Showing 1 - 20 results of 24 for search '"нейтрализующие антитела"', query time: 0.71s Refine Results
  1. 1
    Academic Journal

    Source: Epidemiology and Vaccinal Prevention; Том 23, № 6 (2024); 169-176 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 6 (2024); 169-176 ; 2619-0494 ; 2073-3046

    File Description: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/2132/1092; Zhu, J., Ji, P., Pang, J., Zhong, Z., Li, H., He, C., Zhang, J., & Zhao, C. (2020). Clinical characteristics of 3062 COVID‐19 patients: A meta‐analysis. Journal of Medical Virology, 92, 1902–1914. https://doi.org/10.1002/jmv.25884; WHO. COVID-19 epidemiological update – 6 November 2024. Доступно на Available at:: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-173; WHO. Influenza and SARS-COV-2 tested specimens reported to FluNet from countries, areas and territories. Доступно на Available: https://app.powerbi.com/view?r=eyJrIjoiNzc4YTIxZjQtM2E1My00YjYxLWIxMDItNzEzMjkyY2E1MzU1IiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9; Carabelli AM, Peacock TP, Thorne LG, et al. COVID-19 Genomics UK Consortium; Peacock SJ, Barclay WS, de Silva TI, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–177.; Perlman S, Masters PS. Coronaviridae: The Viruses and Their Replication in Fields Virology: Emerging Viruses, 7th Ed., Eds.: Howley PM, Knipe DM, Whelan S, Wolters Kluwer, 2020:410–448.; ВОЗWHO. Доступно наAvailable: https://www.who.int/activities/tracking-SARS-CoV-2-variants.; Next strain, Доступно наAvailable: https://nextstrain.org/ncov/gisaid/global/all-time; Mykytyn AZ, Rissmann M, Kok A, et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct.SciImmunol. 2022;7(75):eabq4450.; Fan Wu, Aojie Wang, Mei Liu, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Аpril 2020 doi:https://doi.org/10.1101/2020.03.30.20047365; Li D, Sempowski GD, Saunders KO, et al. SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu Rev Med. 2022;73:1–16.; Suthar MS, Zimmerman MG, Kauffman RC, et al. Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med. 2020;1(3):100040; Huang Q, Han X, Yan J. Structure-based neutralizing mechanisms for SARS-CoV-2 antibodies. EmergMicrobesInfect. 2022;11(1):2412–2422.; Li CJ, Chang SC. SARS-CoV-2 spike S2-specific neutralizing antibodies. Emerg Microbes Infect. 2023;12(2):2220582.; Lampasona V, Secchi M, Scavini M, et al. Antibody response to multiple antigens of SARS-CoV-2 in patients with diabetes: an observational cohort study. Diabetologia. 2020;63(12):2548–2558.; Игнатьев Г. М., Козловская Л. И., Мефед К. М., и др. Определение антител к вирусу SARS-CoV-2 у пациентов с новой коронавирусной инфекцией. Инфекционные болезни: новости, мнения, обучение. 2022;11(1):21–27. Ignatiev G. M., Kozlovskaya L. I., Mefed K. M., et al. Determination of antibodies to the SARS-CoV-2 virus in patients with a new coronavirus infection. Infectious diseases: news, opinions, training. 2022;11(1):21–27 (In Russ.).; Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. NatMed. 2021;27(7):1205–1211; Feng S, Phillips DJ, White T, et al. Oxford COVID Vaccine Trial Group. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. NatMed. 2021;27(11):2032–2040.; Yang Y, Yang M, Peng Y, et al. Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nat Microbiol. 2022;7(3):423–433; Earnest R, Uddin R, Matluk N, et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. CellRepMed. 2022;3(4):100583.; Генералова Л. В., Бургасова О. А., Гущин В. А. и др. Особенности гуморального ответа у пациентов с COVID-19. Врач. 2021;32(12):5–11.; Шокина В. А., Матюшкина Д. С., Кривонос Д. В. др. Гуморальный иммунный ответ на линейные и конформационные эпитопы SARS-CoV-2 у пациентов с COVID-19. Иммунология. 2023;44(1):38–52.; Платонова Т. А., Голубкова А. А., Карбовничая Е. А., Смирнова С. С. Особенности формирования гуморального иммунитета у лиц с различными клиническими проявлениями COVID-19. Эпидемиология и Вакцинопрофилактика. 2021;20(1):20–25.; Федоров В. С., Иванова О. Н., Карпенко И. Л., Иванов А. В. Иммунный ответ на новую коронавирусную инфекцию. Клиническая практика. 2021;12(1):33–40.; Zeng, W., Ma, H., Ding, C., et al. Characterization of SARS-CoV-2-specific antibodies in COVID-19 patients reveals highly potent neutralizing IgA. Sig Transduct Target Ther 6, 35 (2021). https://doi.org/10.1038/s41392-021-00478-7; Planas D, Veyer D, Baidaliuk, A et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280.; Mlcochova P, Kemp SA, Dhar MS, et al. Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR Bio-Resource COVID-19 Collaboration; Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114–119.; Сизикова Т. Е., Лебедев В. Н., Кутаев Д. А., Борисевич С. В. Характеристики варианта дельта (B.1.617) вируса SARS-CoV-2 - доминантного агента третьей и четвертой волн эпидемии COVID-19 в России. Вестник войск РХБ защиты. 2021;5(4):353–365; Арзуманян А. М. Сравнительный анализ морфологических особенностей штаммов «Omicron» и «Delta» SARS-CoV-2. European Scientific Conference, Пенза, 07 апреля 2022 года. – Пенза: Наука и Просвещение (ИП Гуляев Г.Ю.), 2022. – С. 168–174.; Wang Q, Guo Y, Zhang RM, et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. LancetInfectDis. 2023;23(10):e397–e398.; Qu P, Evans JP, Zheng YM, et al. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe. 2022;30(11):1518–1526.e4.; Liu H, Wilson IA. Protective neutralizing epitopes in SARS-CoV-2. Immunol Rev. 2022;310(1):76–92.; Chen Y, Zhao X, Zhou H, Zhu H, Jiang S, Wang P. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat Rev Immunol. 2023;23(3):189–199.; Sars-CoV-2 circulating variants. Доступно наAvailable: https://viralzone.expasy.org/9556; Пылаева С. К., Козловская Л. И., Еровиченков А. А. и др. Спектр вируснейтрализующих антител у пациентов с COVID-19, заболевших во время циркуляции различных вариантов SARS-CoV-2. Эпидемиология и Вакцинопрофилактика. 2024;23(5):63–72. https://doi.org/10.31631/2073-3046-2024-23-5-63-72; Moderbacher CR, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.Cell. 2020;183(4):996–1012.e19.; Wen J., Cheng Y., Ling R., et al. Antibody-dependent enhancement of coronavirus. Int. J. Infect. Dis. 2020;100:483–489.; Lee N, Chan PK, Ip M, et al. Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome. J ClinVirol. 2006;35(2):179–84.; Zanella I, Degli AM, Marchese V, et al. Non-neutralizing antibodies: Deleterious or propitious during SARS-CoV-2 infection? IntImmunopharmacol. 2022;110:108943.; Kruglov AA, Bondareva MA, Gogoleva VS, et al. Inactivated whole virion vaccine protects K18-hACE2 Tg mice against the Omicron SARS-CoV-2 variant via cross-reactive T cells and nonneutralizing antibody responses. Eur J Immunol. 2024 Mar;54(3):e2350664. doi:10.1002/eji.202350664. Epub 2023 Dec 31. PMID: 38088236.; Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184(16):4203–4219.e32.; DBello-Gil D, Manez R. Exploiting natural anti-carbohydrate antibodies for therapeutic purposes. Biochemistry. 2015;80:836–845.; Ziganshina MM, Shilova NV, Khalturina EO, et al. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses. 2023;15(7):1584.; https://www.epidemvac.ru/jour/article/view/2132

  2. 2
    Academic Journal

    Source: Drug development & registration; Том 13, № 1 (2024); 208-215 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 208-215 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1758/1253; https://www.pharmjournal.ru/jour/article/view/1758/1299; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1758/2134; Lu R.-M., Hwang Y.-C., Liu I.-J., Lee C.-C., Tsai H.-Z., Li H.-J., Wu H.-C. Development of therapeutic antibodies for the treatment of diseases. Journal of biomedical science. 2020;27(1):1. DOI:10.1186/s12929-019-0592-z.; Tobón G. J., Youinou P., Saraux A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. Journal of autoimmunity. 2010;35(1):10–14. DOI:10.1016/j.jaut.2009.12.009.; Zen M., Salmaso L., Barbiellini Amidei C., Giollo A., Fedeli U., Bellio S., Arru F., Gennaio I., Saia M., Doria A. AB1628 the incidence and prevalence of rheumatoid arthritis in Italy in the last decade. Annals of the rheumatic diseases. 2023;82(1):2048–2048. DOI:10.1136/annrheumdis-2023-eular.1432.; Kukar M., Petryna O., Efthimiou P. Biological targets in the treatment of rheumatoid arthritis: a comprehensive review of current and in-development biological disease modifying anti-rheumatic drugs. Biologics: targets & therapy. 2009;3:443–457.; Rein P., Mueller R. B. Treatment with Biologicals in Rheumatoid Arthritis: An Overview. Rheumatology and therapy. 2017;4:247–261. DOI:10.1007/s40744-017-0073-3.; Leonardi C., Langley R. G., Papp K., Tyring S. K., Wasel N., Vender R., Unnebrink K., Gupta S. R., Valdecantos W. C., Bagel J. Adalimumab for treatment of moderate to severe chronic plaque psoriasis of the hands and feet: efficacy and safety results from REACH, a randomized, placebo-controlled, double-blind trial. Archives of dermatology. 2011;147(4):429–436. DOI:10.1001/archdermatol.2010.384.; Sator P. Safety and tolerability of adalimumab for the treatment of psoriasis: a review summarizing 15 years of real-life experience. Therapeutic advances in chronic disease. 2018;9(8):147–158. DOI:10.1177/2040622318772705.; Mantovani L., Medaglia M., Piacentini P., Tricca M., Vena G. A., Vozza A., Castellino G., Roccia A. Burden of Moderate-to-Severe Plaque Psoriasis and New Therapeutic Approaches (Secukinumab): An Italian Perspective. Dermatology and therapy. 2016;6:151–167. DOI:10.1007/s13555-016-0114-9.; Badri T., Kumar P., Oakley A.M. Plaque Psoriasis. StatPearls. 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK430879/ Accessed: 01.11.2023.; Bu J., Ding R., Zhou L., Chen X., Shen E. Epidemiology of Psoriasis and Comorbid Diseases: A Narrative Review. Frontiers in immunology. 2022;13:880201. DOI:10.3389/fimmu.2022.880201.; Mansouri Y., Goldenberg G. Biologic safety in psoriasis: review of long-term safety data. The Journal of clinical and aesthetic dermatology. 2015;8(2):30–42.; Doevendans E., Schellekens H. Immunogenicity of Innovative and Biosimilar Monoclonal Antibodies. Antibodies. 2019;8(1). DOI:10.3390/antib8010021.; Gehin J. E., Goll G. L., Brun M. K., Jani M., Bolstad N., Syversen S. W. Assessing Immunogenicity of Biologic Drugs in Inflammatory Joint Diseases: Progress Towards Personalized Medicine. BioDrugs. 2022;36(6):731–748. DOI:10.1007/s40259-022-00559-1.; Liang S., Zhang C. Prediction of immunogenicity for humanized and full human therapeutic antibodies. PLOS ONE. 2020;15(8):e0238150. DOI:10.1371/journal.pone.0238150.; Myler H., Pedras-Vasconcelos J., Lester T., Civoli F., Xu W., Wu B., Vainshtein I., Luo L., Hassanein M., Liu S., Ramaswamy S. S., Mora J., Pennucci J., McCush F., Lavelle A., Jani D., Ambakhutwala A., Baltrukonis D., Barker B., Carmean R., Chung S., Dai S., DeWall S., Dholakiya S. L., Dodge R., Finco D., Yan H., Hays A., Hu Z., Inzano C., Kamen L., Lai C. H., Meyer E., Nelson R., Paudel A., Phillips K., Poupart M. E., Qu Q., Abhari M.R., Ryding J., Sheldon C., Spriggs F., Warrino D., Wu Y., Yang L., Pasas-Farmer S. Neutralizing Antibody Validation Testing and Reporting Harmonization. The AAPS Journal. 2023;25:69. DOI:10.1208/s12248-023-00830-5.; Flick D. A., Gifford G. E. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. Journal of immunological methods. 1984;68(1–2):167–175. DOI:10.1016/0022-1759(84)90147-9.; Jani D., Marsden R., Gunsior M., Hay L. S., Ward B., Cowan K. J., Azadeh M., Barker B., Cao L., Closson K. R., Coble K., Dholakiya S. L., Dusseault J., Hays A., Herl C., Hodsdon M. E., Irvin S. C., Kirshner S., Kolaitis G., Kulagina N., Kumar S., Lai C. H., Lipari F., Liu S., Merdek K. D., Moldovan I. R., Mozaffari R., Pan L., Place C., Snoeck V., Manning M. S., Stocker D., Tary-Lehmann M., Turner A., Vainshtein I., Verthelyi D., Williams W. T., Yan H., Yan W., Yang L., Yang L., Zemo J., Zhong Z. D. Anti-drug Antibody Sample Testing and Reporting Harmonization. The AAPS Journal. 2022;24:113. DOI:10.1208/s12248-022-00762-6.; https://www.pharmjournal.ru/jour/article/view/1758

