Showing 1 - 6 results of 6 for search '"нейроэндокринные опухоли поджелудочной железы"', query time: 0.64s Refine Results
  1. 1
    Academic Journal

    Source: Surgery and Oncology; Том 13, № 3 (2023); 11-20 ; Хирургия и онкология; Том 13, № 3 (2023); 11-20 ; 2949-5857

    File Description: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/641/434; Fitzgerald T.L., Hickner Z.J., Schmitz M. et al. Changing incidence of pancreatic neoplasms: a 16-year review of statewide tumor registry. Pancreas 2008;37:134–8. DOI:10.1097/MPA.0b013e318163a329; Jilesen A.P., van Eijck C.H., Busch O.R. et al. Postoperative Outcomes of Enucleation and Standard Resections in Patients with a Pancreatic Neuroendocrine Tumor. World J Surg 2016;40:715–28. DOI:10.1007/s00268-015-3341-9; Mehrabi A., Fischer L., Hafezi M. et al. A systematic review of localization, surgical treatment options, and outcome of insulinoma. Pancreas 2014;43(5):675–86. DOI:10.1097/MPA.0000000000000110; Lee D.W., Kim M.K., Kim H.C. Diagnosis of pancreatic neuroendo crine tumors. Clin Endosc 2017;50:537–45. DOI:10.5946/ce.2017.131; Choi J.H., Seo D.W., Song T.J. et al. Endoscopic ultrasound-guided radiofrequency ablation for management of benign solid pancreatic tumors. Endoscopy 2018;50(11):1099–104. DOI:10.1055/a-0583-8387; Oleinikov K., Dancour A., Epshtein J. et al. Endoscopic ultrasound guided radiofrequency ablation: a new therapeutic approach for pancreatic neuroendocrine tumors. J Clin Endocrinol Metab 2019;104:2637–47. DOI:10.1210/jc.2019-00282; Houmani Z.S., Noureddine M.S. EUS-guided celiac plexus radiofrequency ablation using a novel device. VideoGIE 2020;5(9):395-6. DOI:10.1016/j.vgie.2020.04.022; Lakhtakia S., Seo D.W. Endoscopic ultrasonography-guided tumor ablation. Dig Endosc 2017;29(4):486–94. DOI:10.1111/den.12833; Taewoong medical USA: URL: https://taewoongusa.com/products/viva-combo-rf-generator-system/; Goldberg S.N., Mallery S., Gazelle G.S. et al. EUS-guided radiofrequency ablation in the pancreas: results in a porcine model. Gastrointest Endosc 1999;50(3):392–401. DOI:10.1053/ge.1999.v50.98847; Carrara S., Arcidiacono P.G., Albarello L. et al. Endoscopic ultrasound-guided application of a new hybrid cryotherm probe in porcine pancreas: a preliminary study. Endoscopy 2008;40(4):321–6. DOI:10.1055/s-2007-995595; Kim H.J., Seo D.W., Hassanuddin A. et al. EUS-guided radiofrequency ablation of the porcine pancreas. Gastrointest Endosc 2012;76(5):1039–43. DOI:10.1016/j.gie.2012.07.015; Rossi S., Ravetta V., Rosa L. et al. Repeated radiofrequency ablation for management of patients with cirrhosis with small hepatocellular carcinomas: a long-term cohort study. Hepatology 2011;53(1):136–47. DOI:10.1002/hep.23965; Rossi S., Dore R., Cascina A. et al. Percutaneous computed tomography-guided radiofrequency thermal ablation of small unresectable lung tumours. Eur Respir J 2006; 27(3):556–63. DOI:10.1183/09031936.06.00052905; Atwell T.D., Schmit G.D., Boorjian S.A. et al. Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. AJR Am J Roentgenol 2013;200(2):461–6. DOI:10.2214/AJR.12.8618; Mohan H., Nicholson P., Winter D.C. et al. Radiofrequency ablation for neuroendocrine liver metastases: a systematic review. J Vasc Interv Radiol 2015;26(7):935–42. DOI:10.1016/j.jvir.2014.12.009; Elias D., Baton O., Sideris L. et al. Necrotizing pancreatitis after radiofrequency destruction of pancreatic tumours. Eur J Surg Oncol 2004;30(1):85–7. DOI:10.1016/j.ejso.2003.10.013; Girelli R., Frigerio I., Salvia R. et al. Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer. Br J Surg 2010;97(2):22–5. DOI:10.1002/bjs.6800; Khoury T., Sbeit W., Napoléon B. Endoscopic ultrasound guided radiofrequency ablation for pancreatic tumors: A critical review focusing on safety, efficacy and controversies. World J Gastroenterol 2023;29(1):157–70. DOI:10.3748/wjg.v29.i1.157; Rossi S., Viera F.T., Ghittoni G. et al. Radiofrequency ablation of pancreatic neuroendocrine tumors: a pilot study of feasibility, efficacy, and safety. Pancreas 2014;43(6):938–45. DOI:10.1097/MPA.0000000000000133; Armellini E., Crino` S.F., Ballare` M. et al. Endoscopic ultrasound-guided radiofrequency ablation of a pancreatic neuroendocrine tumor. Endoscopy 2015;47(S 01):E600–1. DOI:10.1055/s-0034-1393677; Pai M., Habib N., Senturk H. et al. Endoscopic ultrasound guided radiofrequency ablation, for pancreatic cystic neoplasms and neuroendocrine tumors. World J Gastrointest Surg 2015;7(4):52–9. DOI:10.4240/wjgs.v7.i4.52; Lakhtakia S., Ramchandani M., Galasso D. et al. EUS-guided radiofrequency ablation for management of pancreatic insulinoma by using a novel needle electrode (with videos). Gastrointest Endosc 2016;83(1):234–9. DOI:10.1016/j.gie.2015.08.085; Barthet M., Giovannini M., Lesavre N. et al. Endoscopic ultrasound-guided radiofrequency ablation for pancreatic neuroendocrine tumors and pancreatic cystic neoplasms: a prospective multicenter study [published online ahead of print 22 January 2019]. Endoscopy 2019;51(9):836–42. DOI:10.1055/a-0824-7067; Bang J.Y., Sutton B., Hawes R.H., Varadarajulu S. EUS-guided celiac ganglion radiofrequency ablation versus celiac plexus neurolysis for palliation of pain in pancreatic cancer: a randomized controlled trial (with videos). Gastrointest Endosc 2019;89(1):58–66. DOI:10.1016/j.gie.2018.08.005

