083/JCB.200805113.; Cowell C.F., Yan I.K., Eiseler T., et al. Loss of Cell-Cell Contacts Induces NF-ΚB via RhoA-Mediated Activation of Protein Kinase D1. J. Cell. Biochem. 2009;106(4):714-728. https://doi.org/10.1002/JCB.22067.; Brücher B.L.D.M., Lang F., Jamall I.S. NF-ΚB Signaling and Crosstalk during Carcinogenesis. 4open 2019;2:13. https://doi.org/10.1051/FOPEN/2019010.; Sokolova O., Naumann M. NF-ΚB Signaling in Gastric Cancer. Toxins (Basel). 2017;9(4):. https://doi.org/10.3390/TOXINS9040119.; Kuphal S., Poser I., Jobin C., et al. Loss of E-Cadherin Leads to Upregulation of NFkappaB Activity in Malignant Melanoma. Oncogene 2004;23(52):8509-8519. https://doi.org/10.1038/SJ.ONC.1207831.; Park S.Y., Shin J.H., Kee S.H. E-Cadherin Expression Increases Cell Proliferation by Regulating Energy Metabolism through Nuclear Factor-ΚB in AGS Cells. Cancer Sci. 2017;108(9):1769-1777. https://doi.org/10.1111/CAS.13321.; Liu X., Chu K.M. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications. Biomed Res.Int. 2014;2014:. https://doi.org/10.1155/2014/637308.; Figueiredo J., Melo S., Carneiro P., et al. Clinical Spectrum and Pleiotropic Nature of CDH1 Germline Mutations. J. Med. Genet. 2019;56(4):199-208. https://doi.org/10.1136/JMEDGENET-2018-105807.; Sivakumaran S., Agakov F., Theodoratou E., et al. Abundant Pleiotropy in Human Complex Diseases and Traits. Am. J. Hum. Genet. 2011;89(5):607-618. https://doi.org/10.1016/J.AJHG.2011.10.004.; Simões-correia J., Silva D.I., Melo S., et al. DNAJB4 Molecular Chaperone Distinguishes WT from Mutant E-Cadherin, Determining Their Fate in Vitro and in Vivo. Hum. Mol. Genet. 2014;23(8):2094-2105. https://doi.org/10.1093/HMG/DDT602.; van der Post R.S., Vogelaar I.P., Carneiro F., et al. Hereditary Diffuse Gastric Cancer: Updated Clinical Guidelines with an Emphasis on Germline CDH1 Mutation Carriers. J. Med. Genet. 2015;52(6):361-374. https://doi.org/10.1136/JMEDGENET-2015-103094.; Usui G., Matsusaka K., Mano Y., et al. DNA Methylation and Genetic Aberrations in Gastric Cancer. Digestion 2021;102(1):25-32. https://doi.org/10.1159/000511243.; Zaraci K., Ozkinay F., Yilmaz O., et al. E-CADHERIN GENE PROMOTER METHYLATION IN PEDIATRIC ASTHMA PATHOGENESIS AND CLINICS. Eur. Respir. J. 2018;52(suppl 62):PA1300. https://doi.org/10.1183/13993003.CONGRESS-2018.PA1300.; Zong L., Seto Y. CpG Island Methylator Phenotype, Helicobacter Pylori, Epstein-Barr Virus, and Microsatellite Instability and Prognosis in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS One 2014;9(1): e86097 https://doi.org/10.1371/JOURNAL.PONE.0086097.; Park J., Jang K.L. Hepatitis C Virus Represses E-Cadherin Expression via DNA Methylation to Induce Epithelial to Mesenchymal Transition in Human Hepatocytes. Biochem. Biophys. Res.Commun. 2014;446(2):561-567. https://doi.org/10.1016/J.BBRC.2014.03.009.; Bass A.J., Thorsson V., Shmulevich I., et al.Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nat. 2014 5137517 2014;513(7517):202-209. https://doi.org/10.1038/nature13480.; Fukayama M., Ushiku T. Epstein-Barr Virus-Associated Gastric Carcinoma. Pathol. Res. Pract. 2011;207(9):. https://doi.org/10.1016/J.PRP.2011.07.004.; Yamashita M., Toyota M., Suzuki H., et al. DNA Methylation of Interferon Regulatory Factors in Gastric Cancer and Noncancerous Gastric Mucosae. Cancer Sci. 2010;101(7):1708-1716. https://doi.org/10.1111/J.1349-7006.2010.01581.X.; Nemtsova M.V., Strelnikov V.V., Tanas A.S., et al. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice. Curr. Genomics 2017;18(5):408. https://doi.org/10.2174/1389202918666170329110021.; Polk D.B., Peek R.M. Helicobacter Pylori: Gastric Cancer and Beyond. Nat. Rev. Cancer 2010;10(6):403-414. https://doi.org/10.1038/NRC2857.; Chen Y., Ren B., Yang J., et al. The Role of Histone Methylation in the Development of Digestive Cancers: A Potential Direction for Cancer Management. Signal Transduct. Target. Ther. 2020;5(1):. https://doi.org/10.1038/S41392-020-00252-1.; Hu Y., Zheng Y., Dai M., et al. Snail2 Induced E-Cadherin Suppression and Metastasis in Lung Carcinoma Facilitated by G9a and HDACs. Cell Adh. Migr. 2019;13(1):285-292. https://doi.org/10.1080/19336918.2019.1638689.; Fukagawa A., Ishii H., Miyazawa K., et al. ΔEF1 Associates with DNMT1 and Maintains DNA Methylation of the E-Cadherin Promoter in Breast Cancer Cells. Cancer Med. 2015;4(1):125-135. https://doi.org/10.1002/CAM4.347.; Li L., Geng Y., Feng R., et al. The Human RNA Surveillance Factor UPF1 Modulates Gastric Cancer Progression by Targeting Long Non-Coding RNA MALAT1. Cell. Physiol. Biochem. 2017;42(6):2194-2206. https://doi.org/10.1159/000479994.; Yan J., Zhang Y., She Q., et al. Long Noncoding RNA H19/MiR-675 Axis Promotes Gastric Cancer via FADD/Caspase 8/Caspase 3 Signaling Pathway. Cell. Physiol. Biochem. 2017;42(6):2364-2376. https://doi.org/10.1159/000480028.; Yan K., Tian J., Shi W., et al. LncRNA SNHG6 Is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing P27 and Sponging MiR-101-3p. Cell. Physiol. Biochem. 2017;42(3):999-1012. https://doi.org/10.1159/000478682.; Wong T.S., Gao W., Chan J.Y.W.Interactions between E-Cadherin and Microrna Deregulation in Head and Neck Cancers: The Potential Interplay. Biomed Res.Int. 2014;2014:. https://doi.org/10.1155/2014/126038.; Bure I.V., Nemtsova M.V., Zaletaev D.V. Roles of E-Cadherin and Noncoding RNAs in the Epithelial-Mesenchymal Transition and Progression in Gastric Cancer.Int. J. Mol. Sci. 2019;20(12):. https://doi.org/10.3390/IJMS20122870.; Hammond S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015;87:3-14. https://doi.org/10.1016/J.ADDR.2015.05.001.; miRBase https://www.mirbase.org/(accessed 2022-05-01).; Bure I.V., Haller F., Zaletaev D.V. Coding and Non-Coding: Molecular Portrait of GIST and Its Clinical Implication. Curr. Mol. Med. 2018;18:. https://doi.org/10.2174/1566524018666181004113436.; Ma D.N., Chai Z.T., Zhu X.D., et al. MicroRNA-26a Suppresses Epithelial-Mesenchymal Transition in Human Hepatocellular Carcinoma by Repressing Enhancer of Zeste Homolog 2. J. Hematol. Oncol. 