  3. 3
    Academic Journal

    Source: Journal Infectology; Том 16, № 3 (2024); 151-154 ; Журнал инфектологии; Том 16, № 3 (2024); 151-154 ; 2072-6732 ; 10.22625/2072-6732-2024-16-4

    File Description: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1675/1160; Никифоров, В.В. Трудности ранней диагностики и лечения ботулизма / В.В. Никифоров [и др.] // Архивъ внутренней медицины. – 2019. – Т. 9, № 4. – С. 253-259. – DOI:10.20514/2226-6704-2019-9-4-253-259.; Харченко, Г.А. Ботулизм в Астраханской области: ретроспективное исследование / Г.А. Харченко, О.Г. Кимирилова, А.А. Кимирилов // Детские инфекции. – 2022. – Т. 21, № 1. – С. 33–40. – DOI:10.22627/2072-8107-2021-21-1-33-40.; Инфекционные болезни: национальное руководство / под ред. Н.Д. Ющука, Ю.Я. Венгерова. – М.: ГЭОТАР-Медиа, 2019. – 1104 с.; Albrecht P., Jansen A., John-Ih Lee, Moll M., Ringelstein M., Rosenthal D., Bigalke H.,Artas O., Hartung H., Hefter H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology. 2019. 92(1):e48 – e54. DOI:10.1212/WNL.0000000000006688.; Мантурова, Н.Е. Препараты ботулинического токсина: что мы имеем и что видим на горизонте? / Н.Е. Мантурова, Е.А. Чайковская, С.Л. Тимербаева // Пластическая хирургия и эстетическая медицина. – 2020. – № 2. – С. 70–80. – DOI:10.17116/plast.hirurgia202002170.; Pirazzini M., Rossetto O., Eleopra R., Montecucco C. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2017, 69(2):200- 235. DOI:10.1124/pr.116.012658. DOI:10.1124/pr.116.012658.; Орлова, О.Р. Соотношение единиц действия различных препаратов ботулинического нейропротеина при использовании в неврологической практике / О.Р. Орлова [и др.]// Журнал неврологии и психиатрии им. С.С. Корсакова. – 2017. – Т. 117, № 9. – С. 132–141.; Walter U., Mühlenhoff C., Benecke R., Dressler D., Mix E., Alt J., Wittstock M., Dudesek A., Storch A., Kamm C. Frequency and risk factors of antibody-induced secondary failure of botulinum neurotoxin therapy. Neurology, 2020, vol. 94, № 20, e2109-e212. DOI:10.1212/WNL.0000000000009444.; https://journal.niidi.ru/jofin/article/view/1675

  4. 4
    Academic Journal

    Source: Epidemiology and Vaccinal Prevention; Том 23, № 5 (2024); 63-72 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 5 (2024); 63-72 ; 2619-0494 ; 2073-3046

    File Description: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/2085/1071; Ongoing Johns Hopkins COVID-19 Resources, Доступно на: https://coronavirus.jhu.edu/map.html (дата запроса 01.10.2023); Всемирная организация здравоохранения (ВОЗ), Доступно на: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (дата запроса 17.06.2023); Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J; COVID-19 Genomics UK Consortium; Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023 Mar;21(3):162–177. doi:10.1038/s41579-022-00841-7. Epub 2023 Jan 18. PMID: 36653446; PMCID: PMC9847462.; Всемирная организация здравоохранения (ВОЗ). Tracking SARS-CoV-2 variants Доступно на: https://www.who.int/activities/tracking-SARS-CoV-2-variants [доступ 23/12/2023]; The GISAID Initiative [доступ 17/06/2023].; Nextstrain SARS-CoV-2 resources. Доступно на: https://nextstrain.org/ncov/open/global/all-time (29.11.2023); Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021 Jul;27(7):1205–1211. doi:10.1038/s41591-021-01377-8. Epub 2021 May 17. PMID: 34002089.; Feng S, Phillips DJ, White T, et al. Oxford COVID Vaccine Trial Group. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med. 2021 Nov;27(11):2032–2040. doi:10.1038/s41591-021-01540-1. Epub 2021 Sep 29. PMID: 34588689; PMCID: PMC8604724.; Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021 Jul;27(7):1205–1211. doi:10.1038/s41591-021-01377-8. Epub 2021 May 17. PMID: 34002089.; Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280.; Mlcochova P, Kemp SA, Dhar MS, et al. Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR BioResource COVID-19 Collaboration; Mavousian A, Lee JH, Bassi J, , et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114–119.; Kozlovskaya L, Piniaeva A, Ignatyev G, et al. Isolation and phylogenetic analysis of SARS-CoV-2 variants collected in Russia during the COVID-19 outbreak. Int J Infect Dis. 2020 Oct;99:40–46. doi:10.1016/j.ijid.2020.07.024.; The GISAID Initiative, https://gisaid.org/hcov-19-variants-dashboard/ (дата запроса 01.11.2023); Gordeychuk IV, Kozlovskaya LI, Siniugina AA , et al. Safety and Immunogenicity of Inactivated Whole Virion COVID-19 Vaccine CoviVac in Clinical Trials in 18-60 and 60+ Age Cohorts. Viruses. 2023 Aug 29;15(9):1828. doi:10.3390/v15091828.; Временные методические рекомендации порофилактика, диагностика и лечение новой коронавирусной инфекции. Версия 3(03.03.2020); FanWu, AojieWang, MeiLiu, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Аpril 2020 doi:https://doi.org/10.1101/2020.03.30.20047365.; Suthar MS, Zimmerman MG, Kauffman RC, et al.Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med. 2020;1(3):100040.; Huang Q, Han X, Yan J. Structure-based neutralizing mechanisms for SARS-CoV-2 antibodies. EmergMicrobesInfect. 2022;11(1):2412–2422.; Li CJ, Chang SC. SARS-CoV-2 spike S2-specific neutralizing antibodies. EmergMicrobesInfect. 2023;12(2):2220582.; Mlcochova P, Kemp SA, Dhar MS, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114–119.; Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280; Liu H, Wilson IA. Protective neutralizing epitopes in SARS-CoV-2. ImmunolRev. 2022;310(1):76–92; Chen Y, Zhao X, Zhou H,et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.Cell. 2020;183(4):996–1012.e19.; Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.Cell. 2020;183(4):996–1012.e19.; Wang Q, Guo Y, Zhang RM, et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. LancetInfectDis. 2023;23(10):e397–e398.; Qu P, Evans JP, Zheng YM, et al. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. CellHostMicrobe. 2022;30(11):1518–1526.e4.; https://www.epidemvac.ru/jour/article/view/2085

  5. 5
    Academic Journal

    Contributors: The study reported in this publication was carried out by the Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and Biological Agency of Russia as part of the publicly funded research project Passive Immunisation., Работа выполнена в рамках государственного задания ФГБУ «ЦСП» ФМБА России «Пассивная иммунизация»

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 312-321 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 312-321 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/599/916; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/938; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/979; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1027; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1028; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1029; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1030; https://www.biopreparations.ru/jour/article/downloadSuppFile/599/1036; Kamal S, Bugnon O, Cavassini M, Schneider MP. HIV-infected patients’ beliefs about their chronic co-treatments in comparison with their combined antiretroviral therapy. HIV Med. 2018;19(1):49–58. https://doi.org/10.1111/hiv.12542; Wu HF, Morris-Natschke SL, Xu XD, Yang MH, Cheng YY, Yu SS, Lee KH, et al. Recent advances in natural anti-HIV triterpenoids and analogs. Med Res Rev. 2020;40(6):2339–85. https://doi.org/10.1002/med.21708; Chirenje ZM, Marrazzo J, Parikh UM. Antiretroviral-based HIV prevention strategies for women. Expert Rev Anti Infect Ther. 2010;8(10):1177–86. https://doi.org/10.1586/eri.10.79; Gruell H, Klein F. Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology. 2018;15(1):73. https://doi.org/10.1186/s12977-018-0455-9; Walker L, Huber M, Doores K, Falkowska E, Pejchal R, Julien J, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 2011;477(7365):466–70. https://doi.org/10.1038/nature10373; Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med. 2015;7(319):319ra206. https://doi.org/10.1126/scitranslmed.aad5752; Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr, Buckley N, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015;522(7557):487–91. https://doi.org/10.1038/nature14411; Bar-On Y, Gruell H, Schoofs T, Pai JA, Nogueira L, Butler AL, et al. Safety and anti-viral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med. 2018;24(11):1701–7. https://doi.org/10.1038/s41591-018-0186-4; LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. Elife. 2022;11:e76004. https://doi.org/10.7554/eLife.76004; Waters L, Miguel-Buckley R, Poulin S, Arribas J. Broadly neutralizing antibodies for HIV treatment: broad in theory, narrow in reality. Clin Infect Dis. 2023;76(6):1136–41. https://doi.org/10.1093/cid/ciac835; Choudhry V, Zhang M, Dimitrova D, Prabakaran P, Dimitrov A, Fouts T, et al. Antibody-based inhibitors of HIV infection. Expert Opin Biol Ther. 2006;6(5):523–31. https://doi.org/10.1517/14712598.6.5.523; Wang D, Tai P, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. https://doi.org/10.1038/s41573-019-0012-9; Bennett MS, Akkina R. Gene therapy strategies for HIV/AIDS: preclinical modeling in humanized mice. Viruses. 2013;5(12):3119–41. https://doi.org/10.3390/v5123119; Van den Berg FT, Makoah NA, Ali SA, Scott TA, Mapengo RE, Mutsvunguma LZ, et al. AAV-mediated expression of broadly neutralizing and vaccine-like antibodies targeting the HIV-1 envelope V2 region. Mol Ther Methods Clin Dev. 2019;14:100–12. https://doi.org/10.1016/j.omtm.2019.06.002; Shipulin GA, Glazkova DV, Urusov FA, Belugin BV, Dontsova V, Panova AV, et al. Triple combinations of AAV9-vectors encoding Anti-HIV bNAbs provide longterm in vivo expression of human IgG effectively neutralizing pseudoviruses from HIV-1 global panel. Viruses. 2024;16(8):1296. https://doi.org/10.3390/v16081296; Kim KC, Choi BS, Kim KC, Park KH, Lee HJ, Cho YK, et al. A simple mouse model for the study of human immunodeficiency virus. AIDS Res Hum Retroviruses. 2016;32(2):194–202. https://doi.org/10.1089/AID.2015.0211; Søndergaard H, Kvist PH, Haase C. Human T cells de pend on functional calcineurin, tumour necrosis factor-α and CD80/CD86 for expansion and activation in mice. Clin Exp Immunol. 2013;172(2):300–10. https://doi.org/10.1111/cei.12051; Kochina E, Urusov F, Kruglov A, Glazkova D, Shipulin G, Bogoslovskaya E. Double and triple combinations of broadly neutralizing antibodies provide efficient neutralization of all HIV-1 strains from the global panel. Viruses. 2022;14(9):1910. https://doi.org/10.3390/v14091910; van der Velden YU, Villaudy J, Siteur-van Rijnstra E, van der Linden CA, Frankin E, Weijer K, et al. Short communication: protective efficacy of broadly neutralizing antibody PGDM1400 against HIV-1 challenge in humanized mice. AIDS Res Hum Retroviruses. 2018;34(9):790–3. https://doi.org/10.1089/AID.2018.0114; Horwitz JA, Halper-Stromberg A, Mouquet H, Gitlin AD, Tretiakova A, Eisenreich TR, et al. HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Natl Acad Sci USA. 2013;110(41):16538–43. https://doi.org/10.1073/pnas.1315295110; Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2011;481(7379):81–4. https://doi.org/10.1038/nature10660; Casazza JP, Cale EM, Narpala S, Yamshchikov GV, Coates EE, Hendel CS, et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med. 2022;28(5):1022–30. https://doi.org/10.1038/s41591-022-01762-x; Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology. 2018;15(1):66. https://doi.org/10.1186/s12977-018-0449-7; https://www.biopreparations.ru/jour/article/view/599