  2. 2
    Academic Journal

    Source: Medical Visualization; № 1 (2018); 57-67 ; Медицинская визуализация; № 1 (2018); 57-67 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/508/459; Ferlay J., Soerjomataram I., Ervik M., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D., Forman D., Bray F. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. 2013. DOI:10.1002/ijc.29210.; Hidalgo M., Cascinu S., Kleeff J., Labianca R., Löhr J., Neoptolemos J., Real F., Van Laethem J., Heinemann V. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2013; 15: 8–18. DOI:10.1016/j.pan.2014.10.001.; Solcia E., Capella C., Klöppel G. Tumors of the Pancreas: AFIP Atlas of Tumor Pathology, 3rd series, fascicle 20. Washington, DC: Armed Forces Institute of Pathology. 1997: 14–18.; Malvezzi M., Carioli G., Bertuccio P., Rosso T., Boffetta P., Levi F., La Vecchia C., Negri E. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann. Oncol. 2016; 27: 725–731. DOI:10.1093/annonc/mdw022.; Chari S.T., Leibson C.L., Rabe K.G., Timmons L.J., Ransom J., De Andrade M., Petersen G.M. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008; 134 (1): 95–101. DOI:10.1053/j.gastro.2007.10.040.; Bosetti C., Lucenteforte E., Silverman D.T., Petersen G., Bracci P.M., Ji B.T. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann. Oncol. 2012; 23 (7): 1880–1888. DOI:10.1093/annonc/mdr541.; Duell E. J., Lucenteforte E., Olson S. H., Bracci P. M., Li D., Risch H. A. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (Panс4). Ann. Oncol. 2012; 23 (11): 140. DOI:10.1093/annonc/mds140.; Artinyan A., Soriano P. A., Prendergast C., Low T., Ellenhorn J.D., Kim J. The anatomic location of pancreatic cancer is a prognostic factor for survival. HPB. 2008; 10 (5): 371–376. DOI:10.1080/13651820802291233.; Gospodarowicz M.K., Brierley J.D., Wittekind C. TNM classification of malignant tumours. 2017: 94–95.; Khalid A., Dewitt J., Ohori N. P., Chen J. H., Fasanella K. E., Sanders U. EUS-FNA mutational analysis in differentiating autoimmune pancreatitis and pancreatic cancer. Pancreatology. 2011; 11 (5): 482–486. DOI:10.1159/000331505.; Conrad C., Fernández-del Castillo C. Preoperative evaluation and management of the pancreatic head mass. J. Surg. Oncol. 2013; 107 (1): 23–32. DOI:10.1002/jso.23165.; Giovannini M. Contrast-enhanced and 3-dimensional endoscopic ultrasonography. Gastroenterol. Clin. N. Am. 2010; 39 (4): 845–858. DOI:10.1016/j.gtc.2010.08.027.; D’Onofrio M., Biagioli E., Gerardi C., Canestrini S., Rulli E., Crosara S. Diagnostic performance of contrast-enhanced ultrasound (CEUS) and contrast-enhanced endoscopic ultrasound (ECEUS) for the differentiation of pancreatic lesions: a systematic review and meta-analysis. Ultraschall Med. – Eur. J. Ultrasound. 2014; 35 (6): 515–521. DOI:10.1055/s-0034-1385068.; Kamisawa T., Wood L. D., Itoi T., Takaori K. Pancreatic cancer. Lancet. 2016; 388 (10039): 73–85. DOI:10.1016/S0140-6736(16)00141-0.; Karmazanovsky G., Fedorov V., Kubyshkin V., Kotchatkov A. Pancreatic head cancer: accuracy of CT in determination of resectability. Abdom. Imaging. 2005; 30 (4): 488–500. DOI:10.1007/s00261-004-0279-z.; Ahn S.S., Kim M.J., Choi J.Y., Hong H.S., Chung Y.E., Lim J.S. Indicative findings of pancreatic cancer in prediagnostic CT. Eur. Radiol. 2009; 19 (10): 2448–2455. DOI:10.1007/s00330-009-1422-6.; Li H., Zeng M.S., Zhou K.R., Lou W. Pancreatic adenocarcinoma: the different CT criteria for peripancreatic major arterial and venous invasion. J. Comput. Assist. Tomogr. 2005; 29 (2): 170–175.; d'Assignies G., Couvelard A., Bahrami S., Vullierme M.P., Hammel P., Hentic O. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors1. Radiology. 