Showing 1 - 9 results of 9 for search '"нейроэндокринная дифференцировка"', query time: 0.81s Refine Results
  1. 1
    Academic Journal

    Source: Siberian journal of oncology; Том 24, № 1 (2025); 115-124 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 115-124 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3457/1316; Bratt O., Damber J.E., Emanuelsson M., Gronberg H. Hereditary prostate cancer: clinical characteristics and survival. J Urol. 2002; 167(6): 2423-6.; You J.S., Jones P.A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012; 22(1): 9-20. doi:10.1016/j.ccr.2012.06.008.; Recillas-Targa F. Cancer Epigenetics: An Overview. Arch Med Res. 2022; 53(8): 732-40. doi:10.1016/j.arcmed.2022.11.003.; Смирнов В.В., Леонов Г.Е. Эпигенетика: теоретические аспекты и практическое значение. Лечащий врач. 2016; (12).; Varambally S., Yu J., Laxman B., Rhodes D.R., Mehra R., Tomlins S.A., Shah R.B., Chandran U., Monzon F.A., Becich M.J., Wei J.T., Pienta K.J., Ghosh D., Rubin M.A., Chinnaiyan A.M. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005; 8(5): 393-406. doi:10.1016/j.ccr.2005.10.001.; Taylor B.S., Schultz N., Hieronymus H., GopalanA.,Xiao Y, Carver B.S., Arora V.K., Kaushik P., Cerami E., Reva B., Antipin Y., Mitsiades N., Landers T., Dolgalev I., Major J.E., Wilson M., Socci N.D., Lash A.E., Heguy A., Eastham J.A., Scher H.I., Reuter V.E., Scardino P.T., Sander C., Sawyers C.L., Gerald W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18(1): 11-22. doi:10.1016/j.ccr.2010.05.026.; Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100(1): 57-70. doi:10.1016/s0092-8674(00)81683-9.; Armenia J., Wankowicz S.A.M., Liu D., Gao J., Kundra R., Reznik E., Chatila W.K., Chakravarty D., Han G.C., Coleman I., Montgomery B., Pritchard C., Morrissey C., Barbieri C.E., BeltranH., SbonerA., Zafeiriou Z., Miranda S., Bielski C.M., Penson A.V., Tolonen C., Huang F.W., Robinson D., Wu Y.M., Lonigro R., Garraway L.A., Demichelis F., Kantoff P.W., Taplin M.E., Abida W., Taylor B.S., Scher H.I., Nelson P.S., de Bono J.S., Rubin M.A., Sawyers C.L., Chinnaiyan A.M.; PCF/SU2C International Prostate Cancer Dream Team; Schultz N., Van Allen E.M. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018; 50(5): 645-51. doi:10.1038/s41588-018-0078-z. Erratum in: Nat Genet. 2019; 51(7): 1194. doi:10.1038/s41588-019-0451-6.; Quigley D.A., Dang H.X., Zhao S.G., Lloyd, P., Aggarwal R., Alumkal J.J., Foye A., Kothari V., Perry M.D., Bailey A.M., Playdle D., Barnard T.J., Zhang L., Zhang J., Youngren, J.F., Cieslik M.P., Parolia A., Beer T.M., Thomas G., Chi K.N., Feng F.Y. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3): 758-769. doi:10.1016/j.cell.2018.06.039.; Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015; 163(4): 1011-25. doi:10.1016/j.cell.2015.10.025.; Chung W., Eum H.H., Lee H.O., Lee K.M., Lee H.B., Kim, K.T., Ryu H.S., Kim S., Lee J. E., Park Y.H., Kan Z., Han W., Park W.Y. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications. 2017; 8. doi:10.1038/ncomms15081.; Jovic D., Liang X., Zeng H., Lin L., Xu F., Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022; 12(3). doi:10.1002/ctm2.694.; Lambros M.B., Seed G., Sumanasuriya S., Gil V., Crespo M., Fontes M., Chandler R., Mehra N., Fowler G., Ebbs B., Flohr P., Miranda S., Yuan W., Mackay A., Ferreira A., Pereira R., Bertan C., Figueiredo I., Riisnaes R., Rodrigues D.N., Sharp A., Goodall J., Boysen G., Carreira S., Bianchini D., Rescigno P., Zafeiriou Z., Hunt J., Moloney D., Hamilton L., Neves R.P., Swennenhuis J., Andree K., Stoecklein N.H., Terstappen L.W.M.M., de Bono J.S. Single-Cell Analyses of Prostate Cancer Liquid Biopsies Acquired by Apheresis. Clin Cancer Res. 2018; 24(22): 5635-44. doi:10.1158/1078-0432.CCR-18-0862.; Papalexi E., Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018; 18(1): 35-45. doi:10.1038/nri.2017.76.; Lin X.D., Lin N., Lin T.T., Wu Y.P., Huang P., Ke Z.B., Lin Y.Z., Chen S.H., Zheng Q.S., Wei Y., Xue X.Y., Lin R.J., Xu N. Identification of marker genes and cell subtypes in castration-resistant prostate cancer cells. J Cancer. 