Showing 1 - 20 results of 162 for search '"нейродегенерация"', query time: 0.81s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: The authors express their gratitude to “Novartis Pharma” for financial support, which facilitated the acquisition of reagents for amino acid and acylcarnitine analysis in this study. The experimental research was conducted with the support of a state assignment of ICBFM SB RAS, No. 121031300045-2. The bioinformatics analysis was supported by the budget project FWNR-2022-0020.

    Source: Vavilov Journal of Genetics and Breeding; Том 28, № 8 (2024); 927-939 ; Вавиловский журнал генетики и селекции; Том 28, № 8 (2024); 927-939 ; 2500-3259 ; 10.18699/vjgb-24-88

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4414/1899; Alexander G.E. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004;6(3):259-280. doi 10.31887/DCNS.2004.6.3/galexander; Ashby E.L., Kierzkowska M., Hull J., Kehoe P.G., Hutson S.M., Conway M.E. Altered expression of human mitochondrial branched chain aminotransferase in dementia with Lewy bodies and vascular dementia. Neurochem. Res. 2017;42(1):306-319. doi 10.1007/s11064-016-1855-7; Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E.S., Ivanisenko V.A., Kolchanov N.A., Kononikhin A., Popov I., Nikolaev E.N., Pastushkova L.K., Larina I.M. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014; 15(S12):S2. doi 10.1186/1471-2164-15-S12-S2; Børglum A.D., Flint T., Hansen L.L., Kruse T.A. Refined localization of the pyruvate dehydrogenase E1α gene (PDHA1) by linkage analysis. Hum. Genet. 1996;99(1):80-82. doi 10.1007/s004390050315; Braak H., Tredici K.D., Rüb U., De Vos R.A.I., Jansen Steur E.N.H., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24(2):197-211. doi 10.1016/S0197-4580(02)00065-9; Bragina E.Yu., Tiys E.S., Freidin M.B., Koneva L.A., Demenkov P.S., Ivanisenko V.A., Kolchanov N.A., Puzyrev V.P. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-465. doi 10.1007/s00251-014-0786-1; Bragina E.Yu., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. doi 10.1016/j.meegid.2016.10.030; Bragina E.Yu., Gomboeva D.E., Saik O.V., Ivanisenko V.A., Freidin M.B., Nazarenko M.S., Puzyrev V.P. Apoptosis genes as a key to identification of inverse comorbidity of Huntington’s disease and cancer. Int. J. Mol. Sci. 2023;24(11):9385. doi 10.3390/ijms24119385; Che Mohd Nassir C.M.N., Damodaran T., Yusof S.R., Norazit A., Chilla G., Huen I., Kn B.P., Mohamed Ibrahim N., Mustapha M. Aberrant neurogliovascular unit dynamics in cerebral small vessel disease: a rheological clue to vascular Parkinsonism. Pharmaceutics. 2021;13(8):1207. doi 10.3390/pharmaceutics13081207; Chen C.-H., Joshi A.U., Mochly-Rosen D. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol. Taiwan. 2016;25(4)(4):111-123; Chen Y., Liu Q., Liu J., Wei P., Li B., Wang N., Liu Z., Wang Z. Revealing the modular similarities and differences among Alzheimer’s disease, vascular dementia, and Parkinson’s disease in genomic networks. Neuromol. Med. 2022;24(2):125-138. doi 10.1007/s12017-021-08670-2; Chen Y.-F., Tseng Y.-L., Lan M.-Y., Lai S.-L., Su C.-S., Liu J.-S., Chang Y.-Y. The relationship of leukoaraiosis and the clinical severity of vascular Parkinsonism. J. Neurol. Sci. 2014;346(1-2):255-259. doi 10.1016/j.jns.2014.09.002; Chiu C.-C., Yeh T.-H., Lai S.-C., Wu-Chou Y.-H., Chen C.-H., Mochly-Rosen D., Huang Y.-C., Chen Y.-J., Chen C.-L., Chang Y.-M., Wang H.-L., Lu C.-S. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp. Neurol. 2015;263:244-253. doi 10.1016/j.expneurol.2014.09.016; Dalangin R., Kim A., Campbell R.E. The role of amino acids in neurotransmission and fluorescent tools for their detection. Int. J. Mol. Sci. 2020;21(17):6197. doi 10.3390/ijms21176197; De Holanda Paranhos L., Magalhães R.S.S., De Araújo Brasil A., Neto J.R.M., Ribeiro G.D., Queiroz D.D., Dos Santos V.M., Eleutherio E.C.A. The familial amyotrophic lateral sclerosis-associated A4V SOD1 mutant is not able to regulate aerobic glycolysis. Biochim. Biophys. Acta Gen. Subjt. 2024;1868(8):130634. doi 10.1016/j.bbagen.2024.130634; Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3-4):149-161. doi 10.3233/ISB-2012-0449; Dimas P., Montani L., Pereira J.A., Moreno D., Trötzmüller M., Gerber J., Semenkovich C.F., Köfeler H.C., Suter U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife. 2019;8:e44702. doi 10.7554/eLife.44702; Ferrari M., Martignoni E., Blandini F., Riboldazzi G., Bono G., Marino F., Cosentino M. Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. Eur. J. Clin. Pharmacol. 2012;68(11):1493-1499. doi 10.1007/s00228-012-1281-y; George G., Singh S., Lokappa S.B., Varkey J. Gene co-expression network analysis for identifying genetic markers in Parkinson’s disease – a three-way comparative approach. Genomics. 2019a;111(4): 819-830. doi 10.1016/j.ygeno.2018.05.005; George G., Valiya Parambath S., Lokappa S.B., Varkey J. Construction of Parkinson’s disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene. 2019b;697:67-77. doi 10.1016/j.gene.2019.02.026; Grassi D., Howard S., Zhou M., Diaz-Perez N., Urban N.T., Guerrero-Given D., Kamasawa N., Volpicelli-Daley L.A., LoGrasso P., Lasmézas C.I. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2018;115(11):E2634-E2643. doi 10.1073/pnas.1713849115; Grünblatt E., Riederer P. Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J. Neural. Transm. 2016;123(2): 83-90. doi 10.1007/s00702-014-1320-1; Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(S11):228. doi 10.1186/s12859-020-03557-8; Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. doi 10.3390/ijms232314934; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. doi 10.1186/1752-0509-9-S2-S2; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(S1):34. doi 10.1186/s12859-018-2567-6; Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. doi 10.1038/s41598-022-24170-0; Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patrushev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilov J. Genet. Breed. 2023;27(7): 768-775. doi 10.18699/VJGB-23-89; Jones L.L., McDonald D.A., Borum P.R. Acylcarnitines: role in brain. Prog. Lipid Res. 2010;49(1):61-75. doi 10.1016/j.plipres.2009.08.004; Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi 10.1093/nar/28.1.27; Kasakin M.F., Rogachev A.D., Predtechenskaya E.V., Zaigraev V.J., Koval V.V., Pokrovsky A.G. Targeted metabolomics approach for identification of relapsing-remitting multiple sclerosis markers and evaluation of diagnostic models. Med. Chem. Commun. 2019;10(10): 1803-1809. doi 10.1039/c9md00253g; Korczyn A.D. Vascular Parkinsonism – characteristics, pathogenesis and treatment. Nat. Rev. Neurol. 2015;11(6):319-326. doi 10.1038/nrneurol.2015.61; Larina I.M., Pastushkova L.Kh., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.-A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J. Bioinform. Comput. Biol. 2015;13(01):1540001. doi 10.1142/S0219720015400016; Levin O.S., Bogolepova A.N., Lobzin V.Yu. General mechanisms of the pathogenesis of neurodenerative and cerebrovascular diseases and the possibilities of their correction. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):11-16. doi 10.17116/jnevro202212205111 (in Russian); Lin L., Tao J.-P., Li M., Peng J., Zhou C., Ouyang J., Si Y.-Y. Mechanism of ALDH2 improves the neuronal damage caused by hypoxia/reoxygenation. Eur. Rev. Med. Pharmacol. Sci. 2022;26(8):2712-2720. doi 10.26355/eurrev_202204_28601; Maksoud E., Liao E.H., Haghighi A.P. A neuron-glial trans-signaling cascade mediates LRRK2-induced neurodegeneration. Cell Rep. 2019;26(7):1774-1786.e4. doi 10.1016/j.celrep.2019.01.077; Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. doi 10.1016/j.bbagrm.2019.194430; Michel T.M., Käsbauer L., Gsell W., Jecel J., Sheldrick A.J., Cortese M., Nickl-Jockschat T., Grünblatt E., Riederer P. Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat. Disord. 2014;20:S68-S72. doi 10.1016/S1353-8020(13)70018-X; Miki Y., Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K. Alteration of mitochondrial protein PDHA1 in Lewy body disease and PARK14. Biochem. Biophys. Res. Commun. 2017;489(4):439-444. doi 10.1016/j.bbrc.2017.05.162; Mor D.E., Sohrabi S., Kaletsky R., Keyes W., Tartici A., Kalia V., Miller G.W., Murphy C.T. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc. Natl. Acad. Sci. USA. 2020;117(42):26438-26447. doi 10.1073/pnas.2009838117; Nalls M.A., Pankratz N., Lill C.M., Do C.B., Hernandez D.G., Saad M., DeStefano A.L., Kara E., Bras J., Sharma M., … Brice A., Scott W.K., Gasser T., Bertram L., Eriksson N., Foroud T., Singleton A.B. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014; 46(9):989-993. doi 10.1038/ng.3043; Narasimhan M., Schwartz R., Halliday G. Parkinsonism and cerebrovascular disease. J. Neurol. Sci. 2022;433:120011. doi 10.1016/j.jns.2021.120011; Narendra D.P., Jin S.M., Tanaka A., Suen D.-F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298. doi 10.1371/journal.pbio.1000298; Odongo R., Bellur O., Abdik E., Çakır T. Brain-wide transcriptomebased metabolic alterations in Parkinson’s disease: human inter-region and human-experimental model correlations. Mol. Omics. 