2009; 250 (2): 407–416. DOI:10.1148/radiol.2501080291.; Нерестюк Я.И. КТ-перфузия при опухолях поджелудочной железы. Медицинская визуализация. 2015; 3: 57–67. Nerestjuk Ja.I. CT-perfusion in tumors of the pancreas. Medical Visualization. 2015; 3: 57–67. (In Russian); Bipat S., Phoa S.S.S., van Delden O.M., Bossuyt P.M., Gouma D.J., Laméris J.S. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J. Comput. Assist. Tomogr. 2005; 29 (4): 438–445.; Park H.S., Lee J.M., Choi H.K., Hong S.H., Han J.K., Choi B.I. Preoperative evaluation of pancreatic cancer: Comparison of gadolinium enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J. Magn. Reson. Imaging. 2009; 30 (3): 586–595. DOI:10.1002/jmri.21889.; Kim J.H., Park S.H., Yu E.S., Kim M.H., Kim J., Byun J.H., Lee M.G. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010; 257 (1): 87–96. DOI:10.1148/radiol.10100015.; Adamek H.E., Albert J., Breer H., Weitz M., Schilling D., Riemann J. F. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: a prospective controlled study. Lancet. 2000; 356 (9225): 190–193. DOI:10.1016/S0140-6736(00)02479-X.; Raman S.P., Horton K.M., Fishman E.K. Multimodality imaging of pancreatic cancer – computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J. 2012; 18 (6): 511–522. DOI:10.1097/PPO.0b013e318274a461.; Hruban R.H., Pitman M.B., Klimstra D.S. Tumors of the pancreas. Am. Registry Pathol. 2007; 6: 13–21. DOI:10.1043/1543-2165-133.3.454.; Гарматина О.Ю. Современные методы неинвазивной визуализации желчевыводящих путей. Клінічна та експериментальна патологія. 2014; 13 (2): 199–204. Garmatina O.Ju. Modern methods of non-invasive imaging of the biliary tract. Klinichna ta eksperimental'na patologija. 2014; 13 (2): 199–204. (In Russian); Zakharova O.P., Karmazanovsky G.G., Egorov V.I. Pancreatic adenocarcinoma: Outstanding problems. Wld J. Gastrointest. Surg. 2012; 4 (5): 104. DOI:10.4240/wjgs.v4.i5.104.; Шима В., Кауэлблингер К. Аденокарцинома поджелудочной железы: выявление, определение стадии и дифференциальная диагностика. Медицинская визуализация. 2015; 5: 52–72. Shíma V., Kabelbinder K. Pancreatic adenocarcinoma: detection, stage determination and differential diagnosis. Medical Visualization. 2015; 5: 52–72. (In Russian); Higashi T., Saga T., Nakamoto Y., Ishimori T., Fujimoto K., Doi R. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—Usefulness and limitations in “clinical reality”. Ann. Nucl. Med. 2003; 17 (4): 261–279.; Kauhanen S.P., Komar G., Seppänen M.P., Dean K.I., Minn H.R., Kajander S.A. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann. Surg. 2009; 250 (6): 957–963. DOI:10.1097/SLA.0b013e3181b2fafa.; Dibble E.H., Karantanis D., Mercier G., Peller P.J., Kachnic L.A., Subramaniam R.M. PET/CT of cancer patients: part 1, pancreatic neoplasms. Am. J. Roentgenol. 2012; 199 (5): 952–967. DOI:10.2214/AJR.11.8182.; Lyshchik A., Higashi T., Hara T., Nakamoto Y., Fujimoto K., Doi R. Expression of glucose transporter-1, hexokinase-II, proliferating cell nuclear antigen and survival of patients with pancreatic cancer. Cancer Invest. 2007; 25 (3): 154–162. DOI:10.1080/07357900701208931.; Nishiyama Y., Yamamoto Y., Monden T., Sasakawa Y., Tsutsui K., Wakabayashi H. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl. Med. Commun. 2005; 26 (10): 895–901.; Bares R., Klever P., Hauptmann S., Hellwig D., Fass J., Cremerius U. 18F-fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994; 192 (1): 79–86. DOI:10.1148/radiology.192.1.8208970.; Ruf J., Hänninen E. L., Böhmig M., Koch I., Denecke T., Plotkin M. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology. 