2021; 12(4): 1249-57. doi:10.7150/jca.49409.; Felsenfeld G., Groudine M. Controlling the double helix. Nature. 2003; 421(6921): 448-53. doi:10.1038/nature01411.; Zhang Y., Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001; 15(18): 2343-60. doi:10.1101/gad.927301.; Jenuwein T., Allis C.D. Translating the histone code. Science. 2001; 293(5532): 1074-80. doi:10.1126/science.1063127.; Kukkonen K., Taavitsainen S., Huhtala L., Uusi-Makela J., Granberg K.J., Nykter M., Urbanucci A. Chromatin and epigenetic dysregulation of prostate cancer development, progression, and therapeutic response. Cancers (Basel) 2021; 13(13). doi:10.3390/cancers13133325.; Li L.C. Epigenetics of prostate cancer. Front Biosci. 2007; 12: 3377-97. doi:10.2741/2320.; Liao Y., Xu K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. Asian J Androl. 2019; 21(3): 279-90. doi:10.4103/aja.aja_53_18.; Berger S.L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009; 23(7): 781-83. doi:10.1101/gad.1787609.; Rodriguez-Paredes M., Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011; 17(3): 330-39. doi:10.1038/nm.2305.; Bedford M.T., van Helden P.D. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987; 47(20): 5274-76.; Stein R., Gruebaum Y., Pollack Y., Razin A., Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci 1982; 79(1): 61-65. doi:10.1073/pnas.79.1.61.; Baylin S.B., Makos M., Wu J.J., Yen R.W., de Bustros A., Vertino P., Nelkin B.D. Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells. 1991; 3(10): 383-90.; Jeronimo C., Usadel H., Henrique R., Oliveira J., Lopes C., Nelson W.G., Sidransky D. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst. 2001; 93(22): 1747-52. doi:10.1093/jnci/93.22.1747.; Henrique R., Jeronimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol. 2004; 46(5): 660-69; discussion 669. doi:10.1016/j.eururo.2004.06.014.; Kinney S.R., Moser M.T., Pascual M., Greally J.M., Foster B.A., Karpf A.R. Opposing roles of Dnmt1 in early- and late-stage murine prostate cancer. Mol Cell Biol. 2010; 30(17): 4159-74. doi:10.1128/MCB.00235-10.; Roupret M., Hupertan V, Catto J.W., Yates D.R., Rehman I., Proctor L.M., Phillips J., Meuth M., Cussenot O., Hamdy F.C. Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer. 2008; 122(4): 952-56. doi:10.1002/ijc.23196.; Mahon K.L., Qu W., Devaney J., Paul C., Castillo L., Wykes R.J., Chatfield M.D., Boyer M.J., Stockler M.R., Marx G., Gurney H., Mallesara G., Molloy P.L., Horvath L.G., Clark S.J.; PRIMe consortium. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer. 2014; 111(9): 1802-9. doi:10.1038/bjc.2014.463.; Farah E., Zhang Z., Utturkar S.M., Liu J., Ratliff T.L., Liu X. Targeting DNMTs to Overcome Enzalutamide Resistance in Prostate Cancer. Mol Cancer Ther. 2022; 21(1): 193-205. doi:10.1158/1535-7163.MCT-21-0581.; Suzuki H., Freije D., Nusskern D.R., Okami K., Cairns P., Sidransky D., Isaacs W.B., Bova G.S. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998; 58(2): 204-9.; Jarrard D.F., Bova G.S., Ewing C.M., Pin S.S., Nguyen S.H., Baylin S.B., Cairns P., Sidransky D., Herman J.G., Isaacs W.B. Dele-tional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer. 1997; 19(2): 90-96.; Conteduca V., Hess J., Yamada Y., Ku S.Y., Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol. 2021; 10(7): 3104-16. doi:10.21037/tau-20-1339.; Ruggero K., Farran-Matas S., Martinez-Tebar A., Aytes A. Epigenetic Regulation in Prostate Cancer Progression. Curr Mol Biol Rep. 2018; 4(2): 101-15. doi:10.1007/s40610-018-0095-9.; Zhao S.G., Chen W.S., Li H., Foye A., Zhang M., Sjosirom M., Aggarwal R., Playdle D., Liao A., Alumkal J.J., Das R., Chou J., Hua J.T., Barnard T.J., Bailey A.M., Chow E.D., Perry M.D., Dang H.X., Yang R., Moussavi-Baygi R., Zhang L., Alshalalfa M., Laura Chang S., Houla-han K.E., Shiah Y.J., Beer T.M., Thomas G., Chi K.N., Gleave M., Zou-beidi A., Reiter R.E., Rettig M.B., Witte O., Yvonne Kim M., Fong L., Spratt D.E., Morgan T.M., Bose R., Huang F.W., Li H., Chesner L., Shenoy T., Goodarzi H., Asangani I.A., Sandhu S., Lang J.M., Mahajan N.P., Lara P.N., Evans C.P., Febbo P., Batzoglou S., Knudsen K.E., He H.H., Huang J., Zwart W., Costello J.F., Luo J., Tomlins S.A., Wyatt A.W., Dehm S.M., Ashworth A., Gilbert L.A., Boutros P.C., Farh K., Chinnaiyan A.M., Maher C.A., Small E.J., Quigley D.A., Feng F.Y. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020; 52(8): 778-89. doi:10.1038/s41588-020-0648-8.; Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002; 21(35): 5400-13. doi:10.1038/sj.onc.1205651.; Wang Y., Jadhav R.R., Liu J., Wilson D., Chen Y., Thompson I.M., Troyer D.A., Hernandez J., Shi H., Leach R.J., Huang T.H., Jin V.X. Roles of Distal and Genic Methylation in the Development of Prostate Tumori-genesis Revealed by Genome-wide DNA Methylation Analysis. Sci Rep. 2016; 6. doi:10.1038/srep22051.; Ge R., Wang Z., Montironi R., Jiang Z., Cheng M., Santoni M., Huang K., Massari F., Lu X., Cimadamore A., Lopez-Beltran A., Cheng L. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 2020; 31(4): 470-79. doi:10.1016/j.annonc.2020.02.002.; Partin A.W., van Neste L., Klein E.A., Marks L.S., Gee J.R., Troyer DA., Rieger-Christ K., Jones J.S., Magi-Galluzzi C., MangoldLA., Trock B.J., Lance R.S., Bigley J.W., van Criekinge W., Epstein J.I. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. 2014; 192(4): 1081-87. doi:10.1016/j.juro.2014.04.013.; Patel P.G., Wessel T., Kawashima A., Okello J.B.A., Jamaspishvili T, Guerard K.P., Lee L., Lee A.Y., How N.E., Dion D., Scarlata E., Jackson C.L., Boursalie S., Sack T., Dunn R., Moussa M., Mackie K., Ellis A., Marra E., Chin J., Siddiqui K., Hetou K., Pickard L.A., Arthur-Hayward V., Bauman G., Chevalier S., Brimo F., Boutros P.C., Lapointe PhD J., Bartlett J.M.S., Gooding R.J., Berman D.M. A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer. Prostate. 2019; 79(14): 1705-14. doi:10.1002/pros.23895.; Bachman M., Uribe-Lewis S., Yang X., Williams M., Murrell A., Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem. 2014; 6(12): 1049-55. doi:10.1038/nchem.2064.; Ficz G., Branco M.R., Seisenberger S., Santos F., Krueger F., Hore T.A., Marques C.J., Andrews S., Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011; 473(7347): 398-402. doi:10.1038/nature10008.; Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., Krex D., Lu Q., Pfeifer G.P. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 2011; 71(24): 7360-65. doi:10.1158/0008-5472.CAN-11-2023.; Takayama K., Misawa A., Suzuki T., Takagi K., Hayashizaki Y., Fujimura T., Homma Y., Takahashi S., Urano T., Inoue S. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun. 2015; 6. doi:10.1038/ncomms9219.; Strand S.H., Hoyer S., Lynnerup A.S., Haldrup C., Storebjerg T.M., Borre M., Orntoft T.F., Sorensen K.D. High levels of 5-hydroxymethyl-cytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clin Epigenet. 2015; 7. doi:10.1186/s13148-015-0146-5.; Spans L., van den Broeck T., Smeets E., Prekovic S., Thienpont B., Lambrechts D., Karnes R.J., Erho N., Alshalalfa M., Davicioni E., Helsen C., Gevaert T., Tosco L., Haustermans K., Lerut E., Joniau S., Claessens F. Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget. 2016; 7(17): 24326-38. doi:10.18632/oncotarget.8220.; Storebjerg T.M., Strand S.H., Hoyer S., Lynnerup A.S., Borre M., 0rntoft T.F, Sorensen K.D. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin Epigenetics. 2018; 10(1): 105. doi:10.1186/s13148-018-0540-x.; Sokolova V., Sarkar S., Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J. 2022; 21: 299-311. doi:10.1016/j.csbj.2022.12.002.; Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016; 17(8): 487-500. doi:10.1038/nrg.2016.59.; Li Y., Ge K., Li T., Cai R., Chen Y. The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications. Protein Cell. 2023; 14(3): 165-79. doi:10.1093/procel/pwac032.; Cai C., He H.H., Gao S., Chen S., Yu Z., Gao Y., Chen S., Chen M.W., Zhang J., Ahmed M., Wang Y., Metzger E., Schule R., Liu X.S., Brown M., Balk S.P. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 2014; 9(5): 1618-27. doi:10.1016/j.celrep.2014.11.008.; Gao S., Chen S., Han D., Wang Z., Li M., Han W., Besschetnova A., Liu M., Zhou F., Barrett D., Luong M.P., Owiredu J., Liang Y., Ahmed M., Petricca J., Patalano S., Macoska J.A., Corey E., Chen S., Balk S.P., He H.H., Cai C. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet. 2020; 52(10): 1011-17. doi:10.1038/s41588-020-0681-7.; Guo Y., Zhao S., Wang G.G. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 ‘Readout', and Phase Separation-Based Compaction. Trends Genet. 2021; 37(6): 547-65. doi:10.1016/j.tig.2020.12.006.; Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., Zhang Y. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002; 298(5595): 1039-43. doi:10.1126/science.1076997.; Yu J., Yu J., Mani R.-S., Cao Q., Brenner C. J., Cao X., Wang X., Wu L., Li J., Hu M., Gong Y., Cheng H., Laxman B., Vellaichamy A., Shankar S., Li Y., Dhanasekaran S.M., Morey R., Barrette T., Lonigro R.J., Tomlins S.A., Varambally S., Qin Z.S., Chinnaiyan A.M. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010; 17(5): 443-54. doi:10.1016/j.ccr.2010.03.018.; Varambally S., Dhanasekaran S.M., Zhou M., Barrette T.R., Kumar-Sinha C., Sanda M.G., Ghosh D., Pienta K.J., Sewalt R.G., Otte A.P., Rubin M.A., Chinnaiyan A.M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419(6907): 624-29. doi:10.1038/nature01075.; Bai Y., Zhang Z., Cheng L., Wang R., Chen X., Kong Y., Feng F., Ahmad N., Li L., Liu X. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J Biol Chem. 2019; 294(25): 9911-23. doi:10.1074/jbc.RA119.008152.; Li N., Xue W., Yuan H., Dong B., Ding Y., Liu Y., Jiang M., Kan S., Sun T., Ren J., Pan Q., Li X., Zhang P., Hu G., Wang Y., Wang X., Li Q., Qin J. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017; 127(4): 1284-302. doi:10.1172/JCI91144.; Asangani I.A., Ateeq B., Cao Q., Dodson L., Pandhi M., Kunju L.P., Mehra R., Lonigro R.J., Siddiqui J., Palanisamy N., Wu Y.M., Cao X., Kim J.H., Zhao M., Qin Z.S., Iyer M.K., Maher C.A., Kumar-Sinha C., Varambally S., Chinnaiyan A.M. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol Cell. 2013; 49(1): 80-93. doi:10.1016/j.molcel.2012.10.008.; Zhao Y., Garcia B.A. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol. 2015; 7(9). doi:10.1101/cshperspect.a025064.; German J.G., Baylin S.B. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003; 349(21): 2042-54. doi:10.1056/NEJMra023075.; Wu Y., Sarkissyan M., Vadgama J.V. Epigenetics in breast and prostate cancer. Methods Mol Biol. 2015; 1238: 425-66. doi:10.1007/978-1-4939-1804-1_23.; Lavery D.N., Bevan C.L. Androgen receptor signalling in prostate cancer: the functional consequences of acetylation. J Biomed Biotechnol. 2011. doi:10.1155/2011/862125.; Severson T.M., Zhu Y., Prekovic S., Schuurman K., Nguyen H.M., Brown L.G., Hakkola S., Kim Y., Kneppers J., Linder S., Stelloo S., Lieftink C., van der Heijden M., Nykter M., van der Noort V., Sanders J., Morris B., Jenster G., van Leenders G.J., Pomerantz M., Freedman M.L., Beijersbergen R.L., Urbanucci A., Wessels L., Corey E., Zwart W., Bergman A.M. Enhancer profiling identifies epigenetic markers of endocrine resistance and reveals therapeutic options for metastatic castration-resistant prostate cancer patients. medRxiv [Preprint]. 2023. doi:10.1101/2023.02.24.23286403.; Whyte W.A., Orlando D.A., Hnisz D., Abraham B.J., Lin C.Y., Kagey M.H., Rahl P.B., Lee T.I., Young R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013; 153(2): 307-19. doi:10.1016/j.cell.2013.03.035.; Valdes-Mora F., Gould CM., Colino-S^angguino Y, Qu W., Song J.Z., Taylor K.M., Buske F.A., Statham A.L., Nair S.S., Armstrong N.J., Kench J.G., Lee K.M.L., Horvath L.G., Qiu M., Ilinykh A., Yeo-Teh N.S., Gallego-Ortega D., Stirzaker C., Clark S.J. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat Commun. 2017; 8(1). doi:10.1038/s41467-017-01393-8.; Sayar E., Patel R.A., Coleman I.M., Roudier M.P., Zhang A., Mustafi P., Low J.Y., Hanratty B., Ang L.S., Bhatia V., Adil M., Bakbak H., Quigley D.A., Schweizer M.T., Hawley J.E., Kollath L., True L.D., Feng F.Y., Bander N.H., Corey E., Lee J.K., Morrissey C., Gulati R., Nelson P.S., Haffner M.C. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight. 2023; 8(7). doi:10.1172/jci.insight.162907.; Yuan T.C., Veeramani S., Lin F.F., Kondrikou D., Zelivianski S., Igawa T., Karan D., Batra S.K., Lin M.F. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgensensitive LNCaP cells. Endocr Relat Cancer. 2006; 13(1): 151-67. doi:10.1677/erc.1.01043.; Ковченко Г.А., Сивков А.В., Каприн А.Д. Роль определения хромогранина А в лечении больных кастрационно-резистентным раком предстательной железы. Экспериментальная и клиническая урология. 2024; 17(1): 75-85. doi:10.29188/2222-8543-2024-17-1-75-85. EDN: TCUWHH.; Sciarra A., Mariotti G., Gentile V., Voria G., Pastore A., Monti S., Di Silverio F. Neuroendocrine differentiation in human prostate tissue: is it detectable and treatable? BJU Int. 2003; 91(5): 438-45. doi:10.1046/j.1464-410x.2003.03066.x.; Li Z., Sun Y., Chen X., Squires J., Nowroozizadeh B., Liang C., Huang J. p53 Mutation Directs AURKA Overexpression via miR-25 and FBXW7 in Prostatic Small Cell Neuroendocrine Carcinoma. Mol Cancer Res. 2015; 13(3): 584-91. doi:10.1158/1541-7786.MCR-14-0277-T.; Xu X., Huang Y.H., Li Y.J., Cohen A., Li Z., Squires J., Zhang W., Chen X.F., Zhang M., Huang J.T. Potential therapeutic effect of epigenetic therapy on treatment-induced neuroendocrine prostate cancer. Asian J Androl. 2017; 19(6): 686-93. doi:10.4103/1008-682X.191518.; Antonarakis E.S. Targeting lineage plasticity in prostate cancer. Lancet Oncol. 