2016;9(1):. https://doi.org/10.1186/S13045-015-0229-Y.; Carvalho J., Van Grieken N.C., Pereira P.M., et al. Lack of MicroRNA-101 Causes E-Cadherin Functional Deregulation through EZH2 up-Regulation in Intestinal Gastric Cancer. J. Pathol. 2012;228(1):31-44. https://doi.org/10.1002/PATH.4032.; Nowek K., Wiemer E.A.C., Jongen-Lavrencic M. The Versatile Nature of MiR-9/9 * in Human Cancer. Oncotarget 2018;9(29):20838-20854. https://doi.org/10.18632/ONCOTARGET.24889.; Costa A.M., Ferreira R.M., Pinto-Ribeiro I., et al. Helicobacter Pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-Mediated Pathways. J. Infect. Dis. 2016;213(11):1767-1776. https://doi.org/10.1093/INFDIS/JIW031.; Yang Y., Li X., Du J., et al. Involvement of MicroRNAs-MMPs-E-Cadherin in the Migration and Invasion of Gastric Cancer Cells Infected with Helicobacter Pylori. Exp. Cell Res. 2018;367(2):196-204. https://doi.org/10.1016/J.YEXCR.2018.03.036.; Chen Z., Wu J., Huang W., et al. Long Non-Coding RNA RP11-789C1.1 Suppresses Epithelial to Mesenchymal Transition in Gastric Cancer Through the RP11-789C1.1/MiR-5003/E-Cadherin Axis. Cell. Physiol. Biochem. 2018;47(6):2432-2444. https://doi.org/10.1159/000491617.; Sakamoto N., Naito Y., Oue N., et al. MicroRNA-148a Is Downregulated in Gastric Cancer, Targets MMP7, and Indicates Tumor Invasiveness and Poor Prognosis. Cancer Sci. 2014;105(2):236-243. https://doi.org/10.1111/CAS.12330.; Li L.Q., Pan D., Chen Q., et al. Sensitization of Gastric Cancer Cells to 5-FU by MicroRNA-204 Through Targeting the TGFBR2-Mediated Epithelial to Mesenchymal Transition. Cell. Physiol. Biochem. 2018;47(4):1533-1545. https://doi.org/10.1159/000490871.; Zhang C., Liang Y., Ma M.H., et al. Downregulation of MicroRNA-376a in Gastric Cancer and Association with Poor Prognosis. Cell. Physiol. Biochem. 2018;51(5):2010-2018. https://doi.org/10.1159/000495820.; Cao Q., Liu F., Ji K., et al. MicroRNA-381 Inhibits the Metastasis of Gastric Cancer by Targeting TMEM16A Expression. J. Exp. Clin. Cancer Res. 2017;36(1):1-16. https://doi.org/10.1186/S13046-017-0499-Z/FIGURES/7.; Housman G., Byler S., Heerboth S., et al. Drug Resistance in Cancer: An Overview. Cancers (Basel). 2014;6(3):1769. https://doi.org/10.3390/CANCERS6031769.; Liu H.T., Xing A.Y., Chen X., et al. MicroRNA-27b, MicroRNA-101 and MicroRNA-128 Inhibit Angiogenesis by down-Regulating Vascular Endothelial Growth Factor C Expression in Gastric Cancers. Oncotarget 2015;6(35):37458. https://doi.org/10.18632/ONCOTARGET.6059.; Bure I.V., Kuznetsova E.B., Zaletaev D.V. Long Noncoding RNAs and Their Role in Oncogenesis. Mol. Biol. (Mosk). 2018;52(6):907-920. https://doi.org/10.1134/S0026898418060034.; Heery R., Finn S.P., Cuffe S., et al. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel). 