2006; 6 (6): 512–519. DOI:10.1159/000096993.; Wang X., Yu L. J. 18F-FDG PET/CT in detection of pancreatic cancer: Value of synthetic analysis interpretation. Zhongguo Yixue Yingxiang Jishu. 2007; 23: 1709–1712.; Hillner B.E., Siegel B.A., Liu D., Shields A.F., Gareen I.F., Hanna L. Impact of positron emission tomography/ computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J. Clin. Oncol. 2008; 26 (13): 2155–2161. DOI:10.1200/JCO.2007.14.5631.; Wang Z., Chen J. Q., Liu J. L., Qin X. G., Huang, Y. FDGPET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis. Wld J. Gastroenterol. 2013; 19 (29): 4808. DOI:10.3748/wjg.v19.i29.4808.; Nakata B., Nishimura S., Ishikawa T., Ohira M., Nishino H., Kawabe J. Prognostic predictive value of 18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. Int. J. Oncol. 2001; 19 (1): 53–58.; Lyshchik A., Higashi T., Nakamoto Y., Fujimoto K., Doi R., Imamura M., Saga T. Dual-phase 18F-fluoro-2-deoxy-Dglucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (4): 389–397. DOI:10.1007/s00259-004-1656-0.; Topkan E., Parlak C., Kotek A., Yapar A. F., Pehlivan B. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol. 2011; 11 (1): 123. DOI:10.1186/1471-230X-11-123.; Heinrich S., Goerres G.W., Schäfer M., Sagmeister M., Bauerfeind P., Pestalozzi B.C. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann. Surg. 2005; 242 (2): 235–243.; Coleman R.E., DeGrado T.R., Wang S., Baldwin S.W., Orr M.D., Reiman R.E., Price D.T. Preliminary Evaluation of F-18 Fluorocholine (FCH) as a PET Tumor Imaging Agent. Clin. Positron Imaging. 2000; 3 (4): 147.; Wang X.Y., Yang F., Jin C., Fu D.L. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. Wld J. Gastroenterol. 2014; 20 (42): 15580–15589. DOI:10.3748/wjg.v20.i42.15580.; Nishiyama Y., Yamamoto Y., Monden T., Sasakawa Y., Tsutsui K., Wakabayashi H., Ohkawa M. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl. Med. Communications. 2005; 26 (10): 895–901.; Tann M., Sandrasegaran K., Jennings S.G., Skandarajah A., McHenry L., Schmidt C.M. Positron-emission tomography and computed tomography of cystic pancreatic masses. Clin. Radiol. 2007; 62 (8): 745–751. DOI:10.1016/j.crad.2007.01.023.; Takakura K., Sumiyama K., Munakata K., Ashida H., Arihiro S., Kakutani H., Tajiri H. Clinical usefulness of diffusion-weighted MR imaging for detection of pancreatic cancer: comparison with enhanced multidetector-row CT. Abdom. Imaging. 2011; 36 (4): 457–462. DOI:10.1007/s00261-011-9728-7.; Neoptolemos J.P., Dunn J.A., Stocken D.D., Almond J., Link K., Beger H., Fernandez-Cruz L. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 2001; 358 (9293): 1576–1585.; Ford E.C., Herman J., Yorke E., Wahl R.L. 18F-FDG PET/ CT for image-guided and intensity-modulated radiotherapy. J. Nucl. Med. 2009; 50 (10): 1655–1665. DOI:10.2967/jnumed.108.055780.; Topkan E., Yavuz A.A., Aydin M., Onal C., Yapar F., Yavuz M.N. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J. Experim. & Clin. Cancer Res. 2008; 27 (1): 41. DOI:10.1186/1756-9966-27-41.; Rose D.M., Delbeke D., Beauchamp R.D., Chapman W.C., Sandler M.P., Sharp K.W., Leach S.D. 18-Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann. Surg. 1999; 229 (5): 729.; Bang S., Chung H.W., Park S.W., Chung J.B., Yun M., Lee J.D., Song S.Y. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J. Clin. Gastroenterol. 2006; 40 (10): 923–929. DOI:10.1097/01.mcg.0000225672.68852.05.; Ruf J., Hänninen E.L., Oettle H., Plotkin M., Pelzer U., Stroszczynski C., Amthauer H. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology. 