2019; 20(10): 1338-40. doi:10.1016/S1470-2045-(19)30497-8.; Long Z., Deng L., Li C., He Q., He Y., Hu X., Cai Y., Gan Y. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021; 12(1). doi:10.1038/s41419-020-03326-8.; Wishahi M. Treatment-induced neuroendocrine prostate cancer and de novo neuroendocrine prostate cancer: Identification, prognosis and survival, genetic and epigenetic factors. World J Clin Cases. 2024; 12(13): 2143-46. doi:10.12998/wjcc.v12.i13.2143.; Abida W., Cyrta J., Heller G., Prandi D., Armenia J., Coleman I., Cieslik M., Benelli M., Robinson D., Van Allen EM., Sboner A., Fedrizzi T., Mosquera J.M., Robinson B.D., De Sarkar N., Kunju L.P., Tomlins S., Wu Y.M., Nava Rodrigues D., Loda M., Gopalan A., Reuter V.E., Pritchard C.C., Mateo J., Bianchini D., Miranda S., Carreira S., Rescigno P., Filipenko J., Vinson J., Montgomery R.B., Beltran H., Heath E.I., Scher H.I., Kantoff P.W., Taplin M.E., Schultz N., deBono J.S., Demichelis F., Nelson P.S., Rubin M.A., Chinnaiyan A.M., Sawyers C.L. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Nat. Acad Sci USA. 2019; 116(23): 11428-36. doi:10.1073/pnas.1902651116.; Kaarijärvi R., Kaljunen H., Ketola K. Molecular and Functional Links between Neurodevelopmental Processes and Treatment-Induced Neuroendocrine Plasticity in Prostate Cancer Progression. Cancers (Basel). 2021; 13(4). doi:10.3390/cancers13040692.; Beltran H., Prandi D., Mosquera J.M., Benelli M., Puca L., Cyrta J., Marotz C., Giannopoulou E., Chakravarthi B.V., Varambally S., Tomlins S.A., Nanus D.M., Tagawa S.T., Van Allen E.M., Elemento O., Sboner A., Garraway L.A., Rubin M.A., Demichelis F. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016; 22(3): 298-305. doi:10.1038/nm.4045.; Chen R., Dong X., Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int. 2018; 122(4): 560-70. doi:10.1111/bju.14207.; Clermont P.L., Lin D., Crea F., Wu R., Xue H., Wang Y., Thu K.L., Lam W.L., Collins C.C., Wang Y., Helgason C.D. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin Epigenet, 2015; 7(1). doi:10.1186/s13148-015-0074-4.; Viré E., Brenner C., Deplus R., Blanchon L., Fraga M., Didelot C., Morey L., van Eynde A., Bernard D., Vanderwinden J.M., Bollen M., Esteller M., Di Croce L., de Launoit Y., Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006; 439(7078): 871-74. doi:10.1038/nature04431. Erratum in: Nature. 2007; 446(7137): 824.; BeltranH., RickmanD.S., ParkK., Chae S.S., Sboner A., MacDonald T.Y., Wang Y., Sheikh K.L., Terry S., Tagawa S.T., Dhir R., Nelson J.B., de la Taille A., Allory Y., Gerstein M.B., Perner S., Pienta K.J., Chinnaiyan A.M., Wang Y., Collins C.C., Gleave M.E., Demichelis F., Nanus D.M., Rubin M.A. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discovery. 2011; 1(6): 487-95. doi:10.1158/2159-8290.CD-11-0130.; https://www.siboncoj.ru/jour/article/view/3457

  2. 2
    Academic Journal

    Source: Research and Practical Medicine Journal; Том 2, № 1 (2015); 55-60 ; Research'n Practical Medicine Journal; Том 2, № 1 (2015); 55-60 ; 2410-1893 ; 10.17709/2409-2231-2015-1