2017;9(4):. https://doi.org/10.3390/CANCERS9040038.; Wang B., Yang H., Shen L., et al. Rs56288038 (C/G) in 3’UTR of IRF-1 Regulated by MiR-502-5p Promotes Gastric Cancer Development. Cell. Physiol. Biochem. 2016;40(1-2):391-399. https://doi.org/10.1159/000452554.; Gao S., Zhao Z.Y., Wu R., et al. Prognostic Value of Long Noncoding RNAs in Gastric Cancer: A Meta-Analysis. Onco. Targets. Ther. 2018;11:4877-4891. https://doi.org/10.2147/OTT.S169823.; Liu Y.W., Sun M., Xia R., et al. LincHOTAIR Epigenetically Silences MiR34a by Binding to PRC2 to Promote the Epithelial-to-Mesenchymal Transition in Human Gastric Cancer. Cell Death Dis. 2015;6(7):. https://doi.org/10.1038/CDDIS.2015.150.; Song W., Liu Y. Y., Peng J.J., et al. Identification of Differentially Expressed Signatures of Long Non-Coding RNAs Associated with Different Metastatic Potentials in Gastric Cancer. J. Gastroenterol. 2016;51(2):119-129. https://doi.org/10.1007/S00535-015-1091-Y.; Liu Y.Y., Chen Z.H., Peng J.J., et al. Up-Regulation of Long Non-Coding RNA XLOC_010235 Regulates Epithelial-to-Mesenchymal Transition to Promote Metastasis by Associating with Snail1 in Gastric Cancer. Sci. Rep. 2017;7(1):. https://doi.org/10.1038/S41598-017-02254-6.; Pan L., Liang W., Fu M., et al. Exosomes-Mediated Transfer of Long Noncoding RNA ZFAS1 Promotes Gastric Cancer Progression. J. Cancer Res. Clin. Oncol. 2017;143(6):991-1004. https://doi.org/10.1007/S00432-017-2361-2.; Dong D., Mu Z., Zhao C., et al. ZFAS1: A Novel Tumor-Related Long Non-Coding RNA. Cancer Cell Int. 2018;18(1):. https://doi.org/10.1186/S12935-018-0623-Y.; Chen D., Liu L., Wang K., et al. The Role of MALAT-1 in the Invasion and Metastasis of Gastric Cancer. Scand. J. Gastroenterol. 2017;52(6-7):790-796. https://doi.org/10.1080/00365521.2017.1280531.; Syllaios A., Moris D., Karachaliou G.S., et al. Pathways and Role of MALAT1 in Esophageal and Gastric Cancer (Review). Oncol. Lett. 2021;21(5):1-7. https://doi.org/10.3892/OL.2021.12604/HTML.; Lee N.K., Lee J.H., Ivan C., et al. MALAT1 Promoted Invasiveness of Gastric Adenocarcinoma. BMC Cancer 2017;17(1):. https://doi.org/10.1186/S12885-016-2988-4.; Cai H., Chen J., He B., et al. A FOXM1 Related Long Non-Coding RNA Contributes to Gastric Cancer Cell Migration. Mol. Cell. Biochem. 2015;406(1-2):31-41. https://doi.org/10.1007/S11010-015-2421-3.; Fu M., Huang Z., Zang X., et al. Long Noncoding RNA LINC00978 Promotes Cancer Growth and Acts as a Diagnostic Biomarker in Gastric Cancer. Cell Prolif. 2018;51(1):. https://doi.org/10.1111/CPR.12425.; Zuo Z.K., Gong Y., Chen X.H., et al. TGFβ1-Induced LncRNA UCA1 Upregulation Promotes Gastric Cancer Invasion and Migration. DNA Cell Biol. 2017;36(2):159-167. https://doi.org/10.1089/DNA.2016.3553.; Zhang E., He X., Yin D., et al. Increased Expression of Long Noncoding RNA TUG1 Predicts a Poor Prognosis of Gastric Cancer and Regulates Cell Proliferation by Epigenetically Silencing of P57. Cell Death Dis. 2016;7(2):. https://doi.org/10.1038/CDDIS.2015.356.; Sun J., Ding C., Yang Z., et al. The Long Non-Coding RNA TUG1 Indicates