2023; 19(7):522-537. doi 10.1039/D2MO00343K; Okui T., Iwashita M., Rogers M.A., Halu A., Atkins S.K., Kuraoka S., Abdelhamid I., Higashi H., Ramsaroop A., Aikawa M., Singh S.A., Aikawa E. CROT (Carnitine O-Octanoyltransferase) is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021;41(2):755-768. doi 10.1161/ATVBAHA.120.315007; Ostrakhovitch E.A., Song E.-S., Macedo J.K.A., Gentry M.S., Quintero J.E., Van Horne C., Yamasaki T.R. Analysis of circulating metabolites to differentiate Parkinson’s disease and essential tremor. Neurosci. Lett. 2022;769:136428. doi10.1016/j.neulet.2021.136428; Pastushkova L.Kh., Kireev K.S., Kononikhin A.S., Tiys E.S., Popov I.A., Starodubtseva N.L., Dobrokhotov I.V., Ivanisenko V.A., Larina I.M., Kolchanov N.A., Nikolaev E.N. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One. 2013;8(8):e71652. doi 10.1371/journal.pone.0071652; Pastushkova L.Kh., Kashirina D.N., Brzhozovskiy A.G., Kononikhin A.S., Tiys E.S., Ivanisenko V.A., Koloteva M.I., Nikolaev E.N., Larina I.M. Evaluation of cardiovascular system state by urine proteome after manned space flight. Acta Astronaut. 2019;160:594-600. doi 10.1016/j.actaastro.2019.02.015; Pavlú-Pereira H., Florindo C., Carvalho F., Tavares De Almeida I., Vicente J., Morais V., Rivera I. Evaluation of mitochondrial function on pyruvate dehydrogenase complex deficient patient-derived cell lines. Endocr. Metab. Immune Disord. Drug Targets. 2024;24(16):20. doi 10.2174/0118715303280072231004082458; Penney J., Tsurudome K., Liao E.H., Kauwe G., Gray L., Yanagiya A., Calderon M.R., Sonenberg N., Haghighi A.P. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat. Commun. 2016;7(1):12188. doi 10.1038/ncomms12188; Rappaport N., Twik M., Nativ N., Stelzer G., Bahir I., Stein T.I., Safran M., Lancet D. MalaCards: a comprehensive automaticallymined database of human diseases. Curr. Protoc. Bioinformatics. 2014;47(1):1.24.1-19. doi 10.1002/0471250953.bi0124s47; Rocha E.M., De Miranda B., Sanders L.H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis. 2018;109:249-257. doi 10.1016/j.nbd.2017.04.004; Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gaisler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. doi 10.3390/metabo11030133; Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. doi 10.1016/j.virusres.2015.12.003; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Yu., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018; 15(4):20180054. doi 10.1515/jib-2018-0054; Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(S2):47. doi 10.1186/s12920-019-0492-9; Saiki S., Hatano T., Fujimaki M., Ishikawa K.-I., Mori A., Oji Y., Okuzumi A., Fukuhara T., Koinuma T., Imamichi Y., Nagumo M., Furuya N., Nojiri S., Amo T., Yamashiro K., Hattori N. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 2017; 7(1):7328. doi 10.1038/s41598-017-06767-y; Schlaepfer I.R., Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 2020;161(2):bqz046. doi 10.1210/endocr/bqz046; Shortall K., Djeghader A., Magner E., Soulimane T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front. Mol. Biosci. 2021;8:659550. doi 10.3389/fmolb.2021.659550; Sohrabi S., Mor D.E., Kaletsky R., Keyes W., Murphy C.T. Highthroughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun. Biol. 2021;4(1):203. doi 10.1038/s42003-021-01731-z; Song M., Schnettler E., Venkatachalam A., Wang Y., Feldman L., Argenta P., Rodriguez-Rodriguez L., Ramakrishnan S. Increased expression of collagen prolyl hydroxylases in ovarian cancer is associated with cancer growth and metastasis. Am. J. Cancer Res. 2023;13(12):6051-6062; Thanvi B., Lo N., Robinson T. Vascular parkinsonism – an important cause of parkinsonism in older people. Age Ageing. 2005;34(2): 114-119. doi 10.1093/ageing/afi025; Tomkins J.E., Manzoni C. Advances in protein-protein interaction network analysis for Parkinson’s disease. Neurobiol. Dis. 2021;155: 105395. doi 10.1016/j.nbd.2021.105395; Trabjerg M.S., Andersen D.C., Huntjens P., Mørk K., Warming N., Kullab U.B., Skjønnemand M.-L.N., Oklinski M.K., Oklinski K.E., Bolther L., Kroese L.J., Pritchard C.E.J., Huijbers I.J., Corthals A., Søndergaard M.T., Kjeldal H.B., Pedersen C.F.M., Nieland J.D.V. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson’s disease. NPJ Parkinsons Dis. 2023; 9(1):6. doi 10.1038/s41531-023-00450-y; Tukey R.H., Strassburg C.P. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000;40(1):581-616. doi 10.1146/annurev.pharmtox.40.1.581; Urban D., Lorenz J., Meyborg H., Ghosh S., Kintscher U., Kaufmann J., Fleck E., Kappert K., Stawowy P. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor. J. Biochem. 2013;153(2): 197-207. doi 10.1093/jb/mvs137; Vale T.C., Barbosa M.T., Caramelli P., Cardoso F. Vascular Parkinsonism and cognitive impairment: literature review, Brazilian studies and case vignettes. Dement. Neuropsychol. 2012;6(3):137-144. doi 10.1590/S1980-57642012DN06030005; Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., Albanese A., Nussbaum R., González-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W.P., Latchman D.S., Harvey R.J., Dallapiccola B., Auburger G., Wood N.W. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158-1160. doi 10.1126/science.1096284; Virmani A., Pinto L., Bauermann O., Zerelli S., Diedenhofen A., Binienda Z.K., Ali S.F., Van Der Leij F.R. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol. Neurobiol. 2015;52(2): 826-836. doi 10.1007/s12035-015-9238-7; Vos M., Geens A., Böhm C., Deaulmerie L., Swerts J., Rossi M., Craessaerts K., Leites E.P., Seibler P., Rakovic A., Lohnau T., De Strooper B., Fendt S.-M., Morais V.A., Klein C., Verstreken P. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J. Cell Biol. 2017;216(3):695-708. doi 10.1083/jcb.201511044; Wang Mingyue, Xie Y., Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res. Bull. 2021;166:172-184. doi 10.1016/j.brainresbull.2020.11.005; Wang Muyun, Wang K., Liao X., Hu H., Chen L., Meng L., Gao W., Li Q. Carnitine palmitoyltransferase system: a new target for antiinflammatory and anticancer therapy? Front. Pharmacol. 2021;12: 760581. doi 10.3389/fphar.2021.760581; Wang Yu, Yu W., Li S., Guo D., He J., Wang Yugang. Acetyl-CoA carboxylases and diseases. Front. Oncol. 2022;12:836058. doi 10.3389/fonc.2022.836058; Wey M.C.-Y., Fernandez E., Martinez P.A., Sullivan P., Goldstein D.S., Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease. PLoS One. 2012;7(2):e31522. doi 10.1371/journal.pone.0031522; Wichaiyo S., Koonyosying P., Morales N.P. Functional roles of furin in cardio-cerebrovascular diseases. ACS Pharmacol. Transl. Sci. 2024; 7(3):570-585. doi 10.1021/acsptsci.3c00325; Wishart D.S., Guo A., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., Berjanskii M., Mah R., Yamamoto M., Jovel J., Torres-Calzada C., Hiebert-Giesbrecht M., Lui V.W., Varshavi Dorna, Varshavi Dorsa, Allen D., Arndt D., Khetarpal N., Sivakumaran A., Harford K., Sanford S., Yee K., Cao X., Budinski Z., Liigand J., Zhang L., Zheng J., Mandal R., Karu N., Dambrova M., Schiöth H.B., Greiner R., Gautam V. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1): D622-D631. doi 10.1093/nar/gkab1062; Wuolikainen A., Jonsson P., Ahnlund M., Antti H., Marklund S.L., Moritz T., Forsgren L., Andersen P.M., Trupp M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s di sease and control subjects. Mol. BioSyst. 2016;12(4):1287-1298. doi 10.1039/C5MB00711A; Xu Y., Xia D., Huang K., Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J. Transl. Med. 2024;22(1):74. doi 10.1186/s12967-024-04872-x; Yakala G.K., Cabrera-Fuentes H.A., Crespo-Avilan G.E., Rattanasopa C., Burlacu A., George B.L., Anand K., Mayan D.C., Corlianò M., Hernández-Reséndiz S., Wu Z., Schwerk A.M.K., Tan A.L.J., Trigueros-Motos L., Chèvre R., Chua T., Kleemann R., Liehn E.A., Hausenloy D.J., Ghosh S., Singaraja R.R. FURIN inhibition reduces vascular remodeling and atherosclerotic lesion progression in mice. Arterioscler. Thromb. Vasc. Biol. 2019;39(3):387-401. doi 10.1161/ATVBAHA.118.311903; Yamada M., Hayashi H., Yuuki M., Matsushima N., Yuan B., Takagi N. Furin inhibitor protects against neuronal cell death induced by activated NMDA receptors. Sci. Rep. 2018;8(1):5212. doi 10.1038/s41598-018-23567-0; Yao V., Kaletsky R., Keyes W., Mor D.E., Wong A.K., Sohrabi S., Murphy C.T., Troyanskaya O.G. An integrative tissue-network approach to identify and test human disease genes. Nat. Biotechnol. 2018;36(11):1091-1099. doi 10.1038/nbt.4246; Zhao H., Wang C., Zhao N., Li W., Yang Z., Liu X., Le W., Zhang X. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B. 2018;1081-1082:101-108. doi 10.1016/j.jchromb.2018.01.025; Zijlmans J.C.M., Thijssen H.O.M., Vogels O.J.M., Kremer H.P.H.M.P., Poels P.J.E., Schoonderwaldt H.C., Merx J.L., van’t Hof M.A., Thien Th., Horstink M.W.I.M. MRI in patients with suspected vascular parkinsonism. Neurology. 1995;45(12):2183-2188. doi 10.1212/WNL.45.12.2183; Zolotareva O., Saik O.V., Königs C., Bragina E.Yu., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1): 16302. doi 10.1038/s41598-019-52762-w; https://vavilov.elpub.ru/jour/article/view/4414