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/40/38; Abrahamsson P.A. Neuroendocrine cells in tumour growth of the prostate // Endocr Relat Cancer. 1999a. Vol. 6. P. 503-519.; Abrahamsson P. A. Neuroendocrine differentiation in prostatic carcinoma // Prostate. 1999b. Vol. 39. P. 135-148.; Alessandro S., Vincenzo G., Maria A.G., et al. Chromogranin A and biochemical progressionfree survival in prostate adenocarcinomas submitted to radical prostatectomy. // Endocr Relat Cancer. 2007. Sep. Vol. 14. №. 3. P. 625 - 632.; Angelsen A., Syversen U., Haugen O.A., et al. Neuroendocrine differentiation in carcinomas of the prostate: do neuroendocrine serum markers reflect immunohistochemical findings? // Prostate. 1997. Vol. 30. №. 1. P. 1-6.; Angelsen A., Syversen U., Stridsberg M., et al. Use of neuroendocrine serum markers in the follow-up of patients with cancer of the prostate. // Prostate. 1997. Vol. 31. №. 2. P. 110 - 117.; Appetecchia M., Mecule A., Pasimeni G., et al. Incidence of high chromogranin A serum levels in patients with non metastatic prostate adenocarcinoma // J Exp Clin Cancer Res. 2010. Vol. 29. P. 166.; Battaglia S., Casali A.M., Botticelli A.R. Age-related distribution of endocrine cells in the human prostate: a quantitative study // Virchows Arch. 1994. Vol. 424. №. 2. P. 165-168.; Bocan E.V., Mederle O., Sarb S., et al. Correlation between histopathological form and the degree of neuroendocrine differentiations in prostate cancer. // Rom J Morphol Embryol. 2011. Vol. 52. №. 4. P. 1215 – 1218.; Bonkhoff H., Stein U., Remberger K. Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers // Hum Pathol. 1994 Jan. Vol. 25. №. 1. P. 42-46.; Cabrespine A., Guy L., Gachon F., et al. Circulating chromogranin a and hormone refractory prostate cancer chemotherapy. // J Urol. 2006. Vol. 175. №. 4. P. 1347 - 1352.; Chuang C.K., Wu T.L., Tsao K.C. Elevated serum chromogranin A precedes prostate-specific antigen elevation and predicts failure of androgen deprivation therapy in patients with advanced prostate cancer. // J Formos Med Assoc. 2003. Vol. 102, №. 7. P. 480 - 485.; Denis L., Griffiths K., Khoury S., et al. Benign Prostatic Hyperplasia (BPH) // Paris. 1997. P. 95-96.; Di Sant'Agnese P. Neuroendocrine differentiation in prostatic carcinoma // Recent findings and new concepts. Cancer 1995. Vol. 75. P. 1850-1959.; Eriksson B., Arnberg H., Oberg K., et al. Chromogranins--new sensitive markers for neuroendocrine tumors // Acta Oncol. 1989. Vol. 28. №. 3. P. 325-329.; Ferrero-Pous M., Hersant A.M., Pecking A. Serum chromogranin - A in advanced prostate cancer. // BJU Int. 2001. Vol. 88. №. 7. P. 790 – 796.; Cussenot O., Villette J.M., Valeri A., et al. Plasma neuroendocrine markers in patients with benign prostatic hyperplasia and prostatic carcinoma // J Urol. 1996. Vol. 155. №. 4. P. 1340 - 1343.; Glinicki P., Jeske W. Chromogranin A (CgA) – the influence of various factors in vivo and in vitro, and existing disorders on it's concentration in blood // Endokrynol. Pol. 2010. Vol. 61. P. 384-387.; Hansson J., Abrahamsson P.A. Neuroendocrine pathogenesis in adenocarcinoma of the prostate // Ann Oncol. 2001. Vol. 12. Suppl 2. P. 145-152.; Ischia R., Hobisch A., Bauer R., et al. Elevated levels of serum secretoneurin in patients with therapy resistant carcinoma of prostate. // J Urol. 2000. Vol. 163. № 4. P. 1164 - 1165.; Kadmon D., Thompson T.C., Lynch G.R., Scardino P.T. Elevated plasma chromogranin - A concentrations in prostatic carcinoma. // J Urol. 1991. Vol. 146. № 2. P. 358 - 361.; Kotz S, Campbell B. Read, Balakrishnan N., Vidakovic B. (Eds.). Encyclopedia of statistical sciences. 16-volume set. 2nd Edition 2006. Vol.3. P. 1630-1631.; Peracchi M., Conte D., Gebbia C., et al. Plasma chromogranin A in patients with sporadic gastro-entero-pancreatic neuroendocrine tumors or multiple endocrine neoplasia type 1 // Eur J Endocrinol. 2003. Vol. 148. №. 1. P. 39-43.; Pretl K. Zur frage der endocrine menschlichen versteherdruse // Virchows Arch. 1944. Vol. 312. P. 392-404.; Quek M.L., Daneshmand S., Rodrigo S., et al. Prognostic significance of neuroendocrine expression in lymph node-positive prostate cancer. // Urology. 