a Poor Prognosis for Colorectal Cancer and Promotes Metastasis by Affecting Epithelial-Mesenchymal Transition. J. Transl. Med. 2016;14(1):1-10. https://doi.org/10.1186/S12967-016-0786-Z/FIGURES/6.; Wang H., Chen W., Yang P., et al. Knockdown of Linc00152 Inhibits the Progression of Gastric Cancer by Regulating MicroRNA-193b-3p/ETS1 Axis. Cancer Biol. Ther. 2019;20(4):461-473. https://doi.org/10.1080/15384047.2018.1529124.; Chen D.L., Ju H.Q., Lu Y.X., et al. Long Non-Coding RNA XIST Regulates Gastric Cancer Progression by Acting as a Molecular Sponge of MiR-101 to Modulate EZH2 Expression. J. Exp. Clin. Cancer Res. 2016;35(1):. https://doi.org/10.1186/S13046-016-0420-1.; Saito T., Kurashige J., Nambara S., et al. A Long Non-Coding RNA Activated by Transforming Growth Factor-β Is an Independent Prognostic Marker of Gastric Cancer. Ann. Surg. Oncol. 2015;22 Suppl 3:915-922. https://doi.org/10.1245/S10434-015-4554-8.; Li Y., Li D., Zhao M., et al. Long Noncoding RNA SNHG6 Regulates P21 Expression via Activation of the JNK Pathway and Regulation of EZH2 in Gastric Cancer Cells. Life Sci. 2018;208:295-304. https://doi.org/10.1016/J.LFS.2018.07.032.; Zhou X., Chen H., Zhu L., et al. Helicobacter Pylori Infection Related Long Noncoding RNA (LncRNA) AF147447 Inhibits Gastric Cancer Proliferation and Invasion by Targeting MUC2 and up-Regulating MiR-34c. Oncotarget 2016;7(50):82770-82782. https://doi.org/10.18632/ONCOTARGET.13165.; Zhao L., Guo H., Zhou B., et al. Long Non-Coding RNA SNHG5 Suppresses Gastric Cancer Progression by Trapping MTA2 in the Cytosol. Oncogene 2016;35(44):5770-5780. https://doi.org/10.1038/ONC.2016.110.; Yu Y., Li L., Zheng Z., et al. Long Non-Coding RNA Linc00261 Suppresses Gastric Cancer Progression via Promoting Slug Degradation. J. Cell. Mol. Med. 2017;21(5):955-967. https://doi.org/10.1111/JCMM.13035.; Qian Y., Shi L., Luo Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020;7:. https://doi.org/10.3389/FMED.2020.612393.; Khaitan D., Dinger M.E., Mazar J., et al. The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. Cancer Res. 2011;71(11):3852-3862. https://doi.org/10.1158/0008-5472.CAN-10-4460.; Cao D., Ding Q., Yu W., et al. Long Noncoding RNA SPRY4-IT1 Promotes Malignant Development of Colorectal Cancer by Targeting Epithelial-Mesenchymal Transition. Onco. Targets. Ther. 2016;9:5417. https://doi.org/10.2147/OTT.S111794.; Wang M., Dong X., Feng Y., et al. Prognostic Role of the Long Non-Coding RNA, SPRY4 Intronic Transcript 1, in Patients with Cancer: A Meta-Analysis. Oncotarget 2017;8(20):33713-33724. https://doi.org/10.18632/ONCOTARGET.16735.; Qie P., Yin Q., Xun X., et al. Long Non-Coding RNA SPRY4-IT1 as a Promising Indicator for Three Field Lymph-Node Dissection of Thoracic Esophageal Carcinoma. J. Cardiothorac. Surg. 2021;16(1):. https://doi.org/10.1186/S13019-021-01433-X.; Qiao C.F., Zhang Y., Jin L., et al. High Expression of LncRNA AFAP1-AS1 Promotes Cell Proliferation and Invasion by