  4. 4
    Academic Journal

    Source: Ophthalmology in Russia; Том 22, № 1 (2025); 5-15 ; Офтальмология; Том 22, № 1 (2025); 5-15 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2025-1

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2569/1293; Петров СЮ, Ловпаче ДН, Брежнев АЮ. Международные мультицентровые исследования по глаукоме. Российский офтальмологический журнал. 2016;9(2):96–101. doi:10.21516/2072-0076-2016-9-2-96-101.; Kolko M. Present and New Treatment Strategies in the Management of Glaucoma. Open Ophthalmol J. 2015;9:89–100. doi:10.2174/1874364101509010089.; Qi YX, Zhang J, Su XJ. Can neuroprotection effectively manage primary open-angle glaucoma? a protocol of systematic review and meta-analysis. Medicine (Baltimore). 2020;99(23):e20380. doi:10.1097/MD.0000000000020380.; Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res. 2021;205:108506. doi:10.1016/j.exer.2021.108506.; Клинические рекомендации «Глаукома первичная открытоугольная» (одобрены Минздравом России). Год утверждения 2024. https://cr.minzdrav.gov.ru; Клинические рекомендации «Глаукома первичная закрытоугольная» (одобрены Минздравом России). Год утверждения 2024. https://cr.minzdrav.gov.ru; Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. Journal of Cell Biology. 2007;179:1523–1537. doi:10.1083/jcb.200706181.; Guo L, Salt TE, Maass A. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Investigative Ophthalmology and Visual Science. 2006;47(2):626–633. doi:10.1167/iovs.05-0754.; Russo R, Cavaliere F. Modulation of pro-survival and death-associated pathways under retinal ischemia/reperfusion: effects of NMDA receptor blockade. J. of Neurochem. 2008;107(5):1347–1357. doi:10.1111/j.1471-4159.2008.05694.x.; Rusciano D, Pezzino S, Mutolo MG. Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci. 2017;2017:4320408. doi:10.1155/2017/4320408.; Jain KK. Neuroprotective agents. The Handbook of Neuroprotection Humana, New York, 2019. P. 45–173.; He S, Stankowska DL, Ellis DZ. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther. 2018;34(1–2):85–106. doi:10.1089/jop.2017.0041.; Pellegrini JW, Lipton SA. Delayed administration of memantine prevents N-methyl-D-aspartate receptor-mediated neurotoxicity. Ann Neurol. 1993;33(4):403–407. doi:10.1002/ana.410330414.; Ju WK, Kim KY, Angert M, Duong-Polk KX, Lindsey JD, Ellisman MH, Weinreb RN. Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina. Invest Ophthalmol Vis Sci. 2009;50(2):707–716. doi:10.1167/iovs.08-2499.; Yücel YH, Gupta N, Zhang Q. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124(2):217–225. doi:10.1001/archopht.124.2.217.; Gupta N, Ang L, de Tilly LN. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674–678. doi:10.1136/bjo.2005.086769.; Weinreb RN, Liebmann JM, Cioffi GA. Oral Memantine for the Treatment of Glaucoma: Design and Results of 2 Randomized, Placebo-Controlled, Phase 3 Studies. Ophthalmology. 2018;125(12):1874–1885. doi:10.1016/j.ophtha.2018.06.017.; Астахов ЮС, Бутин ЕВ, Морозова НВ, Соколов ВО. К вопросу о нейропротекторном влиянии акатинол-мемантина и бетаксолола у больных первичной открытоугольной глаукомой. Глаукома: проблемы и решения. Всероссийская научно-практическая конференция. М., 2004;170–184.; Курышева НИ, Иртегова ЕЮ, Ходак НА. Оценка клинической эффективности акатинол мемантина в лечении прогрессирующей глаукомной оптиконейропатии. Глаукома: реальность и перспективы. М., 2008. P. 233–239.; Osborne NN. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci. 1999;16(1):45–52. doi:10.1017/s0952523899161017.; Sánchez-López E, Egea MA, Davis BM. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small. 2018;14(2). doi:10.1002/smll.201701808.; Ekici F, Korkmaz Ş, Karaca EE. The Role of Magnesium in the Pathogenesis and Treatment of Glaucoma. Int Sch Res Notices. 2014;2014:745439. doi:10.1155/2014/745439.; Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43–49. doi:10.1016/j.coph.2012.10.001.; Almasieh M, Zhou Y, Kelly ME, Casanova C, Di Polo A. Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis. 2010;1(2):e27. doi:10.1038/cddis.2009.23.; Yamamoto T, Niwa Y, Kawakami H. The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma. J Glaucoma. 1998;7(5):301–305.; Rainer G, Kiss B, Dallinger S. A double masked placebo controlled study on the effect of nifedipine on optic nerve blood flow and visual field function in patients with open angle glaucoma. Br J Clin Pharmacol. 2001;52(2):210–212. doi:10.1046/j.0306-5251.2001.01432.x.; Ramdas WD, Wolfs RC, Kiefte-de Jong JC. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol. 2012;27(5):385–393. doi:10.1007/s10654-012-9672-z.; Lehrer S, Rheinstein PH. Amlodipine increases risk of primary open-angle glaucoma. Clin Hypertens. 2024;30(1):33. doi:10.1186/s40885-024-00290-9.; Tavakoli K, Sidhu S, Radha Saseendrakumar B, Weinreb RN, Baxter SL. Long-Term Systemic Use of Calcium Channel Blockers and Incidence of Primary Open-Angle Glaucoma. Ophthalmol Glaucoma. 2024t;7(5):491–498. doi:10.1016/ j.ogla.2024.06.003.; Vallabh NA, Lane B, Simpson D, Fuchs M, Choudhary A, Criddle D, Cheeseman R, Willoughby C. Massively parallel sequencing of mitochondrial genome in primary open angle glaucoma identifies somatically acquired mitochondrial mutations in ocular tissue. Sci Rep. 2024;14(1):26324. doi:10.1038/s41598-024-72684-6.; Henderson J, O’Callaghan J, Campbell M. Gene therapy for glaucoma: Targeting key mechanisms. Vision Res. 2024;225:108502. doi:10.1016/j.visres.2024.108502.; Cheung W, Guo L, Cordeiro MF. Neuroprotection in glaucoma: drug-based approaches. Optom Vis Sci. 2008;85(6):406–416. doi:10.1097/OPX.0b013e31817841e5.; Chen M, Liu B, Ma J, Ge J, Wang K. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells. Mol Med Rep. 2017;15(4):2179–2185. doi:10.3892/mmr.2017.6271.; Noh YH, Kim KY, Shim MS. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis. 2013;4(10):e820. doi:10.1038/cddis.2013.341.; Nucci C, Martucci A, Giannini C. Neuroprotective agents in the management of glaucoma. Eye (Lond). 2018;32(5):938–945. doi:10.1038/s41433-018-0050-2.; Martucci A, Reurean-Pintilei D, Manole A. Bioavailability and Sustained Plasma Concentrations of CoQ10 in Healthy Volunteers by a Novel Oral Timed-Release Preparation. Nutrients. 2019;11(3):527. doi:10.3390/nu11030527.; Parisi V, Centofanti M, Gandolfi S. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma. 2014;23(6):391–404. doi:10.1097/IJG.0b013e318279b836.; Martucci A, Mancino R, Cesareo M. Combined use of coenzyme Q10 and citicoline: A new possibility for patients with glaucoma. Front Med (Lausanne). 2022;9:1020993. doi:10.3389/fmed.2022.1020993.; Pravst I, Rodríguez Aguilera JC, Cortes Rodriguez AB. Comparative Bioavailability of Different Coenzyme Q10 Formulations in Healthy Elderly Individuals. Nutrients. 2020;12(3):784. doi:10.3390/nu12030784.; Oddone F, Rossetti L, Parravano M. Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals (Basel). 2021;14(3):281. doi:10.3390/ph14030281.; Sahin AK, Kapti HB, Uzun A. Effect of oral citicoline therapy on retinal nerve fiber layer and ganglion cell-inner plexiform layer in patients with primary open angle glaucoma. Int J Ophthalmol. 2022;15(3):483–488. doi:10.18240/ijo.2022.03.17.; Skopiński P, Radomska-Leśniewska DM, Izdebska J. New perspectives of immunomodulation and neuroprotection in glaucoma. Cent Eur J Immunol. 2021;46(1):105–110. doi:10.5114/ceji.2021.104329.; Lanza M, Gironi Carnevale UA, Mele L. Morphological and Functional Evaluation of Oral Citicoline Therapy in Chronic Open-Angle Glaucoma Patients: A Pilot Study With a 2-Year Follow-Up. Front Pharmacol. 2019;10:1117. doi:10.3389/fphar.2019.01117.; Flammer J, Haefliger IO, Orgul S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? Journal of Glaucoma. 1999;8:212–219.; Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim SG, Wollstein G, Schuman JS, Chan KC. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep. 2016;6:31464. doi:10.1038/srep31464.; Tezel G, Chauhan BC, LeBlanc RP, Wax MB. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci. 2003;44(7):3025–3033. doi:10.1167/iovs.02-1136.; Курышева НИ. Механизмы снижения зрительных функций при первичной открытоугольной глаукоме и пути их предупреждения: aвтореф. дис. … докт. мед. наук. М., 2001. 43 с.; Husain S, Abdul Y, Singh S, Ahmad A, Husain M. Regulation of nitric oxide production by δ-opioid receptors during glaucomatous injury. PLoS One. 2014;9(10):e110397. doi:10.1371/journal.pone.0110397.; He S, Liu C, Ren C, Zhao H, Zhang X. Immunological Landscape of Retinal Ischemia-Reperfusion Injury: Insights into Resident and Peripheral Immune Cell Responses. Aging Dis. 2024. doi:10.14336/AD.2024.0129. Epub ahead of print.; Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel). 2024;17(4):441. doi:10.3390/ph17040441.; Sun J, Liu Y, Chen Z. Melatonin and retinal cell damage: molecular and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2024. doi:10.1007/s00210-024-03575-w. Epub ahead of print.; Hu C, Feng Y, Huang G, Cui K, Fan M, Xiang W, Shi Y, Ye D, Ye H, Bai X, Xu F, Xu Y, Huang J. Melatonin prevents EAAC1 deletion-induced retinal ganglion cell degeneration by inhibiting apoptosis and senescence. J Pineal Res. 2024;76(1):e12916. doi:10.1111/jpi.12916.; Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer’s Disease. J Alzheimers Dis. 2024;101(s1):S285–S298. doi:10.3233/JAD-231372.; Li Y, Zhu X, Wang K, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts (GBE) protect human RPE cells from t-BHP-induced oxidative stress and necrosis by activating the Nrf2-mediated antioxidant defence. J Pharm Pharmacol. 2023;75(1):105–116. doi:10.1093/jpp/rgac069.; Labkovich M, Jacobs EB, Bhargava S, Pasquale LR, Ritch R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila). 2020;9(3):215–225. doi:10.1097/APO.0000000000000279.; Sim RH, Sirasanagandla SR, Das S, Teoh SL. Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients. 2022;14(3):534. doi:10.3390/nu14030534.; Kang JM, Lin S. Ginkgo biloba and its potential role in glaucoma. Curr Opin Ophthalmol. 2018;29(2):116–120. doi:10.1097/ICU.0000000000000459.; Zhu Q, Liu D. Clinical efficacy and mechanism of Ginkgo biloba extract in the treatment of elderly ischemic cerebrovascular disease. Pak J Pharm Sci. 2024;37(3):705–713.; Hirooka K, Tokuda M, Miyamoto O, Itano T, Baba T, Shiraga F. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res. 2004 Mar;28(3):153–157. doi:10.1076/ceyr.28.3.153.26246.; Xia C, Zhou M, Dong X, Zhao Y, Jiang M, Zhu G, Zhang Z. Ginkgo biloba extract inhibits hippocampal neuronal injury caused by mitochondrial oxidative stress in a rat model of Alzheimer’s disease. PLoS One. 2024;19(8):e0307735. doi:10.1371/journal.pone.0307735.; Полунин ГС, Макаров ИА, Ширшиков ЮК, Макашова НВ. Эффективность антиоксидантного препарата гистохром в лечении гемофтальмов при гипертонической болезни и сахарном диабете. Вестник офтальмологии. 2000;2:19–20.; Власова АС, Малишевская ТН, Петров СА, Губин ДГ, Петров СЮ, Филиппова ЮЕ. Значение митохондриальной дисфункции в стабилизации глаукомного процесса. Вестник офтальмологии. 2024;140(4):48–57.; Федин АИ, Евсеев ВН, Кузнецов ОР. Антиоксидантная терапия ишемического инсульта. Клинико–электрофизиологические корреляции. Российский медицинский журнал. 2009;5:332.; Егоров ЕА, Давыдова НГ, Романенко ИА. Мексидол в комплексном лечении глаукомы. Клиническая офтальмология. 2011;12(3):107–109.; Мартынова ЕБ. Экспериментально-клиническое обоснование применения нового антиоксиданта «Эрисод» в терапии открытоугольной глаукомы: aвтореф. дисс. … канд. мед. наук. СПб., 1995. 21 c.; Мошетова ЛК, Алексеев ИБ, Ивашина АВ. Результаты использования препарата Лютеин-комплекс для лечения глаукомной оптической нейропатии. Клиническая офтальмология.2005;6:64–67.; https://www.ophthalmojournal.com/opht/article/view/2569