  6. 6
    Academic Journal

    Contributors: 1

    Source: Russian Journal of Infection and Immunity; Vol 13, No 2 (2023); 376-382 ; Инфекция и иммунитет; Vol 13, No 2 (2023); 376-382 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: Russian Journal of Infection and Immunity; Vol 12, No 4 (2022); 771-778 ; Инфекция и иммунитет; Vol 12, No 4 (2022); 771-778 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  8. 8
    Academic Journal

    Contributors: 1

    Source: Russian Journal of Infection and Immunity; Vol 12, No 5 (2022); 971-975 ; Инфекция и иммунитет; Vol 12, No 5 (2022); 971-975 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  9. 9
    Academic Journal

    Contributors: The reported study was funded by the Russian Foundation for Basic Research (project No. 20-04-00879).

    Source: Vavilov Journal of Genetics and Breeding; Том 25, № 5 (2021); 562-572 ; Вавиловский журнал генетики и селекции; Том 25, № 5 (2021); 562-572 ; 2500-3259 ; 10.18699/VJ21.052

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3114/1538; Alfaleh M.A., Alsaab H.O., Mahmoud A.B., Alkayyal A.A., Jones M.L., Mahler S.M., Hashem A.M. Phage display derived monoclonal antibodies: from bench to bedside. Front. Immunol. 2020;11:1986. DOI 10.3389/fimmu.2020.01986.; Ashby M., Petkova A., Gani J., Mikut R., Hilpert K. Use of peptide libraries for identification and optimization of novel antimicrobial peptides. Curr. Top. Med. Chem. 2017;17(5):537-553. DOI 10.2174/1568026616666160713125555.; Barbas C.F., 3rd, Crowe J.E., Jr., Cababa D., Jones T.M., Zebedee S.L., Murphy B.R., Chanock R.M., Burton D.R. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc. Natl. Acad. Sci. USA. 1992;89(21):10164-10168. DOI 10.1073/pnas.89.21.10164.; Barbas C.F., 3rd, Kang A.S., Lerner R.A., Benkovic S.J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA. 1991;88(18):7978-7982. DOI 10.1073/pnas.88.18.7978.; Burton D.R., Barbas C.F., 3rd, Persson M.A., Koenig S., Chanock R.M., Lerner R.A. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA. 1991;88(22):10134-10137. DOI 10.1073/pnas.88.22.10134.; Burton D.R., Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 2016;34:635-659. DOI 10.1146/annurev-immunol-041015-055515.; Burton D.R., Pyati J., Koduri R., Sharp S.J., Thornton G.B., Parren P.W., Sawyer L.S., Hendry R.M., Dunlop N., Nara P.L. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science. 1994;266(5187):1024-1027. DOI 10.1126/science.7973652.; Castel G., Chteoui M., Heyd B., Tordo N. Phage display of combinatorial peptide libraries: application to antiviral research. Molecules. 2011;16(5):3499-3518. DOI 10.3390/molecules16053499.; Chames P., Baty D. Phage display and selections on biotinylated antigens. In: Kotermann R., Dübel S. (Eds.). Antibody Engineering. Humana Press, 2010;151-164. DOI 10.1007/978-3-642-01144-3_11.; Chan C.E., Lim A.P., Macary P.A., Hanson B.J. The role of phage display in therapeutic antibody discovery. Int. Immunol. 2014;26(12): 649-657. DOI 10.1093/intimm/dxu082.; Choudhry V., Zhang M.Y., Dimitrova D., Prabakaran P., Dimitrov A.S., Fouts T.R., Dimitrov D.S. Antibody-based inhibitors of HIV infection. Expert Opin. Biol. Ther. 2006;6(5):523-531. DOI 10.1517/14712598.6.5.523.; Christensen D.J., Gottlin E.B., Benson R.E., Hamilton P.T. Phage display for target-based antibacterial drug discovery. Drug Discov. Today. 2001;6(14):721-727. DOI 10.1016/s1359-6446(01)01853-0.; Clackson T., Hoogenboom H.R., Griffiths A.D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991; 352(6336):624-628. DOI 10.1038/352624a0.; Clark J.R., March J.B. Bacteriophage-mediated nucleic acid immunisation. FEMS Immunol. Med. Microbiol. 2004;40(1):21-26. DOI 10.1016/S0928-8244(03)00344-4.; Corti D., Langedijk J.P., Hinz A., Seaman M.S., Vanzetta F., FernandezRodriguez B.M., Silacci C., Pinna D., Jarrossay D., Balla-Jhagjhoorsingh S., Willems B., Zekveld M.J., Dreja H., O’sullivan E., Pade C., Orkin C., Jeffs S.A., Montefiori D.C., Davis D., Weissenhorn W., Mcknight A., Heeney J.L., Sallusto F., Sattentau Q.J., Weiss R.A., Lanzavecchia A. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One. 2010;5(1):e8805. DOI 10.1371/journal.pone.0008805.; Cuevas J.M., Geller R., Garijo R., Lopez-Aldeguer J., Sanjuan R. Extremely high mutation rate of HIV-1 in vivo. PLoS Biol. 2015;13(9): e1002251. DOI 10.1371/journal.pbio.1002251.; Dashti A., Devico A.L., Lewis G.K., Sajadi M.M. Broadly neutralizing antibodies against HIV: back to blood. Trends Mol. Med. 2019; 25(3):228-240. DOI 10.1016/j.molmed.2019.01.007.; Davies J., Riechmann L. Antibody VH domains as small recognition units. Biotechnology (NY ). 1995;13(5):475-479. DOI 10.1038/nbt0595-475.; Del Moral-Sanchez I., Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev. Vaccines. 2019;18(11):1127-1143. DOI 10.1080/14760584.2019.1690458.; Dhillon A.K., Donners H., Pantophlet R., Johnson W.E., Decker J.M., Shaw G.M., Lee F.H., Richman D.D., Doms R.W., Vanham G., Burton D.R. Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J. Virol. 2007;81(12):6548-6562. DOI 10.1128/JVI.02749-06.; Doria-Rose N.A., Klein R.M., Manion M.M., O’dell S., Phogat A., Chakrabarti B., Hallahan C.W., Migueles S.A., Wrammert J., Ahmed R., Nason M., Wyatt R.T., Mascola J.R., Connors M. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 2009;83(1):188-199. DOI 10.1128/JVI.01583-08.; Duan H., Chen X., Boyington J.C., Cheng C., Zhang Y., Jafari A.J., Stephens T., Tsybovsky Y., Kalyuzhniy O., Zhao P., Menis S., Nason M.C., Normandin E., Mukhamedova M., Dekosky B.J., Wells L., Schief W.R., Tian M., Alt F.W., Kwong P.D., Mascola J.R. Glycan masking focuses immune responses to the HIV-1 CD4-binding site and enhances elicitation of VRC01-class precursor antibodies. Immunity. 2018;49(2):301-311 e305. DOI 10.1016/j.immuni.2018.07.005.; Felici F., Castagnoli L., Musacchio A., Jappelli R., Cesareni G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 1991;222(2):301-310. DOI 10.1016/0022-2836(91)90213-p.; Forsman A., Beirnaert E., Aasa-Chapman M.M., Hoorelbeke B., Hijazi K., Koh W., Tack V., Szynol A., Kelly C., Mcknight A., Verrips T., De Haard H., Weiss R.A. Llama antibody fragments with crosssubtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120. J. Virol. 2008;82(24): 12069-12081. DOI 10.1128/JVI.01379-08.; Gach J.S., Quendler H., Tong T., Narayan K.M., Du S.X., Whalen R.G., Binley J.M., Forthal D.N., Poignard P., Zwick M.B. A human antibody to the CD4 binding site of gp120 capable of highly potent but sporadic cross clade neutralization of primary HIV-1. PLoS One. 2013;8(8):e72054. DOI 10.1371/journal.pone.0072054.; Greenberg A.S., Avila D., Hughes M., Hughes A., McKinney E.C., Flajnik M.F. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 1995;374(6518):168-173. DOI 10.1038/374168a0.; Griffiths A.D., Duncan A.R. Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 1998;9(1):102-108. DOI 10.1016/s0958-1669(98)80092-x.; Habeshaw J.A., Dalgleish A.G., Bountiff L., Newell A.L., Wilks D., Walker L.C., Manca F. AIDS pathogenesis: HIV envelope and its interaction with cell proteins. Immunol. Today. 1990;11(11):418-425. DOI 10.1016/0167-5699(90)90162-3.; Hammers C.M., Stanley J.R. Antibody phage display: technique and applications. J. Invest. Dermatol. 2014;134(2):1-5. DOI 10.1038/jid.2013.521.; Hess K.L., Jewell C.M. Phage display as a tool for vaccine and immunotherapy development. Bioeng. Transl. Med. 2020;5(1):e10142. DOI 10.1002/btm2.10142.; Hessell A.J., Rakasz E.G., Poignard P., Hangartner L., Landucci G., Forthal D.N., Koff W.C., Watkins D.I., Burton D.R. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 2009;5(5):e1000433. DOI 10.1371/journal.ppat.1000433.; Hraber P., Korber B.T., Lapedes A.S., Bailer R.T., Seaman M.S., Gao H., Greene K.M., Mccutchan F., Williamson C., Kim J.H., Tovanabutra S., Hahn B.H., Swanstrom R., Thomson M.M., Gao F., Harris L., Giorgi E., Hengartner N., Bhattacharya T., Mascola J.R., Montefiori D.C. Impact of clade geography and age of the epidemic on HIV-1 neutralization by antibodies. J. Virol. 2014;88(21):12623-12643. DOI 10.1128/JVI.01705-14.; Huang J.X., Bishop-Hurley S.L., Cooper M.A. Development of antiinfectives using phage display: biological agents against bacteria viruses and parasites. Antimicrob. Agents Chemother. 