Inducing Epithelial-to-Mesenchymal Transition in Gastric Cancer.Int J Clin Exp Pathol 2017;10(1):393-400.; Guo J.Q., Li S.J., Guo G.X. Long Noncoding RNA AFAP1-AS1 Promotes Cell Proliferation and Apoptosis of Gastric Cancer Cells via PTEN/p-AKT Pathway. Dig. Dis. Sci. 2017;62(8):2004-2010. https://doi.org/10.1007/S10620-017-4584-0.; Wu Q., Xiang S., Ma J., et al. Long Non-Coding RNA CASC15 Regulates Gastric Cancer Cell Proliferation, Migration and Epithelial Mesenchymal Transition by Targeting CDKN1A and ZEB1. Mol. Oncol. 2018;12(6):799-813. https://doi.org/10.1002/1878-0261.12187.; Zhang L.L., Zhang L.F., Guo X.H., et al. Downregulation of MiR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol. 2018;37(1):46-52. https://doi.org/10.1089/DNA.2017.3926.; Fu J.W., Kong Y., Sun X. Long Noncoding RNA NEAT1 Is an Unfavorable Prognostic Factor and Regulates Migration and Invasion in Gastric Cancer. J. Cancer Res. Clin. Oncol. 2016;142(7):1571-1579. https://doi.org/10.1007/S00432-016-2152-1.; Tan H.Y., Wang C., Liu G., et al. Long Noncoding RNA NEAT1-Modulated MiR-506 Regulates Gastric Cancer Development through Targeting STAT3. J. Cell. Biochem. 2019;120(4):4827-4836. https://doi.org/10.1002/JCB.26691.; Zeng S., Xie X., Xiao Y.F., et al. Long Noncoding RNA LINC00675 Enhances Phosphorylation of Vimentin on Ser83 to Suppress Gastric Cancer Progression. Cancer Lett. 2017;412:179-187. https://doi.org/10.1016/J.CANLET.2017.10.026.; Han Y., Ye J., Wu D., et al. LEIGC Long Non-Coding RNA Acts as a Tumor Suppressor in Gastric Carcinoma by Inhibiting the Epithelial-to-Mesenchymal Transition. BMC Cancer 2014;14(1):. https://doi.org/10.1186/1471-2407-14-932.; Vedove A.D., Falchi F., Donini S., et al. Structure-Based Virtual Screening Allows the Identification of Efficient Modulators of E-Cadherin-Mediated Cell-Cell Adhesion.Int. J. Mol. Sci. 2019;20(14):E3404-E3404. https://doi.org/10.3390/IJMS20143404.; Pal M., Bhattacharya S., Kalyan G., et al. Cadherin Profiling for Therapeutic Interventions in Epithelial Mesenchymal Transition (EMT) and Tumorigenesis. Exp. Cell Res. 2018;368(2):137-146. https://doi.org/10.1016/J.YEXCR.2018.04.014.; Shen K.H., Liao A.C.H., Hung J.H., et al. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression. Molecules 2014;19(8):11896-11914. https://doi.org/10.3390/MOLECULES190811896.; Xie F., Liu J., Li C., et al. Simvastatin Blocks TGF-Β1-Induced Epithelial-Mesenchymal Transition in Human Prostate Cancer Cells. Oncol. Lett. 2016;11(5):3377. https://doi.org/10.3892/OL.2016.4404.; Zhang J., Shen C., Wang L., et al. Metformin Inhibits Epithelial-Mesenchymal Transition in Prostate Cancer Cells: Involvement of the Tumor Suppressor MiR30a and Its Target Gene SOX4. Biochem. Biophys. Res.Commun. 