  5. 5
    Academic Journal

    Source: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3169/2093; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3169/14833; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3169/14834; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3169/14835; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3169/14839; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3169/14840; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3169/14841; Васенина Е.Е., Левин О.С. Современные подходы к клинической диагностике и лечению мультисистемных дегенераций, связанных с накоплением тау-протеина // Журнал неврологии и психиатрии им. С.С. Корсакова, 2020. Т. 120, № 2. С. 22-30. doi:10.17116/jnevro202012010222.; Есин Р.Г., Сафина Д.Р., Хакимова А.Р., Есин О.Р. Нейровоспаление и невропатология // Журнал неврологии и психиатрии им. С.С. Корсакова, 2021. Т. 121, № 4. С. 107-112. doi:10.17116/jnevro2021121041107.; Живкович М., Ермолаева Е.В., Соболева А.В., Самойлова Е.М., Чудакова Д.А., Баклаушев В.П. Нейротрофический фактор мозга BDNF: новые данные, функции и вопросы // Гены и Клетки, 2024. Т. 19, № 1. C. 61-84. doi:10.17816/gc623163.; Кондратюк И.В., Падруль М.М., Каракулова Ю.В. Мозговой нейротрофический фактор (BDNF) как новый способ диагностики тяжелой преэклампсии и ее осложнений // Акушерство и гинекология: новости, мнения, обучение, 2022. Т. 10, № 4. С. 13-17. doi:10.33029/2303-9698-2022-10-4-13-17.; Белокриницкая Т.Е., Фролова Н.И., Страмбовская Н.Н., Колмакова К.А. Распространенность и межгенные взаимодействия полиморфизмов, ассоциированных с артериальной гипертензией, дисфункцией эндотелия, нарушениями гемостаза и фолатного обмена, при тяжелой преэклампсии // Забайкальский медицинский вестник, 2019. Т. 1. С. 1-13.; Adank M.C., Hussainali R.F., Oosterveer L.C., Ikram M.A., Steegers E.A.P., Miller E.C., Schalekamp-Timmermans S. Hypertensive disorders of pregnancy and cognitive impairment: a Prospective Cohort Study. Neurology, 2021, Vol. 96, no. 5, e709-18. doi:10.1212/WNL.0000000000011363.; An J., Kim K., Lim H.J., Kim H.Y., Shin J., Park I., Cho I., Kim H.Y., Kim S., McLean C., Choi K.Y., Kim Y, Lee K.H., Kim J.S. Early onset diagnosis in Alzheimer's disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid. Nat. Commun., 2024, Vol. 15, no. 1, 1004. doi:10.1038/s41467-024-44818-x.; Andersson M., Oras J., Thörn S.E., Karlsson O., Kälebo P., Zetterberg H., Blennow K., Bergman L. Signs of neuroaxonal injury in preeclampsia-A case control study. PLoS One. 2021, Vol. 16, no. 2, e0246786. doi:10.1371/journal.pone.0246786.; Arévalo J.C., Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules, 2023, Vol. 13, no. 5, 789. doi:10.3390/biom13050789.; Babkina A.S., Lyubomudrov M.A., Golubev M.A., Pisarev M.V., Golubev A.M. Neuron-Specific Enolase-What Are We Measuring? Int. J. Mol. Sci., 2024, Vol. 25, no. 9, 5040. doi:10.3390/ijms25095040.; Barthélemy N.R., Horie K., Sato C., Bateman R.J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J. Exp. Med., 2020, Vol. 217, no 11, e20200861. doi:10.1084/jem.20200861.; Basit S., Wohlfahrt J., Boyd H.A. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. B.M.J., 2018, Vol. 363, k4109. doi:10.1136/bmj.k4109.; Bergman L., Hastie R., Bokström-Rees E., Zetterberg H., Blennow K., Schell S., Imberg H., Langenegger E., Moodley A., Walker S., Tong S., Cluver C. Cerebral biomarkers in neurologic complications of preeclampsia. Am. J. Obstetrics. Gynecol., 2022, Vol. 227, no. 2, 298.e1-298.e10. doi:10.1016/j.ajog.2022.02.036.; Bergman L., Zetterberg H., Kaihola H., Hagberg H., Blennow K., Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study. PLoS. One., 2018, Vol. 13, no. 5, e0196025. doi:10.1371/journal.pone.0196025.; Biswas J., Khatun N., Bandyopadhyay R., Bhattacharya N., Maitra A., Mukherjee S., Mondal S. Optic nerve sheath diameter measurements using ultrasonography to diagnose raised intracranial pressure in preeclampsia: an observational study. J. Turk. Ger. Gynecol. Assoc., 2023, Vol. 24, no. 1, pp. 5-11. doi:10.4274/jtgga.galenos.2022.2022-3-3.; Bokstrom-Rees E., Zetterberg H., Blennow K., Hastie R., Schell S., Cluver C., Bergman L. Correlation between cognitive assessment scores and circulating cerebral biomarkers in women with pre-eclampsia and eclampsia. Pregnancy Hypertens., 2023, Vol. 31, pp. 38-45. doi:10.1016/j.preghy.2022.12.001.; Brzan Simenc G., Ambrozic J., Osredkar J., Gersak K., Lucovnik M. Correlation between cerebral biomarkers and optic nerve sheath diameter in patients with severe preeclampsia. Hypertens Pregnancy., 2021, Vol. 40, no. 1, pp. 9-14. doi:10.1080/10641955.2020.1849275.; Buhimschi I.A., Nayeri U.A., Zhao G., Shook L.L., Pensalfini A., Funai E.F., Bernstein I.M., Glabe C.G., Buhimschi C.S. Protein Misfolding, Congophilia, Oligomerization, and Defective Amyloid Processing in Preeclampsia. Sci. Transl. Med. 2014, Vol. 6, 245ra92. doi:10.1126/scitranslmed.3008808.; Busche M.A., Hyman B.T. Synergy between amyloid-β and tau in Alzheimer's disease. Nat. Neurosci., 2020, Vol. 23, 1183-1193. doi:10.1038/s41593-020-0687-6.; Chen Y., Wang Y., Xu J., Hou T., Zhu J., Jiang Y., Sun L., Huang C., Sun L., Liu S. Multiplex Assessment of Serum Chemokines CCL2, CCL5, CXCL1, CXCL10, and CXCL13 Following Traumatic Brain Injury. Inflammation, 2023, Vol. 46, no. 1, pp. 244-255. doi:10.1007/s10753-022-01729-7.; Cheng S., Banerjee S., Daiello L.A., Nakashima A., Jash S., Huang Z., Drake J.D., Ernerudh J., Berg G., Padbury J., Saito S., Ott B.R., Sharma S. Novel blood test for early biomarkers of preeclampsia and Alzheimer's disease. Sci. Rep., 2021, Vol. 11, no. 1, 15934. doi:10.1038/s41598-021-95611-5.; Chiang Y.T., Seow K.M., Chen K.H. The Pathophysiological, Genetic, and Hormonal Changes in Preeclampsia: A Systematic Review of the Molecular Mechanisms. Int. J. Mol. Sci., 2024, Vol. 25, no. 8, pp. 45-32. doi:10.3390/ijms25084532.; Correa J.D., Starling D., Teixeira A.L., Caramelli P., Silva T.A. Chemokines in CSF of Alzheimer's disease patients. Arq. Neuropsiquiatr., 2011, Vol. 69, no. 3, pp. 455-459. doi:10.1590/s0004-282x2011000400009.; Escudero C., Kupka E., Ibanez B., Sandoval H., Troncoso F., Wikstrom A.K., López-Espíndola D., Acurio J., Torres-Vergara P., Bergman L. Brain Vascular Dysfunction in Mothers and Their Children Exposed to Preeclampsia. Hypertension, 2023, Vol. 80, no. 2, pp. 242-256. doi:10.1161/HYPERTENSIONAHA.122.19408.; Evers K.S., Atkinson A., Barro C., Fisch U., Pfister M., Huhn E.A., Lapaire O., Kuhle J., Wellmann S. Neurofilament as Neuronal Injury Blood Marker in Preeclampsia. Hypertension, 2018, Vol. 71, no. 6, pp. 1178-1184. doi:10.1161/HYPERTENSIONAHA.117.10314.; Fang X., Liang Y., Zhang W., Wang Q., Chen J., Chen J., Lin Y., Chen Y., Yu L., Wang H., Chen D. Serum Neurofilament Light: a Potential Diagnostic and Prognostic Biomarker in Obstetric Posterior Reversible Encephalopathy Syndrome. Mol. Neurobiol. 2021, Vol. 58, no.12, pp. 6460-6470. doi:10.1007/s12035-021-02562-z.; Friis T., Wikström A.K., Acurio J., León J., Zetterberg H., Blennow K., Nelander M., Åkerud H., Kaihola H., Cluver C., Troncoso F., Torres-Vergara P., Escudero C., Bergman L. Cerebral Biomarkers and Blood-Brain Barrier Integrity in Preeclampsia. Cells, 2022, Vol. 11, no. 5, 789. doi:10.3390/cells11050789.; Gaur A., Rivet L., Mah E., Bawa K.K., Gallagher D., Herrmann N., Lanctôt K.L. Novel fluid biomarkers for mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev., 2023, Vol. 91, 102046. doi:10.1016/j.arr.2023.102046.; Guo T., Noble W., Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol., 2017, Vol. 133, no. 5, pp. 665-704. doi:10.1007/s00401-017-1707-9.; Hanin A., Cespedes J., Dorgham K., Pulluru Y., Gopaul M., Gorochov G., Hafler D.A., Navarro V., Gaspard N., Hirsch L.J. Cytokines in New-Onset Refractory Status Epilepticus Predict Outcomes. Ann. Neurol., 2023, Vol. 94, no. 1, pp. 75-90. doi:10.1002/ana.26627.; Im D., Choi T.S. Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms. BMB. Rep., 2024, Vol. 57 no. 6, pp. 263-272. doi:10.5483/BMBRep.2024-0044.; Iranzo A., Fairfoul G., Ayudhaya A.C.N., Serradell M., Gelpi E., Vilaseca I., Sanchez-Valle R., Gaig C., Santamaria J., Tolosa E., Riha R.L., Green A.J.E. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: A longitudinal observational study. Lancet Neurol., 2021, Vol. 20, pp. 203-212. doi:10.1016/S1474-4422(20)30449-X.; Janelidze S., Mattsson N., Palmqvist S., Smith R., Beach T.G., Serrano G.E., Chai X., Proctor N.K., Eichenlaub U., Zetterberg H., Blennow K., Reiman E.M., Stomrud E., Dage J.L., Hansson O. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat. Med., 2020, Vol. 26, no. 3, pp. 379-386. doi:10.1038/s41591-020-0755-1.; Joly-Amado A., Hunter J., Quadri Z., Zamudio F., Rocha-Rangel P.V., Chan D., Kesarwani A., Nash K., Lee D.C., Morgan D., Gordon M.N., Selenica M.B. CCL2 overexpression in the brain promotes glial activation and accelerates tau pathology in a mouse model of tauopathy. Front. Immunol., 2020, Vol. 11, 997. doi:10.3389/fimmu.2020.00997.; Lambuk L., Mohd Lazaldin M.A., Ahmad S., Iezhitsa I., Agarwal R., Uskoković V., Mohamud R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front. Pharmacol., 2022, Vol. 13, 875662. doi:10.3389/fphar.2022.875662.; Le L.T.H.L., Lee J., Im D., Park S., Hwang K.D., Lee J.H., Jiang Y., Lee Y.S., Suh Y.H., Kim H.I., Lee M.J. Self-Aggregating Tau Fragments Recapitulate Pathologic Phenotypes and Neurotoxicity of Alzheimer's Disease in Mice. Adv. Sci., 2023, Vol. 10, no. 29, e2302035. doi:10.1002/advs.202302035.; Lederer W., Dominguez C.A., Popovscaia M., Putz G., Humpel C. Cerebrospinal fluid levels of tau and phospho-tau-181 proteins during pregnancy. Pregnancy Hypertens. 2016, Vol. 64, pp. 384-387. doi:10.1016/j.preghy.2016.08.243.; Leuzy A., Mattsson-Carlgren N., Palmqvist S., Janelidze S., Dage J.L., Hansson O. Blood-based biomarkers for Alzheimer's disease. E.M.B.O. Mol. Med., 2022, Vol. 14, no. 1, e14408. doi:10.15252/emmm.202114408.; Li L., Lou W., Li H., Zhu Y., Huang X. Upregulated C-C Motif chemokine ligand 2 promotes ischemic stroke via chemokine signaling pathway. Ann. Vasc. Surg., 2020, Vol. 68, pp. 476-486. doi:10.1016/j.avsg.2020.04.047.; Lin Z., Shi J.L., Chen M., Zheng Z.M., Li M.Q., Shao J. CCL2: An important cytokine in normal and pathological pregnancies: A review. Front. Immunol., 2023, Vol. 13, 1053457. doi:10.3389/fimmu.2022.1053457.; Medegan Fagla B., Buhimschi I.A. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules, 2024, Vol. 29, no. 3, 610. doi:10.3390/molecules29030610.; Mysona B.A., Zhao J., Smith S., Bollinger K.E. Relationship between Sigma-1 receptor and BDNF in the visual system. Exp. Eye. Res., 2018, Vol. 167, pp. 25-30. doi:10.1016/j.exer.2017.10.012.; Nakamura A., Kaneko N., Villemagne V.L., Kato T., Doecke J., Doré V., Fowler C., Li Q.X., Martins R., Rowe C., Tomita T., Matsuzaki K., Ishii K., Ishii K., Arahata Y., Iwamoto S., Ito K., Tanaka K., Masters C.L., Yanagisawa K. High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature, 2018, Vol. 554, pp. 249-254. doi:10.1038/nature25456.; Nakashima A., Shima T., Aoki A., Kawaguchi M., Yasuda I., Tsuda S., Yoneda S., Yamaki-Ushijima A., Cheng S., Sharma S., Saito S. Placental autophagy failure: A risk factor for preeclampsia. J. Obstet. Gynaecol. Res., 2020, Vol. 46, no. 12, pp. 2497-2504. doi:10.1111/jog.14489.; O'Neal M.A. Women and the risk of Alzheimer's disease. Front. Glob. Womens Health, 2024, Vol. 4, 1324522. doi:10.3389/fgwh.2023.1324522.; Oeckl P., Halbgebauer S., Anderl-Straub S., Steinacker P., Huss A.M., Neugebauer H., von Arnim C.A.F., Diehl-Schmid J., Grimmer T., Kornhuber J., Lewczuk P., Danek A. Consortium for Frontotemporal Lobar Degeneration German; Ludolph AC, Otto M. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer's Disease and Correlates with Cognitive Impairment. J. Alzheimers Dis., 2019, Vol. 67, no. 2, pp. 481-488. doi:10.3233/JAD-180325.; Palmqvist S., Tideman P., Mattsson-Carlgren N., Schindler S.E., Smith R., Ossenkoppele R., Calling S., West T., Monane M., Verghese P.B., Braunstein J.B., Blennow K., Janelidze S., Stomrud E., Salvadó G., Hansson O. Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care. JAMA. 2024, e2413855. doi:10.1001/jama.2024.13855.; Pawelec P., Ziemka-Nalecz M., Sypecka J., Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells, 2020, Vol. 9, no. 10, 2277. doi:10.3390/cells9102277.; Poon L.C., Nguyen-Hoang L., Smith G.N., Bergman L., O'Brien P., Hod M., Okong P., Kapur A., Maxwell C.V., McIntyre H.D., Jacobsson B., Algurjia E., Hanson M.A., Rosser M.L., Ma R.C., O'Reilly S.L., Regan L., Adam S., Medina V.P., McAuliffe F.M.; FIGO Committee on Impact of Pregnancy on Long-term Health and the FIGO Division of Maternal and Newborn Health. Hypertensive disorders of pregnancy and long-term cardiovascular health: FIGO Best Practice Advice. Int. J. Gynaecol. Obstet., 2023, Vol. 160, no. 1, pp. 22-34. doi:10.1002/ijgo.14540. PMID: 36635079.; Qiu C., Li Z., Leigh D.A., Duan B., Stucky J.E., Kim N., Xie G., Lu K.P., Zhou X.Z. The role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front. Cell Dev. Biol., 2024, Vol. 12, 1343962. doi:10.3389/fcell.2024.1343962.; Ryu S., Liu X., Guo T., Guo Z., Zhang J., Cao Y.Q. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain. 2023, Vol. 146, no. 10, pp. 4274-4291. doi:10.1093/brain/awad191; Samara A., Herlenius E., O' Brien P., Khalil A. Potential role of neurofilament in COVID-19 and preeclampsia. Cell. Rep. Med., 2022, Vol. 3, no. 1, 100490. doi:10.1016/j.xcrm.2021.100490.; Santaella A., Kuiperij H.B., van Rumund A., Esselink R.A.J., van Gool A.J., Bloem B.R., Verbeek M.M. Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson's disease. N.P.J. Parkinsons Dis., 2020, Vol. 6, 21. doi:10.1038/s41531-020-00124-z.; Schindler S.E., Bollinger J.G., Ovod V., Mawuenyega K.G., Li Y., Gordon B.A., Holtzman D.M., Morris J.C., Benzinger T.L.S., Xiong C., Fagan A.M., Bateman R.J. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019, Vol. 93, no. 17, e1647-e1659. doi:10.1212/WNL.0000000000008081.; Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int, Immunopharmacol., 2021, Vol. 101, 107598. doi:10.1016/j.intimp.2021.107598.; Szewczyk G., Pyzlak M., Pankiewicz K., Szczerba E., Stangret A., Szukiewicz D, Skoda M., Bierła J., Cukrowska B., Fijałkowska A. The potential association between a new angiogenic marker fractalkine and a placental vascularization in preeclampsia. Arch. Gynecol. Obstet., 2021, Vol. 304, no. 2, pp. 365-376. doi:10.1007/s00404-021-05966-3.; Tan Z., Jiang J., Tian F., Peng J., Yang Z., Li S., Long X. Serum Visinin-Like Protein 1 Is a Better Biomarker Than Neuron-Specific Enolase for Seizure-Induced Neuronal Injury: A Prospective and Observational Study. Front. Neurol., 2020, Vol. 11, 567587. doi:10.3389/fneur.2020.567587.; Tikhonova M.A., Shvaikovskaya A.A., Zhanaeva S.Y., Moysak G.I., Akopyan A.A., Rzaev J.A., Danilenko K.V., Aftanas L.I. Concordance between the In Vivo Content of Neurospecific Proteins (BDNF, NSE, VILIP-1, S100B) in the Hippocampus and Blood in Patients with Epilepsy. Int. J. Mol. Sci., 2023, Vol. 25, no. 1, 502. doi:10.3390/ijms25010502.; Ullah A., Zhao J., Singla R.K., Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front. Cell. Dev. Biol., 2023, Vol. 11, 1272536. doi:10.3389/fcell.2023.1272536.; Vafaei H., Faraji S., Ahmadi M., Tabei S.M.B., Fereidoni S., Shiravani Z., Hosseini S.N., Asadi N., Kasraeian M., Faraji A., Abbasi O., Gharesi-Fard B. Alteration in IFN-γ and CCL2 serum levels at first trimester of pregnancy contribute to development of preeclampsia and fetal growth restriction. Taiwan J. Obstet. Gynecol., 2023, Vol. 62, no. 1, pp. 71-76. doi:10.1016/j.tjog.2022.09.005.; Walsh S.W., Nugent W.H., Archer K.J., Dulaimi M. A.L., Washington S.L., Strauss J.F. Epigenetic regulation of interleukin-17-related genes and their potential roles in neutrophil vascular infiltration in preeclampsia. Reprod. Sci., 2022, Vol. 29, no. 1, pp. 154-162. doi:10.1007/s43032-021-00605-3.; Wang X., Shi Z., Qiu Y., Sun D., Zhou H. Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank. B.M.C. Med., 2024, Vol. 22, no. 1, 192. doi:10.1186/s12916-024-03418-8.; Wang Y., Guo B., Zhao K., Yang L., Chen T. Correlation between cognitive impairment and serum phosphorylated tau181 protein in patients with preeclampsia. Front. Aging Neurosci., 2023, Vol. 15, 1148518. doi:10.3389/fnagi.2023.1148518.; Yang Y., Arseni D., Zhang W., Huang M., Lövestam S., Schweighauser M., Kotecha A., Murzin A.G., Peak-Chew S.Y., Macdonald J., Lavenir I., Garringer H.J., Gelpi E., Newell K.L., Kovacs G.G., Vidal R., Ghetti B., Ryskeldi-Falcon B., Scheres S.H.W., Goedert M. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022, Vol. 375, no. 6577, pp. 167-172. doi:10.1126/science.abm7285.; Youn Y.C. Blood amyloid-β oligomerization as a biomarker of Alzheimer's Disease: A blinded validation study. J. Alzheimers Dis. 2020, Vol. 75, pp. 493-499. doi:10.3233/JAD-200061.; Yuan A., Rao M.V., Nixon R.A. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb. Perspect. Biol., 2017, Vol. 9, no. 4, a018309. doi:10.1101/cshperspect.a018309.; Zlotnik A., Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000, Vol. 12, pp. 121-127. doi:10.1016/s1074-7613(00)80165-x.; https://www.mimmun.ru/mimmun/article/view/3169