2012;56(9): 4569-4582. DOI 10.1128/AAC.00567-12.; Ilyichev A.A., Minenkova O.O., Kishchenko G.P., Tat’kov S.I., Karpishev N.N., Eroshkin A.M., Ofitzerov V.I., Akimenko Z.A., Petrenko V.A., Sandakhchiev L.S. Inserting foreign peptides into the major coat protein of bacteriophage M13. FEBS Lett. 1992;301(3):322-324. DOI 10.1016/0014-5793(92)80267-k.; Jardine J., Julien J.P., Menis S., Ota T., Kalyuzhniy O., Mcguire A., Sok D., Huang P.S., Macpherson S., Jones M., Nieusma T., Mathison J., Baker D., Ward A.B., Burton D.R., Stamatatos L., Nemazee D., Wilson I.A., Schief W.R. Rational HIV immunogen design to target specific germline B cell receptors. Science. 2013;340(6133):711-716. DOI 10.1126/science.1234150.; Julg B., Barouch D.H. Neutralizing antibodies for HIV-1 prevention. Curr. Opin. HIV AIDS. 2019;14(4):318-324. DOI 10.1097/COH.0000000000000556.; Karuna S.T., Corey L. Broadly neutralizing antibodies for HIV prevention. Annu. Rev. Med. 2020;71(1):329-346. DOI 10.1146/annurev-med-110118-045506.; Kay B.K., Adey N.B., He Y.S., Manfredi J.P., Mataragnon A.H., Fowlkes D.M. An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequences with affinity to selected targets. Gene. 1993;128(1):59-65. DOI 10.1016/0378-1119(93)90153-t.; Kennedy P.J., Oliveira C., Granja P.L., Sarmento B. Monoclonal antibodies: technologies for early discovery and engineering. Crit. Rev. Biotechnol. 2018;38(3):394-408. DOI 10.1080/07388551.2017.1357002.; Kishchenko G., Batliwala H., Makowski L. Structure of a foreign peptide displayed on the surface of bacteriophage M13. J. Mol. Biol. 1994;241(2):208-213. DOI 10.1006/jmbi.1994.1489.; Koch K., Kalusche S., Torres J.L., Stanfield R.L., Danquah W., Khazanehdari K., Von Briesen H., Geertsma E.R., Wilson I.A., Wernery U., Koch-Nolte F., Ward A.B., Dietrich U. Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Sci. Rep. 2017;7(1):8390. DOI 10.1038/s41598-017-08273-7.; Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W.C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science. 1987;237(4820):1351-1355. DOI 10.1126/science.3629244.; Kwong P.D., Mascola J.R. HIV-1 vaccines based on antibody identification B cell ontogeny and epitope structure. Immunity. 2018;48(5): 855-871. DOI 10.1016/j.immuni.2018.04.029.; Labrijn A.F., Poignard P., Raja A., Zwick M.B., Delgado K., Franti M., Binley J., Vivona V., Grundner C., Huang C.C., Venturi M., Petropoulos C.J., Wrin T., Dimitrov D.S., Robinson J., Kwong P.D., Wyatt R.T., Sodroski J., Burton D.R. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J. Virol. 2003;77(19):10557-10565. DOI 10.1128/jvi.77.19.10557-10565.2003.; Ledsgaard L., Kilstrup M., Karatt-Vellatt A., McCafferty J., Laustsen A.H. Basics of antibody phage display technology. Toxins (Basel ). 2018;10(6). DOI 10.3390/toxins10060236.; Lutje Hulsik D., Liu Y.Y., Strokappe N.M., Battella S., El Khattabi M., Mccoy L.E., Sabin C., Hinz A., Hock M., Macheboeuf P., Bonvin A.M., Langedijk J.P., Davis D., Forsman Quigley A., AasaChapman M.M., Seaman M.S., Ramos A., Poignard P., Favier A., Simorre J.P., Weiss R.A., Verrips C.T., Weissenhorn W., Rutten L. A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition. PLoS Pathog. 2013;9(3):e1003202. DOI 10.1371/journal.ppat.1003202.; Lynch R.M., Boritz E., Coates E.E., Dezure A., Madden P., Costner P., Enama M.E., Plummer S., Holman L., Hendel C.S., Gordon I., Casazza J., Conan-Cibotti M., Migueles S.A., Tressler R., Bailer R.T., Mcdermott A., Narpala S., O’dell S., Wolf G., Lifson J.D., Freemire B.A., Gorelick R.J., Pandey J.P., Mohan S., Chomont N., Fromentin R., Chun T.W., Fauci A.S., Schwartz R.M., Koup R.A., Douek D.C., Hu Z., Capparelli E., Graham B.S., Mascola J.R., Ledgerwood J.E., VRC 601 Study Team. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 2015;7(319):319ra206. DOI 10.1126/scitranslmed.aad5752.; Mahomed S., Garrett N., Baxter C., Abdool Karim Q., Abdool Karim S.S. Clinical trials of broadly neutralizing monoclonal antibodies for Human Immunodeficiency Virus prevention: a review. J. Infect. Dis. 2021;223(3):370-380. DOI 10.1093/infdis/jiaa377.; Mahomed S., Garrett N., Karim Q.A., Zuma N.Y., Capparelli E., Baxter C., Gengiah T., Archary D., Samsunder N., Rose N.D., Moore P., Williamson C., Barouch D.H., Fast P.E., Pozzetto B., Hankins C., Carlton K., Ledgerwood J., Morris L., Mascola J., Abdool Karim S. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial. BMJ Open. 2020;10(11):e042247. DOI 10.1136/bmjopen-2020-042247.; Mascola J.R., Haynes B.F. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol. Rev. 2013;254(1):225-244. DOI 10.1111/imr.12075.; McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552-554. DOI 10.1038/348552a0.; Mccoy L.E., Burton D.R. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 2017;275(1):11-20. DOI 10.1111/imr.12484.; Mccoy L.E., Quigley A.F., Strokappe N.M., Bulmer-Thomas B., Seaman M.S., Mortier D., Rutten L., Chander N., Edwards C.J., Ketteler R., Davis D., Verrips T., Weiss R.A. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. J. Exp. Med. 2012;209(6):1091-1103. DOI 10.1084/jem.20112655.; Mccoy L.E., Rutten L., Frampton D., Anderson I., Granger L., Bashford-Rogers R., Dekkers G., Strokappe N.M., Seaman M.S., Koh W., Grippo V., Kliche A., Verrips T., Kellam P., Fassati A., Weiss R.A. Molecular evolution of broadly neutralizing llama antibodies to the CD4-binding site of HIV-1. PLoS Pathog. 2014;10(12):e1004552. DOI 10.1371/journal.ppat.1004552.; Medina-Ramirez M., Garces F., Escolano A., Skog P., De Taeye S.W., Del Moral-Sanchez I., Mcguire A.T., Yasmeen A., Behrens A.J., Ozorowski G., Van Den Kerkhof T., Freund N.T., Dosenovic P., Hua Y., Gitlin A.D., Cupo A., Van Der Woude P., Golabek M., Sliepen K., Blane T., Kootstra N., Van Breemen M.J., Pritchard L.K., Stanfield R.L., Crispin M., Ward A.B., Stamatatos L., Klasse P.J., Moore J.P., Nemazee D., Nussenzweig M.C., Wilson I.A., Sanders R.W. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. J. Exp. Med. 2017;214(9):2573-2590. DOI 10.1084/jem.20161160.; Miller M.D., Geleziunas R., Bianchi E., Lennard S., Hrin R., Zhang H., Lu M., An Z., Ingallinella P., Finotto M., Mattu M., Finnefrock A.C., Bramhill D., Cook J., Eckert D.M., Hampton R., Patel M., Jarantow S., Joyce J., Ciliberto G., Cortese R., Lu P., Strohl W., Schleif W., Mcelhaugh M., Lane S., Lloyd C., Lowe D., Osbourn J., Vaughan T., Emini E., Barbato G., Kim P.S., Hazuda D.J., Shiver J.W., Pessi A. A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proc. Natl. Acad. Sci. USA. 2005; 102(41):14759-14764. DOI 10.1073/pnas.0506927102.; Minenkova O.O., Ilyichev A.A., Kishchenko G.P., Petrenko V.A. Design of specific immunogens using filamentous phage as the carrier. Gene. 1993;128(1):85-88. DOI 10.1016/0378-1119(93)90157-x.; Moldt B., Rakasz E.G., Schultz N., Chan-Hui P.Y., Swiderek K., Weisgrau K.L., Piaskowski S.M., Bergman Z., Watkins D.I., Poignard P., Burton D.R. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc. Natl. Acad. Sci. USA. 2012;109(46):18921-18925. DOI 10.1073/pnas.1214785109.; Montefiori D.C., Baba T.W., Li A., Bilska M., Ruprecht R.M. Neutralizing and infection-enhancing antibody responses do not correlate with the differential pathogenicity of SIVmac239delta3 in adult and infant rhesus monkeys. J. Immunol. 1996;157(12):5528-5535.; Moon J.S., Choi E.J., Jeong N.N., Sohn J.R., Han D.W., Oh J.W. Research progress of M13 bacteriophage-based biosensors. Nanomaterials (Basel ). 2019;9(10). DOI 10.3390/nano9101448.; Moulard M., Phogat S.K., Shu Y., Labrijn A.F., Xiao X., Binley J.M., Zhang M.Y., Sidorov I.A., Broder C.C., Robinson J., Parren P.W., Burton D.R., Dimitrov D.S. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4CCR5 complexes. Proc. Natl. Acad. Sci. USA. 2002;99(10):6913-6918. DOI 10.1073/pnas.102562599.; Mouquet H., Nussenzweig M.C. HIV: Roadmaps to a vaccine. Nature. 2013;496(7446):441-442. DOI 10.1038/nature12091.; Mullen L.M., Nair S.P., Ward J.M., Rycroft A.N., Henderson B. Phage display in the study of infectious diseases. Trends Microbiol. 2006; 14(3):141-147. DOI 10.1016/j.tim.2006.01.006.; Muyldermans S. A guide to: generation and design of nanobodies. FEBS J. 2021;288(7):2084-2102. DOI 10.1111/febs.15515.; Nelson J.D., Brunel F.M., Jensen R., Crooks E.T., Cardoso R.M., Wang M., Hessell A., Wilson I.A., Binley J.M., Dawson P.E., Burton D.R., Zwick M.B. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J. Virol. 2007;81(8):4033-4043. DOI 10.1128/JVI.02588-06.; Nemudraya A.A., Richter V.A., Kuligina E.V. Phage peptide libraries as a source of targeted ligands. Acta Naturae. 2016;8(1):48-57. DOI 10.32607/20758251-2016-8-1-48-57.; Nixon A.E., Sexton D.J., Ladner R.C. Drugs derived from phage display: from candidate identification to clinical practice. MAbs. 2014; 6(1):73-85. DOI 10.4161/mabs.27240.; Petrenko V.A., Jayanna P.K. Phage protein-targeted cancer nanomedicines. FEBS Lett. 2014;588(2):341-349. DOI 10.1016/j.febslet.2013.11.011.; Putney S. How antibodies block HIV infection: paths to an AIDS vaccine. Trends Biochem. Sci. 1992;17(5):191-196. DOI 10.1016/0968-0004(92)90265-b.; Roben P., Moore J.P., Thali M., Sodroski J., Barbas C.F., 3rd, Burton D.R. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J. Virol. 1994;68(8):4821-4828. DOI 10.1128/JVI.68.8.4821-4828.1994.; Rusert P., Kouyos R.D., Kadelka C., Ebner H., Schanz M., Huber M., Braun D.L., Hoze N., Scherrer A., Magnus C., Weber J., Uhr T., Cippa V., Thorball C.W., Kuster H., Cavassini M., Bernasconi E., Hoffmann M., Calmy A., Battegay M., Rauch A., Yerly S., Aubert V., Klimkait T., Boni J., Fellay J., Regoes R.R., Gunthard H.F., Trkola A., Swiss Hivcs T. Determinants of HIV-1 broadly neutralizing antibody induction. Nat. Med. 2016;22(11):1260-1267. DOI 10.1038/nm.4187.; Scheid J.F., Horwitz J.A., Bar-On Y., Kreider E.F., Lu C.L., Lorenzi J.C., Feldmann A., Braunschweig M., Nogueira L., Oliveira T., Shimeliovich I., Patel R., Burke L., Cohen Y.Z., Hadrigan S., Settler A., Witmer-Pack M., West A.P., Jr., Juelg B., Keler T., Hawthorne T., Zingman B., Gulick R.M., Pfeifer N., Learn G.H., Seaman M.S., Bjorkman P.J., Klein F., Schlesinger S.J., Walker B.D., Hahn B.H., Nussenzweig M.C., Caskey M. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature. 2016;535(7613):556-560. DOI 10.1038/nature18929.; Schoofs T., Klein F., Braunschweig M., Kreider E.F., Feldmann A., Nogueira L., Oliveira T., Lorenzi J.C., Parrish E.H., Learn G.H., West A.P., Jr., Bjorkman P.J., Schlesinger S.J., Seaman M.S., Czartoski J., Mcelrath M.J., Pfeifer N., Hahn B.H., Caskey M., Nussenzweig M.C. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science. 2016; 352(6288):997-1001. DOI 10.1126/science.aaf0972.; Scott J.K., Smith G.P. Searching for peptide ligands with an epitope library. Science. 1990;249(4967):386-390. DOI 10.1126/science.1696028.; Shcherbakov D.N., Bakulina A.Y., Karpenko L.I., Ilyichev A.A. Broadly neutralizing antibodies against HIV-1 as a novel aspect of the immune response. Acta Naturae. 2015;7(4):11-21.; Shingai M., Donau O.K., Plishka R.J., Buckler-White A., Mascola J.R., Nabel G.J., Nason M.C., Montefiori D., Moldt B., Poignard P., Diskin R., Bjorkman P.J., Eckhaus M.A., Klein F., Mouquet H., Cetrulo Lorenzi J.C., Gazumyan A., Burton D.R., Nussenzweig M.C., Martin M.A., Nishimura Y. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med. 2014;211(10):2061-2074. DOI 10.1084/jem.20132494.; Skerra A., Pluckthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science. 1988;240(4855):1038-1041. DOI 10.1126/science.3285470.; Smith G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705):1315-1317. DOI 10.1126/science.4001944.; Smith G.P., Petrenko V.A. Phage display. Chem. Rev. 1997;97(2):391-410. DOI 10.1021/cr960065d.; Sok D., Burton D.R. Recent progress in broadly neutralizing antibodies to HIV. Nat. Immunol. 2018;19(11):1179-1188. DOI 10.1038/s41590-018-0235-7.; Sozhamannan S., Hofmann E.R. The state of the art in biodefense related bacterial pathogen detection using bacteriophages: how it started and how it’s going. Viruses. 2020;12(12). DOI 10.3390/v12121393.; Stamatatos L., Pancera M., Mcguire A.T. Germline-targeting immunogens. Immunol. Rev. 2017;275(1):203-216. DOI 10.1111/imr.12483.; Stephenson K.E., Wagh K., Korber B., Barouch D.H. Vaccines and broadly neutralizing antibodies for HIV-1 prevention. Annu. Rev. Immunol. 2020;38(673-703). DOI 10.1146/annurev-immunol-080219-023629.; Strokappe N.M., Hock M., Rutten L., Mccoy L.E., Back J.W., Caillat C., Haffke M., Weiss R.A., Weissenhorn W., Verrips T. Super potent bispecific llama VHH antibodies neutralize HIV via a combination of gp41 and gp120 epitopes. Antibodies (Basel ). 2019;8(2). DOI 10.3390/antib8020038.; Strokappe N., Szynol A., Aasa-Chapman M., Gorlani A., Forsman Quigley A., Hulsik D.L., Chen L., Weiss R., De Haard H., Verrips T. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS One. 2012;7(3):e33298. DOI 10.1371/journal.pone.0033298.; Tikunova N.V., Morozova V.V. Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection. Acta Naturae. 2009;1(3):20-28.; Walker L.M., Phogat S.K., Chan-Hui P.Y., Wagner D., Phung P., Goss J.L., Wrin T., Simek M.D., Fling S., Mitcham J.L., Lehrman J.K., Priddy F.H., Olsen O.A., Frey S.M., Hammond P.W., Investigators P.G.P., Kaminsky S., Zamb T., Moyle M., Koff W.C., Poignard P., Burton D.R. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science. 2009;326(5950):285-289. DOI 10.1126/science.1178746.; Walker L.M., Simek M.D., Priddy F., Gach J.S., Wagner D., Zwick M.B., Phogat S.K., Poignard P., Burton D.R. A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog. 2010;6(8):e1001028. DOI 10.1371/journal.ppat.1001028.; Weiss R.A., Verrips C.T. Nanobodies that neutralize HIV. Vaccines (Basel ). 2019;7(3). DOI 10.3390/vaccines7030077.; Winter G., Griffiths A.D., Hawkins R.E., Hoogenboom H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 1994;12(433-455). DOI 10.1146/annurev.iy.12.040194.002245.; Wu X., Yang Z.Y., Li Y., Hogerkorp C.M., Schief W.R., Seaman M.S., Zhou T., Schmidt S.D., Wu L., Xu L., Longo N.S., Mckee K., O’dell S., Louder M.K., Wycuff D.L., Feng Y., Nason M., DoriaRose N., Connors M., Kwong P.D., Roederer M., Wyatt R.T., Nabel G.J., Mascola J.R. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010; 329(5993):856-861. DOI 10.1126/science.1187659.; Zhang M.Y., Choudhry V., Sidorov I.A., Tenev V., Vu B.K., Choudhary A., Lu H., Stiegler G.M., Katinger H.W., Jiang S., Broder C.C., Dimitrov D.S. Selection of a novel gp41-specific HIV-1 neutralizing human antibody by competitive antigen panning. J. Immunol. Methods. 2006;317(1-2):21-30. DOI 10.1016/j.jim.2006.09.016.; Zhang M.Y., Shu Y., Phogat S., Xiao X., Cham F., Bouma P., Choudhary A., Feng Y.R., Sanz I., Rybak S., Broder C.C., Quinnan G.V., Evans T., Dimitrov D.S. Broadly cross-reactive HIV neutralizing human monoclonal antibody Fab selected by sequential antigen panning of a phage display library. J. Immunol. Methods. 2003; 283(1-2):17-25. http://dx.doi.org/10.1016/j.jim.2003.07.003.; Zhang M.Y., Shu Y., Rudolph D., Prabakaran P., Labrijn A.F., Zwick M.B., Lal R.B., Dimitrov D.S. Improved breadth and potency of an HIV-1-neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J. Mol. Biol. 2004a; 335(1):209-219. DOI 10.1016/j.jmb.2003.09.055.; Zhang M.Y., Xiao X., Sidorov I.A., Choudhry V., Cham F., Zhang P.F., Bouma P., Zwick M., Choudhary A., Montefiori D.C., Broder C.C., Burton D.R., Quinnan G.V., Jr., Dimitrov D.S. Identification and characterization of a new cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody. J. Virol. 2004b;78(17):9233-9242. DOI 10.1128/JVI.78.17.9233-9242.2004.; Zhang M.Y., Yuan T., Li J., Rosa Borges A., Watkins J.D., Guenaga J., Yang Z., Wang Y., Wilson R., Li Y., Polonis V.R., Pincus S.H., Ruprecht R.M., Dimitrov D.S. Identification and characterization of a broadly cross-reactive HIV-1 human monoclonal antibody that binds to both gp120 and gp41. PLoS One. 2012;7(9):e44241. DOI 10.1371/journal.pone.0044241.; Zhao A., Tohidkia M.R., Siegel D.L., Coukos G., Omidi Y. Phage antibody display libraries: a powerful antibody discovery platform for immunotherapy. Crit. Rev. Biotechnol. 2016;36(2):276-289. DOI 10.3109/07388551.2014.958978.; Zwick M.B., Bonnycastle L.L., Menendez A., Irving M.B., Barbas C.F., 3rd, Parren P.W., Burton D.R., Scott J.K. Identification and characterization of a peptide that specifically binds the human broadly neutralizing anti-human immunodeficiency virus type 1 antibody b12. J. Virol. 2001;75(14):6692-6699. DOI 10.1128/JVI.75.14.6692-6699.2001.; https://vavilov.elpub.ru/jour/article/view/3114