2005; 5 (2): 266–272. DOI:10.1159/000085281.; Michl P., Pauls S., Gress T.M. Evidence-based diagnosis and staging of pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 2006; 20 (2): 227–251. DOI:10.1016/j.bpg.2005.10.005.; Goh B.K., Chung Y.F., Ng D.C., Selvarajan S., Soo K.C. Positron emission tomography with 2-deoxy-2-[18f] fluoro-D-glucose in the detection of malignancy in intraductal papillary mucinous neoplasms of the pancreas. JOP. 2007; 8 (3): 350–354.; Langer A.A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a costeffective manner? BMC Health Services Res. 2010; 10 (1): 283. DOI:10.1186/1472-6963-10-283.; Segard T., Robins P.D., Yusoff I.F., Ee H., Morandeau L., Campbell E.M., Francis R.J. Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspectedor proven pancreatic cancer. Clin. Nucl. Med. 2013; 38 (1): 1–6. DOI:10.1097/RLU.0b013e3182708777.; Herrmann K., Erkan M., Dobritz M., Schuster T., Siveke J.T., Beer A.J., Kleeff J. Comparison of 3′-deoxy3′-[18F] fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (5): 846–851. DOI:10.1007/s00259-012-2061-8.; Henriksen G., Herz M., Hauser A., Schwaiger M., Wester H.J. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F] fluorocholine ([18F] dOC). Nucl. Med. Biol. 2004; 31 (7): 851–858.; Yao J.C., Hassan M., Phan A., Dagohoy C., Leary C., Mares J.E., Evans D.B. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008; 26 (18): 3063–3072. DOI:10.1200/JCO.2007.15.4377.; Bosman F.T., Carneiro F., Hruban R.H., Theise N.D. WHO classification of tumours of the digestive system. Wld Health Organization. 2010; 4.; Krenning E.P., Kwekkeboom D.J., Bakker W.E.A., Breeman W.A.P., Kooij P.P.M., Oei H.Y., Visser T.J. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 1993; 20 (8): 716–731. DOI:10.1007/BF00181765.; Srirajaskanthan R., Kayani I., Quigley A.M., Soh J., Caplin M.E., Bomanji J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J. Nucl. Med. 2010; 51 (6): 875–882. DOI:10.2967/jnumed.109.066134.; Schreiter N.F., Brenner W., Nogami M., Buchert R., Huppertz A., Pape U.F., Prasad V., Hamm B., Maurer M. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (1): 72–82. DOI:10.1007/s00259-011-1935-5.; Ambrosini V., Campana D., Bodei L., Nanni C., Castellucci P., Allegri V., Fanti S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med. 2010; 51 (5): 669–673. DOI:10.2967/jnumed.109.071712.; Ambrosini V., Campana D., Tomassetti P., Fanti S. 68Galabelled peptides for diagnosis of gastroenteropancreatic NET. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (1): 52–60. DOI:10.1007/s00259-011-1989-4.; Koopmans K.P., de Vries E.G., Kema I.P., Elsinga P.H., Neels O.C., Sluiter W.J., Jager P.L. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006; 7 (9): 728–734.; Kayani I., Conry B.G., Groves A.M., Win T., Dickson J., Caplin M., Bomanji J.B. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J. Nucl. Med. 2009; 50 (12): 1927–1932. DOI:10.1016/S1470-2045(06)70801-4.; Pasquali C., Rubello D., Sperti C., Gasparoni P., Liessi G., Chierichetti F., Pedrazzoli S. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? Wld J. Surg. 1998; 22 (6): 588–592.; Binderup T., Knigge U., Loft A., Federspiel B., Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 2010; 16 (3): 978–985. DOI:10.1158/1078-0432.CCR-09-1759.; https://medvis.vidar.ru/jour/article/view/508

  3. 3
    Academic Journal

    Source: Almanac of Clinical Medicine; Vol 46, No 4 (2018); 298-313 ; Альманах клинической медицины; Vol 46, No 4 (2018); 298-313 ; 2587-9294 ; 2072-0505 ; 10.18786/2072-0505-2018-46-4

    File Description: application/pdf

  4. 4
  5. 5
    Academic Journal

    Source: Clinical Endocrinology and Endocrine Surgery; No. 3(24) (2008); 26-30 ; Clinical Endocrinology and Endocrine Surgery; № 3(24) (2008); 26-30 ; 2519-2582 ; 1818-1384

    File Description: application/pdf

  6. 6