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Ophthalmology in Russia; Том 21, № 2 (2024); 256-263 ; Офтальмология; Том 21, № 2 (2024); 256-263 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-2

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2354/1210; Flaxman SR, Bourne RRA., Resnikoff S. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990‑2020: a systematic review and meta‑analysis. The Lancet Global Health. 2017:5(12):1221–1234. doi:10.1016/S2214‑109X(17)30393‑5.; Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic. Epidemiology. 2007:14(4):179–183. doi:10.1080/09286580701396720.; Yau JW, Rogers SL, Kawasaki R, Lamoureux EL. Meta‑Analysis for Eye Disease (META‑EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012:35(3):556–564. doi:.10.2337/dc11‑1909.; IDF DIABETES ATLAS Ninth edition 2019. Accessed July 25, 2021. https://www.diabetesatlas.org; Porta M, Kohner E Screening for diabetic retinopathy in Europe. Diabetic Medicine. 1991:8(3):197–198.; Дедов И.И., Шестакова М.В., Майоров А.Ю. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Сахарный диабет. 2019: 22(S1‑1):1–144.; Гацу М.В., Балашевич Л.И. Классификация диабетических ретинопатий. Офтальмологические ведомости. 2009:2(4):52–58.; Biallosterski C, van Velthoven MEJ, Michels RPJ. Decreased optical coherence tomography‑measured pericentral retinal thickness in patients with diabetes mellitus type 1 with minimal diabetic retinopathy. British Journal of Ophthalmology. 2007:91(9):1135–1138. doi:10.1136/bjo.2006.111534.; van Dijk HW, Kok PH, Garvin M. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Investigative Ophthalmology and Visual Science. 2009:50(7): 3404–3409. doi:10.1167/iovs.08‑3143.; Филиппов В.М., Петрачков Д.В., Будзинская М.В., Сидамонидзе А.Л. Современные концепции патогенеза диабетической ретинопатии. Вестник офтальмологии. 2021;137(5):306–313.; Ljubimov AV, Burgeson RE, Butkowski RJ. Basement membrane abnormalities in human eyes with diabetic retinopathy. The Journal of Histochemistry and Cytochemistry. 1996:44(12):1469–1479. doi:10.1177/44.12.8985139.; Hammes HP. Pericytes and the pathogenesis of diabetic retinopathy. Hormone and Metabolic Research. 2005:37(Suppl 1):39–43. doi:10.1055/s‑2005‑861361.; Heng LZ, Comyn O, Peto T. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabetic Medicine. 2013:30(6):640–650. doi:10.1111/dme.12089.; Gardiner TA, Archer DB, Curtis TM. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogen esis. Microcirculation. 2007:14(1):25–38. doi:10.1080/10739680601072123.; Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinop athy: clues towards understanding pathogenesis? Eye. 2009:23(7):1496–1508. doi:10.1038/eye.2009.108.; Barber AJ, Lieth E, Khin SA. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. The Journal of Clinical Investigation. 1998:102(4):783–791. doi:10.1172/JCI2425.; Lieth E, Gardner TW, Barber AJ. Penn State Retina Research Group. Retinal neuro‑degeneration: early pathology in diabetes. Clinical and Experimental Ophthalmology. 2000:28(1):3–8. doi:10.1046/j.1442‑9071.2000.00222.x.; Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuro‑Psych Biol Psych. 2003:27(2):283–290. doi:10.1016/S0278‑5846(03)00023‑X.; Antonetti DA, Barber AJ, Bronson SK. JDRF Diabetic Retinopathy Center Group. Diabetic Retinopathy: Seeing Beyond Glucose‑Induced Mi crovascular Disease. Diabetes. 2006:55(9):2401–2411. doi:10.2337/db05‑1635.; Barber AJ. Diabetic retinopathy: recent advances towards understanding neurode‑generation and vision loss. Science China. Life Sciences. 2015:58(6):541–549. doi:10.1007/s11427‑015‑4856‑x.; Сайдашева Э.И. Применение Ретиналамина при диабетической ретинопатии. Фарматека. 2008;157(3):52–54.; Миленькая Т.М., Ищенко И.М. Применение препарата Ретиналамин® у больных с диабетической ретинопатией. Эффективная фармакотерапия в эндокринологии. 2009;6:18–22.; Малышева Н.А., Россохин В.Ф. Использование ретиналамина на ранней стадии лечения непролиферативной диабетической ретинопатии у детей с сахарным диабетом 1‑го типа. Современные технологии в медицине. 2011;3:160–162.; Азнабаев Б.М., Габдрахманова А.Ф., Мухамадеев Т.Р. Офтальмонейропротекция при непролиферативной диабетической ретинопатии и гемодинамика глаза. РМЖ. Клиническая офтальмология. 2014;15(2):71.; Егоров Е.А. Опыт применения Ретиналамина при различных офтальмологических заболеваниях. Российский медицинский журнал. Клиническая офтальмология. 2017;1:35–38.; Плащевой В.В. Изучение свойств ретиналамина при диабетической ретинопатии у пациентов больных сахарным диабетом. Тенденции развития науки и образования. 2020;12:66–68.; Lau J.L., Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & Medicinal Chemistry. 2018:26:2700–2707. doi:10.1016/j.bmc.2017.06.052.; Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discovery Today. 2015:20(1):122–128. doi:10.1016/j.drudis.2014.10.003.; Хасанова Н.Х., Беляева А.В. Результаты применения Ретиналамина при заболеваниях сетчатки. Российский медицинский журнал. Клиническая офтальмология. 2008;9(3):77–82.; Егоров Е.А., Оганезова Ж.Г., Егорова Т.Е. Возможности применения Ретиналамина в терапии дистрофических заболеваний глаза (обзор клинических исследований). Российский медицинский журнал. Клиническая офтальмология. 2009;10(2):57–58. Egorov EA, Oganezova ZhG, Egorova TE. Possibilities of Retinalamin usage in treatment of dystrophic eye diseases (literary review). Russian Medical Journal. Clinical Ophthalmology. 2009:10(2):57–58 (In Russ.).; Еричев В.П., Петров С.Ю., Волжанин А.В. Метаанализ клинических исследований эффективности ретинопротекторной терапии «сухой» формы ВМД с применением препарата Ретиналамин® по динамике остроты зрения. Российский медицинский журнал. Клиническая офтальмология. 2017;4:219–226.; Верлов Н.А., Доротенко А.Р., Гулина Л.С. Исследование лигандрецепторного взаимодействия и биораспределения при различных режимах введения лекарственного средства, содержащего полипептиды сетчатки глаз скота. Вестник офтальмологии. 2021;137(5):88–95.; Даниличев В.Ф., Максимов И.Б. Травмы и заболевания глаз: применение ферментов и пептидных биорегуляторов. Минск: Наука и техника; 1994; 223 с. Danilichev VF, Maximov IB. Eye injuries and diseases: the use of enzymes and peptide bioregulators. Minsk: Science and Technology 1994: 223 p. (in Russ).; Максимов И.Б., Нероев В.В., Алексеев В.Н. Применение препарата ретиналамин в офтальмологии. СПб: Наука; 2007; 160 с.; https://www.ophthalmojournal.com/opht/article/view/2354

  10. 10
    Academic Journal

    Contributors: The article is sponsored by Eisai, Статья спонсируется компанией «Эйсай»

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 5 (2024); 111-119 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 5 (2024); 111-119 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-5

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2391/1744; Prince M, Prina M, Guerchet M. The world Alzheimer's report 2013. Journey of caring: an analysis of long-term care for dementia. Available at: https://www.alz.co.uk/research/worldalzheimerreport2013.pdf; Saxena S. Dementia world report: a public health priority. Geneva, Switzerland: World Health Organization; 2012.; Wimo A, Prince M. The world Alzheimer's report 2010: the global impact of dementia. Alzheimer's disease International. Available at: https://www.alz.org.documents/national/world_alzeimer_report_2010.pdf; Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013 May 7;80(19):1778-83. doi:10.1212/WNL.0b013e31828726f5. Epub 2013 Feb 6.; Поликарпов АВ, Александрова ГА, Голубев НА и др. Общая заболеваемость взрослого населения России в 2017 году. Часть 4. М.; 2018. Доступно по ссылке: https://minzdrav.gov.ru/ministry/61/22/stranitsa-979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2017-god; Парфенов ВА. Ведение пациентов с когнитивными нарушениями. Неврология, нейропсихиатрия, психосоматика. 2023;15(1):97-102. doi:10.14412/2074-27112023-1-97-102; Яхно НН, Ткачева ОН, Гаврилова СИ и др. Комплексная междисциплинарная и межведомственная программа профилактики, раннего выявления, диагностики и лечения когнитивных расстройств у лиц пожилого и старческого возраста. Российский журнал гериатрической медицины. 2022;(1):6-16. doi:10.37586/2686-8636-1-2022-6-16; American Psychiartic Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington: American Psychiatric Association, 2013. xliv, 947 p.; Jack CR Jr, Bennett DA, Blennow K, et al; Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018 Apr;14(4):53562. doi:10.1016/j.jalz.2018.02.018; Dubois B, Villain N, Frisoni GB, et al. Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. Lancet Neurol. 2021 Jun;20(6):484-96. doi:10.1016/S1474-4422(21)00066-1. Epub 2021 Apr 29.; Buschke H. Cued recall in amnesia. J Clin Neuropsychol. 1984 Nov;6(4):433-40. doi:10.1080/01688638408401233; Grober E, Buschke H. Genuine memory deficits in dementia. Dev Neuropsychol. 1987;3:13-36.; Ivnik RJ, Smith GE, Lucas JA, et al. Free and cued selective reminding test: MOANS norms. J Clin Exp Neuropsychol. 1997 Oct;19(5):676-91. doi:10.1080/01688639708403753; Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004 Mar;55(3):335-46. doi:10.1002/ana.10825; Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011 Mar 15;76(11):1006-14. doi:10.1212/WNL.0b013e31821103e6. Epub 2011 Feb 16.; Schott JM, Crutch SJ. Posterior Cortical Atrophy. Continuum (Minneap Minn). 2019 Feb;25(1):52-75. doi:10.1212/CON.0000000000000696; Crutch SJ, Schott JM, Rabinovici GD, et al. Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017 Aug;13(8):870-84. doi:10.1016/j.jalz.2017.01.014. Epub 2017 Mar 2.; Lehingue E, Gueniat J, Jourdaa S, et al. Improving the Diagnosis of the Frontal Variant of Alzheimer's Disease with the DAPHNE Scale. J Alzheimers Dis. 2021;79(4):1735-45. doi:10.3233/JAD-201088; Mathew R, Bak TH, Hodges JR. Diagnostic criteria for corticobasal syndrome: a comparative study. J Neurol Neurosurg Psychiatry. 2012 Apr;83(4):405-10. doi:10.1136/jnnp-2011300875. Epub 2011 Oct 21.; Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi:10.1111/j.1532-5415.2005.53221.x. Erratum in: J Am Geriatr Soc. 2019 Sep;67(9):1991. doi:10.1111/jgs.15925; Гуторова ДА, Васенина ЕЕ, Левин ОС. Скрининг когнитивных нарушений у лиц пожилого и старческого возраста с помощью шкалы 3-КТ. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2016;116(6-2):35-40. doi:10.17116/jnevro20161166235-40; Borson S, Scanlan J, Brush M, et al. The Mini-Cog: a cognitive 'vital signs' measure for dementia screening in multi-lingual elderly. Int J Geriatr Psychiatry. 2000 Nov;15(11):1021-7. doi:10.1002/10991166(200011)15:113.0.co;2-6; Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992 Apr 10;256(5054):184-5. doi:10.1126/science.1566067; Frisoni GB, Altomare D, Thal DR, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022 Jan;23(1):53-66. doi:10.1038/s41583-021-00533-w. Epub 2021 Nov 23.; Левин ОС, Васенина ЕЕ. 25 лет амилоидной гипотезе происхождения болезни Альцгеймера: достижения, неудачи и новые перспективы. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2016;116(6-2):3-9. doi:10.17116/jnevro2016116623-9; Ebenau JL, Timmers T, Wesselman LMP, et al. ATN classification and clinical progression in subjective cognitive decline: The SCIENCe project. Neurology. 2020 Jul 7;95(1):e46-e58. doi:10.1212/WNL.0000000000009724. Epub 2020 Jun 10.; Шевцова КВ, Рожков ДО, Гришина ДА и др. Биологические маркеры болезни Альцгеймера в цереброспинальной жидкости: клинико-лабораторные сопоставления. Неврология, нейропсихиатрия, психосоматика. 2024;16(3):96-102. doi:10.14412/20742711-2024-3-96-102; Парфенов ВА, Гришина ДА, Тюрина АЮ. Болезнь Альцгеймера: диагностика и лечение, ошибки при ведении пациентов. Неврология, нейропсихиатрия, психосоматика. 2024;16(2):95-100. doi:10.14412/20742711-2024-2-95-100; Гришина ДА, Хаялиева НА, Гринюк ВВ, Тюрина АЮ. Диагностика болезни Альцгеймера с использованием биологических маркеров при синдроме задней корковой атрофии. Неврология, нейропсихиатрия, психосоматика. 2024;16(2):47-53. doi:10.14412/2074-2711-2024-2-47-53; Лобзин ВЮ, Емелин АЮ, Одинак ММ и др. Значение определения белков-маркеров амилоидоза и нейродегенерации в цереброспинальной жидкости в диагностике когнитивных расстройств сосудистого и нейродегенеративного генеза. Неврология, нейропсихиатрия, психосоматика. 2013;5(4):21-7. doi:10.14412/2074-2711-2013-2450; Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992 Oct;55(10):967-72. doi:10.1136/jnnp.55.10.967; Xiong X, He H, Ye Q, et al. Alzheimer's disease diagnostic accuracy by fluid and neuroimaging ATN framework. CNS Neurosci Ther. 2024 Feb;30(2):e14357. doi:10.1111/cns.14357. Epub 2023 Jul 12.; Литвиненко ИВ, Емелин АЮ, Лобзин ВЮ, Колмакова КА. Нейровизуализационные методы диагностики болезни Альцгеймера и цереброваскулярных заболеваний, сопровождающихся когнитивными нарушениями. Неврология, нейропсихиатрия, психосоматика. 2019;11(3S):18-25. doi:10.14412/2074-2711-2019-3S-18-25; Caminiti SP, Ballarini T, Sala A, et al; BIOMARKAPD Project. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin. 2018 Jan 28;18:167-77. doi:10.1016/j.nicl.2018.01.019; Levin F, Ferreira D, Lange C, et al; Alzheimer's Disease Neuroimaging Initiative. Data-driven FDG-PET subtypes of Alzheimer's disease-related neurodegeneration. Alzheimers Res Ther. 2021 Feb 19;13(1):49. doi:10.1186/s13195-021-00785-9; Briggs R, Kennelly SP, O'Neill D. Drug treatments in Alzheimer's disease. Clin Med (Lond). 2016 Jun;16(3):247-53. doi:10.7861/clinmedicine.16-3-247; Raschetti R, Albanese E, Vanacore N, Maggini M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007 Nov 27;4(11):e338. doi:10.1371/journal.pmed.0040338; Atri A. Current and Future Treatments in Alzheimer's Disease. Semin Neurol. 2019 Apr;39(2):227-40. doi:10.1055/s-00391678581. Epub 2019 Mar 29.; Громова ДО. Новое в терапии болезни Альцгеймера. Поведенческая неврология. 2021;(2):48-55. doi:10.46393/2712-9675_2021_2_48_55; Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid- on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer's disease. Ageing Res Rev. 2021 Jul;68:101339. doi:10.1016/j.arr.2021.101339. Epub 2021 Apr 5.; Van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer's Disease. N Engl J Med. 2023 Jan 5;388(1):9-21. doi:10.1056/NEJMoa2212948. Epub 2022 Nov 29.