  10. 10
    Academic Journal

    Contributors: Авторы выражают благодарность сотрудникам ГНЦ ВБ «Вектор» Бакулиной Л.Ф., Сороченко С.А., Дадаевой А.А., Сальник В.Г., Шишкиной Л.Н., Полтавченко А.Г. за помощь в экспериментальной работе и обсуждении результатов

    Source: Russian Journal of Infection and Immunity; Vol 11, No 1 (2021); 123-130 ; Инфекция и иммунитет; Vol 11, No 1 (2021); 123-130 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  11. 11
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 13, № 3 (2021) ; ВИЧ-инфекция и иммуносупрессии; Том 13, № 3 (2021) ; 2077-9828 ; 10.22328/2077-9828-2021-13-3

    Relation: https://hiv.bmoc-spb.ru/jour/article/downloadSuppFile/593/405; https://hiv.bmoc-spb.ru/jour/article/downloadSuppFile/593/406; Wang Q. and Zhang L. Broadly neutralizing antibodies and vaccine design against HIV-1 infection. // Front Med. 2020 Feb;14(1):30-42. doi:10.1007/s11684-019-0721-9.; Zhu P., Liu J., Bess J., Chertova E., Lifson J.D. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. // Nature. 2006 Jun 15;441(7095):847-52. doi:10.1038/nature04817.; Wyatt R. and Sodroski J. The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens. // Science. 1998 Jun 19;280(5371):1884-8. doi:10.1126/science.280.5371.1884; Stewart-Jones G.B.E., Soto C., Lemmin T., Chuang G.Y. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. // Cell. 2016 May 5;165(4):813-26. doi:10.1016/j.cell.2016.04.010.; Walker L.M., Phogat S.K., Chan-Hui Po-Y., Wagner D. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. // Science. 2009 Oct 9;326(5950):285-9. doi:10.1126/science.1178746.; Alam S.M., McAdams M., Boren D., Rak M. et al. The Role of Antibody Polyspecificity and Lipid Reactivity in Binding of Broadly Neutralizing Anti-HIV-1 Envelope Human Monoclonal Antibodies 2F5 and 4E10 to Glycoprotein 41 Membrane Proximal Envelope Epitopes. // J. Immunol. 2007 Apr 1;178(7):4424-35. doi:10.4049/jimmunol.178.7.4424.; Liao H.-X., Chen Xi, Munshaw S., Zhang R. et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. // J. Exp. Med. 2011 Oct 24;208(11):2237-49. doi:10.1084/jem.20110363.; Haynes B.F., Fleming J., Clair E.W.St. et al. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. // Science. 2005 Jun 24;308(5730):1906-8. doi:10.1126/science.1111781.; Matyas G.R., Beck Z., Karasavvas N., Alving C.R. Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV-1. // Biochim Biophys Acta. 2009 Mar;1788(3):660-5. doi:10.1016/j.bbamem.2008.11.015.; Barbas C.F. III, Björling E., Chiodi F., Dunlop N., Cababa D. et al. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. // Proc. Natl. Acad. Sci. USA. 1992 Oct 1;89(19):9339-43. doi:10.1073/pnas.89.19.9339.; Burton D., Pyati J., Koduri R., Sharp S.J. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. // Science. 1994 Nov 11;266(5187):1024-7. doi:10.1126/science.7973652.; Gorny M.K., Conley A.J., Karwowska S., Buchbinder A., Xu J.Y., Emini E.A., Koenig S., Zolla-Pazner S. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. // J. Virol. 1992 Vol. 66 (12). P. 7538-42. doi:10.1128/JVI.66.12.7538-7542.1992.; Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Rüker F., Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. // J. Virol. 1993 Nov;67(11):6642-7. doi:10.1128/JVI.67.11.6642-6647.1993.; Stiegler G., Kunert R., Purtscher M., Wolbank S., Voglauer R., Steindl F., Katinger H. A Potent Cross-Clade Neutralizing Human Monoclonal Antibody against a Novel Epitope on gp41 of Human Immunodeficiency Virus Type 1. // AIDS Res. Hum. Retroviruses. 2001 Dec 10;17(18):1757-65. doi:10.1089/08892220152741450.; Zwick M.B., Labrijn A.F., Wang M., Spenlehaueret C. et al. Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41. // J. Virol. 2001 Nov;75(22):10892-905. doi:10.1128/JVI.75.22.10892-10905.2001.; Wei X., Decker J.M., Wang S., Hui H. et al. Antibody neutralization and escape by HIV-1. // Nature. 2003 Mar 20;422(6929):307-12. doi:10.1038/nature01470.; Richman D.D., Wrin T., Little S.J., Petropoulos C.J. et al. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. // Proc. Natl. Acad. Sci. U. S. A. 2003 Apr 1;100(7):4144-9. doi:10.1073/pnas.0630530100.; Mascola J.R. and Haynes B.F. HIV-1 neutralizing antibodies: understanding nature’s pathways. // Immunol. Rev. 2013 Jul;254(1):225-44. doi:10.1111/imr.12075.; Rusert P., Kouyos R.D., Kadelka C., Ebner H. et al. Determinants of HIV-1 broadly neutralizing antibody induction. // Nat. Med. 2016 Nov;22(11):1260-1267. doi:10.1038/nm.4187.; Subbaraman H., Schanz M., Trkola A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy? // Retrovirology. 2018 Jul 28;15(1):52. doi:10.1186/s12977-018-0433-2.; Dugast A.-S., Arnold K., Lofano G., Moore S. et al. Virus-driven Inflammation Is Associated with the Development of bNAbs in Spontaneous Controllers of HIV. // Clin. Infect. Dis. 2017 Apr 15;64(8):1098-1104. doi:10.1093/cid/cix057.; Aasa-Chapman M.M., Hayman A., Newton P., Cornforth D. et al. Development of the antibody response in acute HIV-1 infection. // AIDS. 2004 Feb 20;18(3):371-81. doi:10.1097/00002030-200402200-00002.; Mikell I., Sather D.N., Kalams S.A., Altfeld M., Alter G., Stamatatos L. et al. Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1. // PLoS Pathog. 2011 Jan 13;7(1):e1001251. doi:10.1371/journal.ppat.1001251.; Landais E. and Moore P.L. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. // Retrovirology. 2018 Sep 5;15(1):61. doi:10.1186/s12977-018-0443-0.; Doria-Rose N.A., Schramm C.A., Gorman J., Moore P.L. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. // Nature. 2014 May 1;509(7498):55-62. doi:10.1038/nature13036.; Klein F., Diskin R., Scheid J.F., Gaebler C. et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. // Cell. 2013 Mar 28;153(1):126-38. doi:10.1016/j.cell.2013.03.018.; Kepler T.B., Liao H.-X., Alam SM., Bhaskarabhatla R. et al. Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. // Cell Host Microbe. 2014 Sep 10;16(3):304-13. doi:10.1016/j.chom.2014.08.006.; Wardemann H., Yurasov S., Schaefer A., Young J.W., Meffre E., Nussenzweig M.C. Predominant Autoantibody Production by Early Human B Cell Precursors. // Science. 2003 Sep 5;301(5638):1374-7. doi:10.1126/science.1086907.; Mouquet H., Scheid J.F., Zoller M.J., Krogsgaard M. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. // Nature. 2010 Sep 30;467(7315):591-5. doi:10.1038/nature09385.; Diskin R., Scheid J.F., Marcovecchio P.M. et al. Increasing the Potency and Breadth of an HIV Antibody by using Structure-Based Rational Design. // Science. 2011 Dec 2;334(6060):1289-93. doi:10.1126/science.1213782.; Yang G., Holl TM., Liu Y., Li Y., Lu X. et al. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. // J. Exp. Med. 2013 Feb 11;210(2):241-56. doi:10.1084/jem.20121977.; Scheid J.F., Mouquet H., Ueberheide B., Diskin R. et al. Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. // Science. 2011 Sep 16;333(6049):1633-7. doi:10.1126/science.1207227.; Zhou P., Wang H., Fang M., Li Y. et al. Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies. // PLOS Pathog. 2019 Jun 13;15(6). P. e1007819. doi:10.1371/journal.ppat.1007819.; Asokan M., Rudicell R.S., Louder M., McKee K. et al. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization. // J. Virol. 2015 Dec;89(24):12501-12. doi:10.1128/JVI.02097-15.; Wagh K., Seaman M.S., Zingg M., Fitzsimons T. et al. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. // PLoS Pathog. 2018 Mar 5;14(3):e1006860. doi:10.1371/journal.ppat.1006860.; Xu L., Pegu A., Rao E., Doria-Rose N. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. // Science. 2017 Oct 6;358(6359):85-90. doi:10.1126/science.aan8630.; Steinhardt J.J., Guenaga J., Turner H.L., McKee K. et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. // Nat. Commun. 2018 Feb 28;9(1):877. doi:10.1038/s41467-018-03335-4.; Ko S.-Y., Pegu A., Rudicell R.S., Yang Z.-y. et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. // Nature. 2014 Oct 30;514(7524):642-5. doi:10.1038/nature13612.; Gaudinski M.R., Coates E.E., Houser K.V., Chen G.L. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. // PLoS Med. 2018 Jan 24;15(1):e1002493. doi:10.1371/journal.pmed.1002493.; Gautam R., Nishimura Y., Pegu A., Nason M.C. et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. // Nature 2016 May 5;533(7601):105-109. doi:10.1038/nature17677.; Simek M.D., Rida W., Priddy F.H., Pung P. et al. Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm. // J. Virol. 2009 Jul;83(14):7337-48. doi:10.1128/JVI.00110-09.; Binley J.M., Wrin T., Korber B., Zwick M.B. et al. Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies. // J. Virol. 2004 Dec;78(23):13232-52. doi:10.1128/JVI.78.23.13232-13252.2004.; Babcook J.S., Leslie K.B., Olsen O.A., Salmon R.A., Schrader J.W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. // Proc. Natl. Acad. Sci. 1996 Jul 23;93(15):7843-8. doi:10.1073/pnas.93.15.7843.; Tiller T., Meffre E., Yurasov S., Tsuiji M., Nussenzweig M.C., Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. // J. Immunol. Methods. 2008 Jan 1;329(1-2):112-24. doi:10.1016/j.jim.2007.09.017.; West A.P., Scharf L., Scheid J.F., Klein F., Bjorkman P.J., Nussenzweig M.C. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy. // Cell. 2014 Feb 13;156(4):633-48. doi:10.1016/j.cell.2014.01.052.; Wu X., Yang Z.Y., Li Y., et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 // Science. 2010. Vol. 329 (5993). P. 856-861. DOI:10.1126/science.1187659; Rudicell R.S., Kwon Y.D., Ko S.Y., et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo // J Virol. 2014. Vol. 88 (21). P. 12669-12682. DOI:10.1128/JVI.02213-14; Huang J., Kang B.H., Ishida E., et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth // Immunity. 2016. Vol. 45 (5). P. 1108-1121. DOI:10.1016/j.immuni.2016.10.027; Julg B., Pegu A , Abbink P , et al. Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys // J Virol. 2017. Vol. 91 (16). P. e00498-17. DOI:10.1128/JVI.00498-17; Scheid J.F., Horwitz J.A., Bar-On Y., et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption // Nature. 2016. Vol. 535 (7613). P. 556-560. DOI:10.1038/nature18929; Shingai M., Nishimura Y., Klein F., et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia // Nature. 2013. Vol. 503 (7475). P. 277-280. DOI:10.1038/nature12746; Nishimura Y., Gautam R., Chun T.W., et al. Early antibody therapy can induce long-lasting immunity to SHIV // Nature. 2017. Vol. 543 (7646). P. 559-563. DOI:10.1038/nature21435; Sajadi M.M., Dashti A., Rikhtegaran Tehrani Z., et al. Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses // Cell. 2018. Vol. 173 (7). P. 1783-1795. DOI:10.1016/j.cell.2018.03.061; Walker L.M., Huber M., Doores K.J., et al. Broad neutralization coverage of HIV by multiple highly potent antibodies // Nature. 2011. Vol. 477 (7365). P. 466-470. DOI:10.1038/nature10373; Mouquet H., Scharf L., Euler Z., et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies // Proc Natl Acad Sci U S A. 2012. Vol. 109(47). P. E3268-E3277. DOI:10.1073/pnas.1217207109; Sanders R.W., Derking R., Cupo A., et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies // PLoS Pathog. 2013. Vol. 9 (9). P. e1003618. DOI:10.1371/journal.ppat.1003618; Doria-Rose N.A., Bhiman J.N., Roark R.S., et al. New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency // J Virol. 2015. Vol. 90(1). P. 76-91. DOI:10.1128/JVI.01791-15; Sok D., van Gils M.J., Pauthner M., et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex // Proc Natl Acad Sci U S A. 2014. Vol. 111 (49). P. 17624-17629. DOI:10.1073/pnas.1415789111; Huang J., Ofek G., Laub L., et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody // Nature. 2012. Vol. 491 (7424). P. 406-412. DOI:10.1038/nature11544; Williams L.D., Ofek G., Schätzle S., et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma // Sci Immunol. 2017. Vol. 2 (7). P. eaal2200. DOI:10.1126/sciimmunol.aal2200; Wagh K., Bhattacharya T., Williamson C., et al. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection // PLoS Pathog. 2016. Vol. 12 (3). P. e1005520. DOI:10.1371/journal.ppat.1005520; Julg B., Liu P.T., Wagh K., et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail // Sci Transl Med. 2017. Vol. 9 (408). P. eaao4235. DOI:10.1126/scitranslmed.aao4235; Pegu A., Hessell A.J., Mascola J.R., Haigwood N.L. Use of broadly neutralizing antibodies for HIV-1 prevention // Immunol Rev. 2017. Vol. 275 (1). P. 296-312. DOI:10.1111/imr.12511; Cavacini L.A., Samore M.H., Gambertoglio J., et al. Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120 // AIDS Res Hum Retroviruses. 1998. Vol. 14 (7). P. 545-550. DOI:10.1089/aid.1998.14.545; Caskey M., Klein F., Lorenzi J.C., et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 // Nature. 2015. Vol. 522 (7557). P. 487-491. DOI:10.1038/nature14411; Ledgerwood J.E., Coates E.E., Yamshchikov G., et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults // Clin Exp Immunol. 2015. Vol. 182 (3). P. 289-301. DOI:10.1111/cei.12692; Caskey M., Schoofs T., Gruell H., et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals // Nat Med. 2017. Vol. 23 (2). P. 185-191. DOI:10.1038/nm.4268; Lynch R.M., Boritz E., Coates E.E., et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection // Sci Transl Med. 2015. Vol. 7 (319). P. 319ra206. DOI:10.1126/scitranslmed.aad5752; Bar K.J., Sneller M.C., Harrison L.J., et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption // N Engl J Med. 2016. Vol. 375 (21). P. 2037-2050. DOI:10.1056/NEJMoa1608243; Mendoza P., Gruell H., Nogueira L., et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression // Nature. 2018. Vol. 561 (7724). P. 479-484. DOI:10.1038/s41586-018-0531-2; Niessl J., Baxter A.E., Mendoza P., et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity // Nat Med. 2020. Vol. 26 (2). P. 222-227. DOI:10.1038/s41591-019-0747-1; Bar-On Y, Gruell H, Schoofs T, et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals // Nat Med. 2018. Vol. 24 (11). P. 1701-1707. DOI:10.1038/s41591-018-0186-4; Mahomed S., Garrett N., Karim Q.A., et al. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial // BMJ Open. 2020. Vol. 10 (11). P. e042247. DOI:10.1136/bmjopen-2020-042247

  12. 12
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 13, № 3 (2021); 81-95 ; ВИЧ-инфекция и иммуносупрессии; Том 13, № 3 (2021); 81-95 ; 2077-9828 ; 10.22328/2077-9828-2021-13-3