2014;452(3):746-752. https://doi.org/10.1016/J.BBRC.2014.08.154.; Blaschuk O.W. N-Cadherin Antagonists as Oncology Therapeutics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015;370(1661):. https://doi.org/10.1098/RSTB.2014.0039.; Liu J., Sun X., Qin S., et al. CDH1 Promoter Methylation Correlates with Decreased Gene Expression and Poor Prognosis in Patients with Breast Cancer. Oncol. Lett. 2016;11(4):2635-2643. https://doi.org/10.3892/OL.2016.4274.; Kurata T., Fushida S., Kinoshita J., et al. Low-Dose Eribulin Mesylate Exerts Antitumor Effects in Gastric Cancer by Inhibiting Fibrosis via the Suppression of Epithelial-Mesenchymal Transition and Acts Synergistically with 5-Fluorouracil. Cancer Manag. Res. 2018;10:2729-2742. https://doi.org/10.2147/CMAR.S167846.; Zhu J., Wen K. Astragaloside IV Inhibits TGF-Β1-Induced Epithelial-Mesenchymal Transition through Inhibition of the PI3K/Akt/NF-ΚB Pathway in Gastric Cancer Cells. Phytother. Res. 2018;32(7):1289-1296. https://doi.org/10.1002/PTR.6057.; Li N., Zhang S., Luo Q., et al. The Effect of Dihydroartemisinin on the Malignancy and Epithelial-Mesenchymal Transition of Gastric Cancer Cells. Curr. Pharm. Biotechnol. 2019;20(9):719-726. https://doi.org/10.2174/1389201020666190611124644.; Liu W.H., Yuan J.B., Zhang F., et al. Curcumin Inhibits Proliferation,Migration and Invasion of Gastric Cancer Cells via Wnt3a/β-Catenin/EMT Signaling Pathway. Zhongguo Zhong Yao Za Zhi 2019;44(14):3107-3115. https://doi.org/10.19540/J.CNKI.CJCMM.20190304.002.; Zhao M., Ang L., Huang J., et al. MicroRNAs Regulate the Epithelial-Mesenchymal Transition and Influence Breast Cancer Invasion and Metastasis. Tumour Biol. 2017;39(2):1-8. https://doi.org/10.1177/1010428317691682.; Zhang J., Li X., Huang L. Non-Viral Nanocarriers for SiRNA Delivery in Breast Cancer. J. Control. Release 2014;190:440-450. https://doi.org/10.1016/J.JCONREL.2014.05.037.; Kjällquist U., Erlandsson R., Tobin N.P., et al. Exome Sequencing of Primary Breast Cancers with Paired Metastatic Lesions Reveals Metastasis-Enriched Mutations in the A-Kinase Anchoring Protein Family (AKAPs). BMC Cancer 2018;18(1):1-17. https://doi.org/10.1186/S12885-018-4021-6/FIGURES/3.
-
19Academic Journal
Συγγραφείς: O. A. Beylerli, I. F. Gareev, V. N. Pavlov, Zhao Shiguang, Chen Xin, V. V. Kudriashov
Πηγή: Креативная хирургия и онкология, Vol 9, Iss 4, Pp 297-304 (2020)
Θεματικοί όροι: экзосомы, некодирующие рнк, длинные некодирующие рнк, микрорнк, новообразования, биомаркеры новообразования, межклеточный обмен, Surgery, RD1-811, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
Relation: https://www.surgonco.ru/jour/article/view/439; https://doaj.org/toc/2307-0501; https://doaj.org/toc/2076-3093; https://doaj.org/article/09c670c3121d44e7b6a51feec67181e5
-
20Academic Journal
Πηγή: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :67-74
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, microRNA, long non-coding RNA, biomarkers, биомаркеры, экспрессия, 3. Good health, 03 medical and health sciences, laryngeal squamous cell carcinoma, длинные некодирующие РНК, expression, микроРНК, плоскоклеточная карцинома гортани
Σύνδεσμος πρόσβασης: https://pfiet.ru/article/view/2097