  11. 11
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 12 (2024); 15–20 ; Медицинский Совет; № 12 (2024); 15–20 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8460/7438; Kario K, Okura A, Hoshide S, Mogi M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens Res. 2024;47(5):1099–1102. https://doi.org/10.1038/s41440-024-01622-w.; Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming ImmuneDriven Theory in Full Effect. Int J Mol Sci. 2021;22(7):3451. https://doi.org/10.3390/ijms22073451.; Путилина МВ. Современные представления о болезни мелких сосудов головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(11):65–73. https://doi.org/10.17116/jnevro201911911165.; Meissner A. Hypertension and the Brain: A Risk Factor for More Than Heart Disease. Cerebrovasc Dis. 2016;42(3-4):255–262. https://doi.org/10.1159/000446082.; Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG et al. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci. 2022;23(5):2445. https://doi.org/10.3390/ijms23052445.; Missonnier A, L’Allinec V, Constant Dit Beaufils P, Autrusseau F, Nouri A, Karakachoff M et al. Effects of induced arterial hypertension for vasospasm on unruptured and unsecured cerebral aneurysms (growth and rupture). A retrospective case-control study. J Stroke Cerebrovasc Dis. 2024;33(8):107775. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107775.; Путилина МВ. Эндотелий – мишень для новых терапевтических стратегий при сосудистых заболеваниях головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017;117(10):122–130. https://doi.org/10.17116/jnevro2017117101122-130.; Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev. 2016;68(1):142–167. https://doi.org/10.1124/pr.114.010090.; Zhou Y, Little PJ, Downey L, Afroz R, Wu Y, Ta HT e al. The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacol Transl Sci. 2020;3(3):457–471. https://doi.org/10.1021/acsptsci.9b00100.; Kelly DM, Rothwell PM. Blood pressure and the brain: the neurology of hypertension. Pract Neurol. 2020;20(2):100–108. https://doi.org/10.1136/practneurol-2019-002269.; Choe YM, Baek H, Choi HJ, Byun MS, Yi D, Sohn BK et al. Association Between Enlarged Perivascular Spaces and Cognition in a Memory Clinic Population. Neurology. 2022;99(13):e1414–e1421. https://doi.org/10.1212/WNL.0000000000200910.; Shoamanesh A, Preis SR, Beiser AS, Vasan RS, Benjamin EJ, Kase CS et al. Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study. Neurology. 2015;84(8):825–832. https://doi.org/10.1212/WNL.0000000000001279.; Москалец ОВ. Молекулы клеточной адгезии ICAM-1 и VCAM-1 при инфекционной патологии. Тихоокеанский медицинский журнал. 2018;(2):21–25. https://doi.org/10.17238/PmJ1609-1175.2018.2.21-25.; Arce Rentería M, Gillett SR, McClure LA, Wadley VG, Glasser SP, Howard VJ et al. C-reactive protein and risk of cognitive decline: The REGARDS study. PLoS ONE. 2020;15(12):e0244612. https://doi.org/10.1371/journal.pone.0244612.; Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment. Chin Med J (Engl). 2018;131(5):615–619. https://doi.org/10.4103/0366-6999.226069.; Путилина МВ. Роль артериальной гипертензии в развитии хронического нарушения мозгового кровообращения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014;114(9):124–128. Режим доступа: https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-ims-s-korsakova/2014/9/031997-72982014923.; Soun JE, Song JW, Romero JM, Schaefer PW. Central Nervous System Vasculopathies. Radiol Clin North Am. 2019;57(6):1117–1131. https://doi.org/10.1016/j.rcl.2019.07.005.; Путилина МВ, Вечорко ВИ, Гришин ДВ, Сидельникова ЛВ. Острые нарушения мозгового кровообращения, ассоциированные с короновирусной инфекцией SARS-CoV-2 (COVID-19). Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(12):109–117. https://doi.org/10.17116/jnevro2020120121109.; Goenka L, Uppugunduri Satyanarayana CR, Sureh SK, George M. Neuroprotective agents in Acute Ischemic Stroke – A Reality Check. Biomed Pharmacother. 2019;109:2539–2547. https://doi.org/10.1016/j.biopha.2018.11.041.; Golanov EV, Regnier-Golanov AS, Britz GW. Multifactorial neuroprotection: Does the brain have an answer? Cond Med. 2019;(2):75–89. Available at: http://www.conditionmed.org/Data/View/4573.; Lyden PD. Cerebroprotection for Acute Ischemic Stroke: Looking Ahead. Stroke. 2021;52(9):3033–3044. https://doi.org/10.1161/STROKEAHA.121.032241.; Tanaka M, Vécsei L. Editorial of Special Issue ‘Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection’. Int J Mol Sci. 2022;23(13):6991. https://doi.org/10.3390/ijms23136991.; Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS et al. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res. 2023;119(3):647–667. https://doi.org/10.1093/cvr/cvac110.; Narita K, Hoshide S, Kario K. Polypill Therapy for Cardiovascular Disease Prevention and Combination Medication Therapy for Hypertension Management. J Clin Med. 2023;12(23):7226. https://doi.org/10.3390/jcm12237226.; Castellano JM, Pocock SJ, Bhatt DL, Quesada AJ, Owen R, Fernandez-Ortiz A et al. Polypill Strategy in Secondary Cardiovascular Prevention. N Engl J Med. 2022;387(11):967–977. https://doi.org/10.1056/NEJMoa2208275.; Путилина МВ. Особенности комбинированной нейропротекторной терапии острых нарушений мозгового кровообращения. РМЖ. 2009;(4):261–266. Режим доступа: https://www.rmj.ru/articles/nevrologiya/Osobennosti_kombinirovannoy__neyroprotektornoy_terapii_ostryh__narusheniy_mozgovogo_krovoobrascheniya/.; Błaszczyk B, Miziak B, Czuczwar P, Wierzchowska-Cioch E, Pluta R, Czuczwar SJ. A viewpoint on rational and irrational fixed-drug combinations. Expert Rev Clin Pharmacol. 2018;11(8):761–771. https://doi.org/10.1080/17512433.2018.1500895.; Choi YH, Zhang C, Liu Z, Tu MJ, Yu AX, Yu AM. A Novel Integrated Pharmacokinetic-Pharmacodynamic Model to Evaluate Combination Therapy and Determine In Vivo Synergism. J Pharmacol Exp Ther. 2021;377(3):305–315. https://doi.org/10.1124/jpet.121.000584.; Kabir MT, Uddin MS, Mamun AA, Jeandet P, Aleya L, Mansouri RA et al. Combination Drug Therapy for the Management of Alzheimer’s Disease. Int J Mol Sci. 2020;21(9):3272. https://doi.org/10.3390/ijms21093272.; Mathieson S, Kasch R, Maher CG, Pinto RZ, McLachlan AJ, Koes BW, Lin CWC. Combination drug therapy for low back pain. Cochrane Database Syst Rev. 2019;(6):CD011982. https://doi.org/10.1002/14651858.CD011982.pub2.; Godman B, McCabe H, Leong TD. Fixed dose drug combinations – are they pharmacoeconomically sound? Findings and implications especially for lower- and middle-income countries. Expert Rev Pharmacoecon Outcomes Res. 2020;20(1):1–26. https://doi.org/10.1080/14737167.2020.1734456.; Федин АИ, Старых ЕП, Путилина МВ, Старых ЕВ, Миронова ОП, Бадалян КР. Эндотелиальная дисфункция у больных с хронической ишемией мозга и возможности ее фармакологической коррекции. Лечащий врач. 2015;(5):15–18. Режим доступа: https://www.lvrach.ru/2015/05/15436219.; Захаров ВВ, Бородулина ИВ, Вахнина НВ. Лечение больных с хронической ишемией головного мозга: опыт применения комбинированного нейропротективного препарата Пикамилон Гинкго. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(9):95–103. https://doi.org/10.17116/jnevro202212209195.; Noor-E-Tabassum, Das R, Lami MS, Chakraborty AJ, Mitra S, Tallei TE et al. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. Evid Based Complement Alternat Med. 2022:8288818. https://doi.org/10.1155/2022/8288818.; Abdel-Zaher AO, Farghaly HSM, El-Refaiy AEM, Abd-Eldayem AM. Protective effect of the standardized extract of ginkgo biloba (EGb761) against hypertension with hypercholesterolemia-induced renal injury in rats: Insights in the underlying mechanisms. Biomed Pharmacother. 2017;95:944–955. https://doi.org/10.1016/j.biopha.2017.08.078.; Aziz TA, Hussain SA, Mahwi TO, Ahmed ZA, Rahman HS, Rasedee A. The efficacy and safety of Ginkgo biloba extract as an adjuvant in type 2 diabetes mellitus patients ineffectively managed with metformin: a double-blind, randomized, placebo-controlled trial. Drug Des Devel Ther. 2018;12:735–742. https://doi.org/10.2147/DDDT.S157113.; Митрохин КВ, Баранишин АА. Классификация и краткое описание лекарственных препаратов – аналогов производных гамма-аминомасляной кислоты и токсических веществ, влияющих на ГАМК-ергическую связь. Анестезиология и реаниматология. 2018;(6):22–30. https://doi.org/10.17116/anaesthesiology201806122.; Смирнова АА, Живолупов СА. Патогенетические механизмы когнитивных нарушений при цереброваскулярной патологии и перспективы их коррекции с помощью ноотропных и нейропротекторных средств. Медицинский совет. 2023;(6):85–93. https://doi.org/10.21518/ms2023-099.; Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci. 2019;20(4):974. https://doi.org/10.3390/ijms20040974.; Громова ОА, Торшин ИЮ, Семенов ВА, Путилина МВ, Чучалин АГ. О прямых и косвенных неврологических проявлениях COVID-19. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(11):11–21. https://doi.org/10.17116/jnevro202012011111.; Путилина МВ. Особенности терапии астенических расстройств. Consilium Medicum. Неврология (Прил.). 2010;(1):30–35. Режим доступа: https://omnidoctor.ru/library/izdaniya-dlya-vrachey/consilium-medicum/cm2010/nevro2010_pril/nevro2010_1_pril/osobennosti-terapiiastenicheskikh-rasstroystv/.; Malík M, Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients. 2022;14(16):3367. https://doi.org/10.3390/nu14163367.