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/662/453; Wang Q. and Zhang L. Broadly neutralizing antibodies and vaccine design against HIV-1 infection // Front Med. 2020. Vol. 14, No. 1. Р. 30– 42. doi:10.1007/s11684-019-0721-9.; Zhu P., Liu J., Bess J., Chertova E., Lifson J.D. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes // Nature. 2006. Vol. 441, No. 7095. Р. 847–852. doi:10.1038/nature04817.; Wyatt R., Sodroski J. The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens // Science. 1998. Vol. 280, No. 5371. Р. 1884– 1888. doi:10.1126/science.280.5371.1884.; Stewart-Jones G.B.E., Soto C., Lemmin T., Chuang G.Y. et al. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G // Cell. 2016. Vol. 165, No. 4. Р. 813–826. doi:10.1016/j.cell.2016.04.010.; Walker L.M., Phogat S.K., Chan-Hui Po-Y., Wagner D. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV- 1 vaccine target // Science. 2009. Vol. 326, No. 5950. Р. 285–289. doi:10.1126/science.1178746.; Alam S.M., McAdams M., Boren D., Rak M. et al. The Role of Antibody Polyspecificity and Lipid Reactivity in Binding of Broadly Neutralizing Anti-HIV-1 Envelope Human Monoclonal Antibodies 2F5 and 4E10 to Glycoprotein 41 Membrane Proximal Envelope Epitopes. // J. Immunol. 2007. Vol. 178, No. 7. Р. 4424–4235. doi:10.4049/jimmunol.178.7.4424.; Liao H.-X., Chen Xi, Munshaw S., Zhang R. et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated // J. Exp. Med. 2011. Vol. 208, No. 11. Р. 2237–2249. doi:10.1084/jem.20110363.; Haynes B.F., Fleming J., Clair E.W.St. et al. Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies // Science. 2005. Vol. 308, No. 5730. Р. 1906–1908. doi:10.1126/science.1111781.; Matyas G.R., Beck Z., Karasavvas N., Alving C.R. Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV- 1 // Biochim. Biophys. Acta. 2009. Vol. 1788, No. 3. Р. 660–665. doi:10.1016/j.bbamem.2008.11.015.; Barbas C.F. III, Björling E., Chiodi F., Dunlop N., Cababa D. et al. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro // Proc. Natl. Acad. Sci. USA. 1992. Vol. 89(19. Р. 9339–9343. doi:10.1073/pnas.89.19.9339.; Burton D., Pyati J., Koduri R., Sharp S.J. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody // Science. 1994. Vol. 266, No. 5187. Р. 1024–1027. doi:10.1126/science.7973652.; Gorny M.K., Conley A.J., Karwowska S., Buchbinder A., Xu J.Y., Emini E.A., Koenig S., Zolla-Pazner S. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody // J. Virol. 1992. Vol. 66, No. 12. P. 7538–7542. doi:10.1128/JVI.66.12.7538-7542.1992.; Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Rüker F., Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1 // J. Virol. 1993. Vol. 67, No. 11. Р. 6642–6647. doi:10.1128/JVI.67.11.6642-6647.1993.; Stiegler G., Kunert R., Purtscher M., Wolbank S., Voglauer R., Steindl F., Katinger H. A Potent Cross-Clade Neutralizing Human Monoclonal Antibody against a Novel Epitope on gp41 of Human Immunodeficiency Virus Type 1 // AIDS Res. Hum. Retroviruses. 2001. Vol. 17, No. 18. Р. 1757–1765. doi:10.1089/08892220152741450.; Zwick M.B., Labrijn A.F., Wang M., Spenlehaueret C. et al. Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41 // J. Virol. 2001. Vol. 75, No. 22. Р. 10892–10905. doi:10.1128/JVI.75.22.10892-10905.2001.; Wei X., Decker J.M., Wang S., Hui H. et al. Antibody neutralization and escape by HIV-1. // Nature. 2003. Vol. 422, No. 6929. Р. 307–312. doi:10.1038/nature01470.; Richman D.D., Wrin T., Little S.J., Petropoulos C.J. et al. Rapid evolution of the neutralizing antibody response to HIV type 1 infection // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 7. Р. 4144–4149. doi:10.1073/pnas.0630530100.; Mascola J.R., Haynes B.F. HIV-1 neutralizing antibodies: understanding nature’s pathways. // Immunol. Rev. 2013. Vol. 254, No. 1. Р. 225– 244. doi:10.1111/imr.12075.; Rusert P., Kouyos R.D., Kadelka C., Ebner H. et al. Determinants of HIV-1 broadly neutralizing antibody induction. // Nat. Med. 2016. Vol. 22, No. 11. Р. 1260–1267. doi:10.1038/nm.4187.; Subbaraman H., Schanz M., Trkola A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy? // Retrovirology. 2018. Vol. 15, No. 1. Р. 52. doi:10.1186/s12977-018-0433-2.; Dugast A.-S., Arnold K., Lofano G., Moore S. et al. Virus-driven Inflammation Is Associated with the Development of bNAbs in Spontaneous Controllers of HIV // Clin. Infect. Dis. 2017. Vol. 64, No. 8. Р. 1098–1104. doi:10.1093/cid/cix057.; Aasa-Chapman M.M., Hayman A., Newton P., Cornforth D. et al. Development of the antibody response in acute HIV-1 infection // AIDS. 2004. Vol. 18, No. 3. Р. 371–381. doi:10.1097/00002030–200402200–00002.; Mikell I., Sather D.N., Kalams S.A., Altfeld M., Alter G., Stamatatos L. et al. Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1 // PLoS Pathog. 2011. Vol. 7, No. 1. Р. e1001251. doi:10.1371/journal.ppat.1001251.; Landais E., Moore P.L. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. // Retrovirology. 2018. Vol. 15, No. 1. Р. 61. doi:10.1186/s12977-018-0443-0.; Doria-Rose N.A., Schramm C.A., Gorman J., Moore P.L. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies // Nature. 2014. Vol. 509, No. 7498. Р. 55–62. doi:10.1038/nature13036.; Klein F., Diskin R., Scheid J.F., Gaebler C. -et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization // Cell. 2013. Vol. 153, No. 1. Р. 126–138. doi:10.1016/j.cell.2013.03.018.; Kepler T.B., Liao H.-X., Alam S.M., Bhaskarabhatla R. et al. Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies // Cell Host Microbe. 2014. Vol. 16, No. 3. Р. 304–313. doi:10.1016/j.chom.2014.08.006.; Wardemann H., Yurasov S., Schaefer A., Young J.W., Meffre E., Nussenzweig M.C. Predominant Autoantibody Production by Early Human B Cell Precursors // Science. 2003. Vol. 301, No. 5638. Р. 1374–1377. doi:10.1126/science.1086907.; Mouquet H., Scheid J.F., Zoller M.J., Krogsgaard M. et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation // Nature. 2010. Vol. 467, No. 7315. Р. 591–595. doi:10.1038/nature09385.; Diskin R., Scheid J.F., Marcovecchio P.M. et al. Increasing the Potency and Breadth of an HIV Antibody by using Structure-Based Rational Design // Science. 2011. Vol. 334, No. 6060. Р. 1289–1293. doi:10.1126/science.1213782.; Yang G., Holl TM., Liu Y., Li Y., Lu X. et al. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies // J. Exp. Med. 2013. Vol. 210, No. 2. Р. 241–256. doi:10.1084/jem.20121977.; Scheid J.F., Mouquet H., Ueberheide B., Diskin R. et al. Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding // Science. 2011. Vol. 333, No. 6049. Р. 1633–1637. doi:10.1126/science.1207227.; Zhou P., Wang H., Fang M., Li Y. et al. Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies // PLOS Pathog. 2019. Vol. 15, No. 6. P. e1007819. doi:10.1371/journal.ppat.1007819.; Asokan M., Rudicell R.S., Louder M., McKee K. et al. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization // J. Virol. 2015. Vol. 89, No. 24. Р. 12501–12512. doi:10.1128/JVI.02097-15.; Wagh K., Seaman M.S., Zingg M., Fitzsimons T. et al. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections // PLoS Pathog. 2018. Vol. 14, No. 3. e1006860. doi:10.1371/journal.ppat.1006860.; Xu L., Pegu A., Rao E., Doria-Rose N. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques // Science. 2017. Vol. 358, No. 6359. Р. 85–90. doi:10.1126/science.aan8630.; Steinhardt J.J., Guenaga J., Turner H.L., McKee K. et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity // Nat. Commun. 2018. Vol. 9, No. 1. Р. 877. doi:10.1038/s41467-018-03335-4.; Ko S.-Y., Pegu A., Rudicell R.S., Yang Z.-y. et al. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection // Nature. 2014. Vol. 514, No. 7524. Р. 642–645. doi:10.1038/nature13612.; Gaudinski M.R., Coates E.E., Houser K.V., Chen G.L. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults // PLoS Med. 2018. Vol. 15, No. 1. Р. e1002493. doi:10.1371/journal.pmed.1002493.; Gautam R., Nishimura Y., Pegu A., Nason M.C. et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges // Nature. 2016. Vol. 533, No. 7601. Р. 105–109. doi:10.1038/nature17677.; Simek M.D., Rida W., Priddy F.H., Pung P. et al. Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm. // J. Virol. 2009. Vol. 83, No. 14. Р. 7337–7348. doi:10.1128/JVI.00110-09.; Binley J.M., Wrin T., Korber B., Zwick M.B. et al. Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies // J. Virol. 2004. Vol. 78, No. 23. Р. 13232–13252. doi:10.1128/JVI.78.23.13232-13252.2004.; Babcook J.S., Leslie K.B., Olsen O.A., Salmon R.A., Schrader J.W. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities // Proc. Natl. Acad. Sci. 1996. Vol. 93, No. 15. Р. 7843–7848. doi:10.1073/pnas.93.15.7843.; Tiller T., Meffre E., Yurasov S., Tsuiji M., Nussenzweig M.C., Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning // J. Immunol. Methods. 2008. Vol. 329, No. 1–2. Р. 112–124. doi:10.1016/j.jim.2007.09.017.; West A.P., Scharf L., Scheid J.F., Klein F., Bjorkman P.J., Nussenzweig M.C. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy // Cell. 2014. Vol. 156, No. 4. Р. 633–648. doi:10.1016/j.cell.2014.01.052.; Wu X., Yang Z.Y., Li Y. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 // Science. 2010. Vol. 329, No. 5993. P. 856–861. doi:10.1126/science.1187659.; Rudicell R.S., Kwon Y.D., Ko S.Y. et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo // J. Virol. 2014. Vol. 88 (21). P. 12669–12682. doi:10.1128/JVI.02213–14.; Huang J., Kang B.H., Ishida E. et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth // Immunity. 2016. Vol. 45, No. 5. P. 1108–1121. doi:10.1016/j.immuni.2016.10.027.; Julg B., Pegu A., Abbink P. et al. Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys // J. Virol. 2017. Vol. 91, No. 16. P. e00498–17. doi:10.1128/JVI.00498-17.; Scheid J.F., Horwitz J.A., Bar-On Y. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption // Nature. 2016. Vol. 535, No. 7613. P. 556–560. doi:10.1038/nature18929.; Shingai M., Nishimura Y., Klein F. et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia // Nature. 2013. Vol. 503, No. 7475. P. 277–280. doi:10.1038/nature12746.; Nishimura Y., Gautam R., Chun T.W. et al. Early antibody therapy can induce long-lasting immunity to SHIV // Nature. 2017. Vol. 543, No. 7646. P. 559–563. doi:10.1038/nature21435.; Sajadi M.M., Dashti A., Rikhtegaran T.Z. et al. Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses // Cell. 2018. Vol. 173 (7). P. 1783–1795. doi:10.1016/j.cell.2018.03.061.; Walker L.M., Huber M., Doores K.J. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies // Nature. 2011. Vol. 477, No. 7365. P. 466–470. doi:10.1038/nature10373; Mouquet H., Scharf L., Euler Z. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 47. P. E3268-E3277. doi:10.1073/pnas.1217207109.; Sanders R.W., Derking R., Cupo A. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies // PLoS Pathog. 2013. Vol. 9, No. 9. P. e1003618. doi:10.1371/journal.ppat.1003618.; Doria-Rose N.A., Bhiman J.N., Roark R.S. et al. New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency // J. Virol. 2015. Vol. 90, No. 1. P. 76–91. doi:10.1128/JVI.01791-15.; Sok D., van Gils M.J., Pauthner M. et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, No. 49. P. 17624–17629. doi:10.1073/pnas.1415789111.; Huang J., Ofek G., Laub L. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody // Nature. 2012. Vol. 491, No. 7424. P. 406–412. doi:10.1038/nature11544.; Williams L.D., Ofek G., Schätzle S. et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma // Sci. Immunol. 2017. Vol. 2, No. 7. P. eaal2200. doi:10.1126/sciimmunol.aal2200.; Wagh K., Bhattacharya T., Williamson C. et al. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection // PLoS Pathog. 2016. Vol. 12, No. 3. P. e1005520. doi:10.1371/journal.ppat.1005520.; Julg B., Liu P.T., Wagh K. et al. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail // Sci. Transl. Med. 2017. Vol. 9, No. 408. P. eaao4235. doi:10.1126/scitranslmed.aao4235.; Pegu A., Hessell A.J., Mascola J.R., Haigwood N.L. Use of broadly neutralizing antibodies for HIV-1 prevention // Immunol. Rev. 2017. Vol. 275, No. 1. P. 296–312. doi:10.1111/imr.12511.; Cavacini L.A., Samore M.H., Gambertoglio J. et al. Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120 // AIDS Res. Hum. Retroviruses. 1998. Vol. 14, No. 7. P. 545–550. doi:10.1089/aid.1998.14.545.; Caskey M., Klein F., Lorenzi J.C. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 // Nature. 2015. Vol. 522, No. 7557. P. 487–491. doi:10.1038/nature14411.; Ledgerwood J.E., Coates E.E., Yamshchikov G. et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults // Clin. Exp. Immunol. 2015. Vol. 182 (3). P. 289–301. doi:10.1111/cei.12692.; Caskey M., Schoofs T., Gruell H. et al. Antibody 10–1074 suppresses viremia in HIV-1-infected individuals // Nat. Med. 2017. Vol. 23, No. 2. P. 185–191. doi:10.1038/nm.4268.; Lynch R.M., Boritz E., Coates E.E. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection // Sci. Transl. Med. 2015. Vol. 7, No. 319. P. 319ra206. doi:10.1126/scitranslmed.aad5752.; Bar K.J., Sneller M.C., Harrison L.J. et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption // N. Engl. J. Med. 2016. Vol. 375, No. 21. P. 2037–2050. doi:10.1056/NEJMoa1608243.; Mendoza P., Gruell H., Nogueira L. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression // Nature. 2018. Vol. 561, No. 7724. P. 479–484. doi:10.1038/s41586-018-0531-2.; Niessl J., Baxter A.E., Mendoza P. et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity // Nat. Med. 2020. Vol. 26, No. 2. P. 222–227. doi:10.1038/s41591-019-0747-1.; Bar-On Y., Gruell H., Schoofs T. et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals // Nat. Med. 2018. Vol. 24, No. 11. P. 1701–1707. doi:10.1038/s41591-018-0186-4.; Mahomed S., Garrett N., Karim Q.A. et al. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07–523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial // BMJ Open. 2020. Vol. 10, No. 11. P. e042247. doi:10.1136/bmjopen-2020-042247.