2006. Vol. 67. №. 6. Р. 1247 - 1252.; Sciarra A., Innocenzi M., Ravaziol M., et al. Role of neuroendocrine cells in prostate cancer progression // Urologia. 2011. Vol. 78. №. 2. P. 126-131.; Sciarra A., Voria G., Monti S., et al. Clinical understaging in patients with prostate adenocarcinoma submitted to radical prostatectomy: predictive value of serum Chromogranin A // Prostate. 2004. Vol. 58. №. 4. P. 421 - 428.; Hirano D., Minei S., Sugimoto S., et al. Implications of circulating chromogranin A in prostate cancer. Hirano D., Minei S., // Scand J Urol Nephrol. 2007. Vol. 41. №. 4. P. 297 - 301.; Tarjan M. Prognostic significance of focal neuroendocrine differentiation in prostate cancer: Cases with autopsy-verified cause of death // Indian J Urol. 2010. Vol. 26. №. 1. P. 41 - 45.; Wu J.T, Astill M.E., Liu G.H., Stephenson R.A. Serum chromogranin A: early detection of hormonal resistance in prostate cancer patients. // J Clin Lab Anal. 1998. Vol. 12. №. 1. P. 20 - 25.; https://www.rpmj.ru/rpmj/article/view/40

  3. 3
  4. 4
    Academic Journal

    Source: Cancer Urology; Том 9, № 4 (2013); 43-46 ; Онкоурология; Том 9, № 4 (2013); 43-46 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2013-9-4

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/142/158; Jemal A., Siegel R., Ward E. et al. Cancer statistics, 2007. CA Cancer J Clin 2007;57:43–66.; di Sant'Agnese P.A. Neuroendocrine differentiation in carcinoma of the prostate. Diagnostic, prognostic, and therapeutic implications. Cancer 1992;70:254–68.; Bostwick D.G., Foster C.S., Algaba F. et al. Prostate tissue factors. In: Prostate cancer. Second international consultation on prostate cancer. Plymouth: Plymbridge Distributors, 2000;162–201.; Ather M.H., Shariff A.H. Prognostic and therapeutic value of neuroendocrine differentiation as manifested by chromogranin A in prostate carcinoma. In: Prostate cancer. Nova science Publishers, New York, 2004.; Ather M.H., Abbas F., Faruqui N. et al. Expression of pS2 in prostate cancer correlates with grade and Chromogranin A expression but not with stage. BMC Urol 2004;4:14–7.; Lijovic M., Fabiani M.E., Bader J., Frauman A.G. Prostate cancer: are new prognostic markers on the horizon? ProstCanc Prost Dis 2000;3:62–5.; Montironi R., Schulman C.C. Precursors of prostate cancer, progression, regression and chemoprevention. Eur Urol 1996;30:133–7.; Di Sant'Agnese P.A. Divergent neuroendocrine differentiation in prostatic carcinoma. Semin Diagn Pathol 2000;17(2):149–61.; Kamiya N., Suzuki H., Kawamura K. et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2008;15:423–8.; Dauge M.C., Delmas V. A.P.U.D. type endocrine tumour of the prostate. Incidence and prognosis in association with adenocarcinoma. Prog Clin Biol Res 1987;243A:529–31.; Cohen R.J., Glezerson G., Haffejee Z. Neuro-endocrine cells – a new prognostic parameter in prostate cancer. Br J Urol 1991;68:258–62.; Bostwick D.G., Dousa M.K., Crawford B.G., Wollan P.C. Neuroendocrine differentiation in prostatic intraepithelial neoplasia and adenocarcinoma. Am J Surg Pathol 1994;18:1240–6.; Noordzij M.A., Kwast T.H. van der, van Steenbrugge G.J. et al. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. Int J Cancer 1995;62:252–8.; Abrahamsson P.A., Cockett A.T., di Sant'Agnese P.A. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate Suppl 1998;8:37–42.; https://oncourology.abvpress.ru/oncur/article/view/142

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9