  13. 13
  14. 14
  15. 15
    Academic Journal

    Contributors: The authors are grateful to the staff of the State Scientific Centre of Virology and Biotechnology«Vector» LF Bakulina, SA Sorochenko, AA Dadaeva, VG Salnik, LN Shishkina for help in the experimental work and discussion of the results, Авторы выражают благодарность сотрудникам ГНЦ ВБ «Вектор» Бакулиной Л. Ф., Сороченко С. А., Дадаевой А. А., Сальник В. Г., Шишкиной Л. Н. за помощь в экспериментальной работе и обсуждении результатов

    Source: Epidemiology and Vaccinal Prevention; Том 19, № 1 (2020); 77-82 ; Эпидемиология и Вакцинопрофилактика; Том 19, № 1 (2020); 77-82 ; 2619-0494 ; 2073-3046 ; 10.31631/2073-3046-2020-19-1

    File Description: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/928/612; WHO/HSE/GAR/BDP/2010.3 [Internet]. Научный обзор исследований вируса натуральной оспы, 1999-2010 гг. Доступно на: http://www.who.int/csr/resources/publlcations/WHO_HSE_GAR_BDP_2010_3/ru.; Taub D.D., Ershler W.B., Janowski M., et al. Immunity from smallpox vaccine persists for decades: a longitudinal study. // Am J Med. 2008. Vol. 121, N12. P. 1058-1064.; Verardi P.H., Titong A, Hagen C.J. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication. // Hum Vaccin Immunother. 2012. Vol. 8, N7. P. 961-970.; Volz A., Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. // Adv Virus Res. 2017. Vol. 97. P. 187-243.; Maksyutov R.A., Yakubitskyi S.N., Kolosova I.V., et al. Comparing New-Generation Candidate Vaccines against Human Orthopoxvirus Infections //Acta Naturae. 2017. Vol. 9, N2. P. 88-93.; Springer Y.P., Hsu C.H., Werle Z.R. et al. Orthopoxvirus Infection in an Alaska Resident. //Clin Infect Dis. 2017. Vol. 64, N 12. P. 1737-1741.; Orr N., Forman M., Marcus H, et al. Clinical and immune responses after revaccination of israeli adults with the Lister strain of vaccinia virus. // The Journal of Infectious Diseases. 2004. Vol. 190. P.1295-1302.; Kennedy R.B., Poland G.A., Ovsyannikova I.G., et al. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. // Vaccine. 2016. Vol. 34, N 28. P. 3283 -3290.; Reif D.M., Motsinger-Reif A.A., McKinney B.A., et al. Integrated Analysis of Genetic and Proteomic Data Identifies Biomarkers Associated with Adverse Events Following Smallpox Vaccination. //Genes Immun. 2009. Vol. 10, N2. P. 112-119.; Yudin N.S., Igoshin A.V., Lutova S.L., et al. Association between polymorphisms in genes encoding 2'-5'-oligoadenylate synthetases and the humoral immune response upon vaccination against tick-borne encephalitis. //Vavilov Journal of Genetics and Breeding. 2018. Vol. 22, N4. P. 445-451.; Медуницын Н. В. Вакцинология. М. 2004; С. 448.; Ермилова О. С, Гинько З. И., Белявская В. А. и др. Анализ особенностей течения вакцинального процесса у лиц, привитых оспенной живой вакциной, при первичной и повторных вакцинациях// Проблемы особо опасных инфекций. 2015. № 1. С. 75-78.; Закс Л. Статистическое оценивание. М.: Статистика; 1976.; Маренникова С. С, Щелкунов С. Н. Патогенные для человека ортопоксвирусы. М.: Товарищество научных изданий КМК; 1998.; Leendertz S.A.J., Stern D., Theophil D., et al. A Cross-Sectional Serosurvey of Anti-Orthopoxvirus Antibodies in Central and Western Africa. // Viruses. 2017. Vol. 9, N10. P. 278.; Bhatia A., Sekhon H.K., Kaur G. Sex hormones and immune dimorphism. // Scientific World Journal. 2014. Vol. 17. P. 159150.; Troy J.D., Hill H.R., Ewell M.G., et al. Sex difference in immune response to vaccination: а participant-level meta-analysis of randomized trials of IMVAMUNE smallpox vaccine. // Vaccine. 2015. Vol. 33, N 41. P. 5425 -5431.; https://www.epidemvac.ru/jour/article/view/928

  16. 16
    Academic Journal

    Source: Russian Journal of Infection and Immunity; Vol 6, No 1 (2016); 55-66 ; Инфекция и иммунитет; Vol 6, No 1 (2016); 55-66 ; 2313-7398 ; 2220-7619 ; 10.15789/2220-7619-2016-1

    File Description: application/pdf

  17. 17
  18. 18
    Academic Journal

    Source: HIV Infection and Immunosuppressive Disorders; Том 7, № 1 (2015); 45-51 ; ВИЧ-инфекция и иммуносупрессии; Том 7, № 1 (2015); 45-51 ; 2077-9828 ; 10.22328/2077-9828-2015-7-1

    File Description: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/69/70; Li Y., Svehla K., Louder M.K. Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals // J. Virol.,- Jan. 2009. - Vol. 83. - Р. 1045-1059.; Liao H., Lynch R., Zhou T., Gao F., Alam S.M., Boyd S.D., Fire A.Z., Roskin K.M., Schramm C.A., Zhang Z. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus // Nature. - Apr. 2013. - Р. 469-476.; Mikell I., Sather D.N., Kalams S.A., Altfeld M., Alter G., Stamatatos L. Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1 // PLoS Pathog. - Jan. 2011. - Vol. 7. - Р. 1-15.; Walker L.M., Phogat S.K., Chan-Hui P.Y. Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target // Science. - Oct. 2009. - Vol. 326. - Р. 285-288.; Walker L.M., Huber M., Doores K.J. Broad neutralization coverage of HIV by multiple highly potent antibodies // Nature. - Sept. 2011. - Vol. 477. - Р. 466-470.; Abraham R.J., Abrahams F., Tongo M. Refined Identification of Neutralization-Resistant HIV-1 CRF02_AG Viruses // J. of Virol. - July 2012. - Vol. 86. - Р. 7699-7703.; Andrabi R., Williams C., Wangb X.-H. Cross-neutralizing activity of human anti-V3monoclonal antibodies derived from non-B clade HIV-1 infected individuals // J. of Virol. - May 2013. - Vol. 439. - P. 81-88.; Doria-Rose N.A., Klein R.M., Manion M.M. Frequency and Phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells from Patients with Broadly Cross-Neutralizing Antibodies // J.Virol.,- Jan. 2009. - Vol. 83. - Р. 188-199.; Melissa D. Simek M.D., Rida W., Priddy F.H., Pham P., Carrow E., Läufer D.S., Lehrman J.K. Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm // J. Virol. - July 2009. - Vol. 83. - Р. 7337-7348.; Seaman M. S., Janes H., Hawkins N. Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies // J. Virol. - Feb. 2010. - Vol. 84. - Р. 1439-1452.; Chun T.W., Mirray D., Justement J.S. Blazkova J., Claire W. Hallahan D. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir // PNAS - July 2014. - Vol. 111. - Р. 1073-1079.; Gils M.J., Sanders R.W. In vivo protection by broadly neutralizing HIV antibodies // Trends in Microbiology, Oct. 2014. - Vol. 22. - P. 550-551.; Chaillon A., Braibant M., Hue S. et al. Human Immunodeficiency Virus Type-1 (HIV-1) Continues to Evolve in Presence of Broadly Neutralizing Antibodies More than Ten Years after Infection // PLoS. - Aug. 2012. - Vol. 7. - P. 1-13.; Гашникова Н.М., Сафронов П.Ф., Никонорова Ю.В., Унагаева Н.В., Лаптева Т.А., Богачев В.В. Изучение свойств изолятов CRF02_AG ВИЧ-1, циркулирующих на территории Новосибирской области // Журн. микробиологии, эпидемиологии и иммунобиологии. - 2011. - № 3. - С. 38-43.; Baryshev P.B., Bogachev V.V., Gashnikova N.M. Genetic characterization of HIV-1 strains recombinant form AG circulating in Siberia, Russia // Archives of Virol. - Aug. 2012. - Vol. 157. - P. 2335-2341.; Peeters M., Liegeois F., Torimiro N., Bourgeois A., Mpoudi E. Characterization of a Highly Replicative Intergroup M/O Human Immunodeficiency Virus Type 1 Recombinant Isolated from a Cameroonian Patient // J. of Virol. - Sept. 1999. - Vol. 73. - Р. 7368-7375.

  19. 19
  20. 20