  12. 12
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 9, № 3 (2024); 90-94 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4818/2790; Geschwind MD. Prion diseases. Continuum (Minneap Minn). 2015; 21: 1612-1638. doi:10.1212/CON.0000000000000251; Appleby BS, Shetty S, Elkasaby M. Genetic aspects of human prion diseases. Front Neurol. 2022; 13: 1003056. doi:10.3389/fneur.2022.1003056; Crocco L, Appleby BS, Gambetti P. Fatal familial insomnia and sporadic insomnia with fatal outcome. Handb Clin Neurol. 2018; (153): 271-299. doi:10.1016/B978-0-444-63945-5.00015-5; Rodriguez-Porcel F, Ciarlariello VB, Dwivedi AK, Lovera L, Da Prat G, Lopez-Castellanos R, et al. Movement disorders in prionopathies: A systematic review. Tremor Other Hyperkinet Mov (NY). 2019; 9. doi:10.5334/tohm.512; Baldelli L, Provini F. Fatal familial insomnia and agrypnia excitata: Autonomic dysfunctions and pathophysiological implications. Auton Neurosci. 2019; 218: 68-86. doi:10.1016/j.autneu.2019.02.007; Xie K, Chen Y, Chu M, Cui Y, Chen Z, Zhang J, et al. Specific structuro-metabolic pattern of thalamic subnuclei in fatal familial insomnia: A PET/MRI imaging study. Neuroimage Clin. 2022; 34: 103026. doi:10.1016/j.nicl.2022.103026; Goldman JS, Vallabh SM. Genetic counseling for prion disease: Updates and best practices. Genet Med. 2022; 24(10): 1993-2003. doi:10.1016/j.gim.2022.06.003; Wu L, Lu H, Wang X, Liu J, Huang C, Ye J, et al. Clinical features and sleep analysis of Chinese patients with fatal familial insomnia. Sci Rep. 2017; 7(1): 36-25. doi:10.1038/s41598-017-03817-3; Chu M, Xie K, Zhang J, Chen Z, Gorayeb I, Ruprecht S, et al. Proposal of new diagnostic criteria for fatal familial insomnia. J Neurol. 2022; 269(9): 4909-4919. doi:10.1007/s00415-022-11135-6; https://www.actabiomedica.ru/jour/article/view/4818

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/14334

  18. 18
    Academic Journal

    Contributors: The authors are grateful to the Multi-Access Center “Bioinformatics” for access to computing resources under Project FWNR2022-0020 and the Multi-Access Center “Conventional Animal Facility” for access to animals under Projects FWNR-2022-0019 and FWNR-2022-0015.

    Source: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 794-806 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 794-806 ; 2500-3259 ; 10.18699/VJGB-23-83

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3979/1766; Aikawa H., Nonaka I., Woo M., Tsugane T., Esaki K. Shaking rat Kawasaki (SRK): a new neurological mutant rat in the Wistar strain. Acta Neuropathol. 1988;76:366-372. DOI 10.1007/BF00686973; Albert F.W., Somel M., Carneiro M., Aximu-Petri A., Halbwax M., Thalmann O., Blanco-Aguiar J.A., Plyusnina I.Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Paabo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet. 2012;8(9):e1002962. DOI 10.1371/journal.pgen.1002962; Ashraf U.M., Mell B., Jose P.A., Kumarasamy S. Deep transcriptomic profiling of Dahl salt-sensitive rat kidneys with mutant form of Resp18. Biochem. Biophys. Res. Commun. 2021;572:35-40. DOI 10.1016/j.bbrc.2021.07.071; Barykina N.N., Chepkasov I.L., Alekhina T.A., Kolpakov V.G. Selection of Wistar rats for predisposition to catalepsy. Genetika. 1983; 19(12):2014­2021; Bay V., Happ D.F., Ardalan M., Quist A., Oggiano F., Chumak T., Hansen K., Ding M., Mallard C., Tasker R.A., Wegener G. Flinders sensitive line rats are resistant to infarction following transient occlusion of the middle cerebral artery. Brain Res. 2020;1737:146797. DOI 10.1016/j.brainres.2020.146797; Belyaev D.K., Borodin P.M. The influence of stress on variation and its role in evolution. Biologisches Zentralblatt. 1982;101(6):705-714; Bi J., Huang Y., Liu Y. Effect of NOP2 knockdown on colon cancer cell proliferation, migration, and invasion. Transl. Cancer Res. 2019; 8(6):2274-2283. DOI 10.21037/tcr.2019.09.46; Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55(4):611-622. DOI 10.1373/clinchem.2008.112797; Carter C.S., Richardson A., Huffman D.M., Austad S. Bring back the rat! J. Gerontol. A Biol. Sci. Med. Sci. 2020;75(3):405-415. DOI 10.1093/gerona/glz298; Chadaeva I.V., Ponomarenko M.P., Rasskazov D.A., Sharypova E.B., Kashina E.V., Matveeva M.Y., Arshinova T.V., Ponomarenko P.M., Arkova O.V., Bondar N.P., Savinkova L.K., Kolchanov N.A. Candidate SNP markers of aggressiveness­related complications and co­ morbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2016;17(Suppl.14):995. DOI 10.1186/s12864-016-3353­3; Chadaeva I., Ponomarenko P., Rasskazov D., Sharypova E., Kashina E., Kleshchev M., Ponomarenko M., Naumenko V., Savinkova L., Kolchanov N., Osadchuk L., Osadchuk A. Natural selection equally supports the human tendencies in subordination and domination: a genome­wide study with in silico confirmation and in vivo validation in mice. Front. Genet. 2019;10:73. DOI 10.3389/fgene.2019.00073; Chadaeva I., Ponomarenko P., Kozhemyakina R., Suslov V., Bogomolov A., Klimova N., Shikhevich S., Savinkova L., Oshchepkov D., Kolchanov N., Markel A., Ponomarenko M. Domestication explains two-thirds of differential-gene-expression variance between domestic and wild animals; the remaining one-third reflects intraspecific and interspecific variation. Animals. 2021;11(9):2667. DOI 10.3390/ani11092667; Choi J., Lee S., Won J., Jin Y., Hong Y., Hur T.Y., Kim J.H., Lee S.R., Hong Y. Pathophysiological and neurobehavioral characteristics of a propionic acid­mediated autism­like rat model. PLoS One. 2018; 13(2):e0192925. DOI 10.1371/journal.pone.0192925; Cucielo M.S., Cesario R.C., Silveira H.S., Gaiotte L.B., Dos Santos S.A.A., de Campos Zuccari D.A.P., Seiva F.R.F., Reiter R.J., de Almeida Chuffa L.G. Melatonin reverses the warburg-type metabolism and reduces mitochondrial membrane potential of ovarian cancer cells independent of MT1 receptor activation. Molecules. 2022;27(14):4350. DOI 10.3390/molecules27144350; Du H., Xiao G., Xue Z., Li Z., He S., Du X., Zhou Z., Cao L., Wang Y., Yang J., Wang X., Zhu Y. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt­sensitive rats. Biomed. Pharmacother. 2021;141: 111941. DOI 10.1016/j.biopha.2021.111941; Fedoseeva L.A., Dymshits G.M., Markel A.L., Jakobson G.S. Renin system of the kidney in ISIAH rats with inherited stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2009;147(2):177-180. DOI; 1007/s10517-009-0465-7; Fedoseeva L.A., Riazanova M.A., Antonov E.V., Dymshits G.M., Markel A.L. Expression of the renin angiotensin system genes in the kidney and heart of ISIAH hypertensive rats. Biochem. Moscow Suppl. Ser. B. 2011;5(1):37-43. DOI 10.1134/s1990750811010069; Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. Molecular determinants of the adrenal gland functioning related to stress­sensitive hypertension in ISIAH rats. BMC Genomics. 2016a;17(Suppl.14):989. DOI 10.1186/s12864-016-3354-2; Fedoseeva L.A., Ryazanova M.A., Ershov N.I., Markel A.L., Redina O.E. Comparative transcriptional profiling of renal cortex in rats with inherited stress­induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 2016b;17(Suppl.1):12. DOI 10.1186/s12863-015-0306-9; Fedoseeva L.A., Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Orlov Y.L., Redina O.E. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics. 2019;20(Suppl.3):297. DOI 10.1186/s12864-019-5540­5; Gaitanis J., Nie D., Hou T., Frye R. Developmental regression followed by epilepsy and aggression: a new syndrome in autism spectrum disorder? J. Pers. Med. 2023;13(7):1049. DOI 10.3390/jpm 13071049; Gayday E.A., Gayday D.S. Genetic diversity of experimental mice and rats: history of origin, methods of production and check. Laboratornye Zhivotnye Dlya Nauchnykh Issledovaniy = Laboratory Ani­ mals for Scientific Research. 2019;4:78-85. DOI 10.29296/2618723X-2019-04-09 (in Russian); Gholami K., Loh S.Y., Salleh N., Lam S.K., Hoe S.Z. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS One. 2017;12(6): e0176368. DOI 10.1371/journal.pone.0176368; Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Soder­ gren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., … Peterson J., Guyer M., Felsenfeld A., Old S., Mockrin S., Collins F; Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493-521. DOI 10.1038/nature02426; Gonzalez-Arto M., Hamilton T.R., Gallego M., Gaspar-Torrubia E., Aguilar D., Serrano-Blesa E., Abecia J.A., Perez-Pe R., MuinoBlanco T., Cebrian-Perez J.A., Casao A. Evidence of melatonin synthesis in the ram reproductive tract. Andrology. 2016;4(1):163-171. DOI 10.1111/andr.12117; Govindarajulu M., Patel M.Y., Wilder D.M., Long J.B., Arun P. Blast exposure dysregulates nighttime melatonin synthesis and signaling in the pineal gland: a potential mechanism of blast­induced sleep disruptions. Brain Sci. 2022;12(10):1340. DOI 10.3390/brainsci12101340; Greenhouse D.D., Festing M.F.W., Hasan S., Cohen A.L. Inbred strains of rats and mutants. In: Hedrich H.J. (Ed.) Genetic Monitoring of Inbred Strains of Rats. Stuttgart: Gustav Fischer Verlag, 1990; 410­480; Gryksa K., Schmidtner A.K., Masís-Calvo M., Rodríguez-Villagra O.A., Havasi A., Wirobski G., Maloumby R., Jägle H., Bosch O.J., Slattery D.A., Neumann I.D. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: a unique model for comorbid depression and social dysfunctions. Neurosci. Biobehav. Rev. 2023;152:105292. DOI 10.1016/j.neubiorev.2023.105292; Gulevich R., Kozhemyakina R., Shikhevich S., Konoshenko M., Herbeck Y. Aggressive behavior and stress response after oxytocin administration in male Norway rats selected for different attitudes to humans. Physiol. Behav. 2019;199:210-218. DOI 10.1016/j.physbeh.2018.11.030; Herbeck Yu.E., Os’kina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal methyl­supplemented diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. Cytol. Genet. (Moscow.). 2010;44(2):108-113. DOI 10.3103/S0095452710020064; Ideno J., Mizukami H., Honda K., Okada T., Hanazono Y., Kume A., Saito T., Ishibashi S., Ozawa K. Persistent phenotypic correction of central diabetes insipidus using adeno-associated virus vector expressing arginine­vasopressin in Brattleboro rats. Mol. Ther. 2003; 8(6):895-902. DOI 10.1016/j.ymthe.2003.08.019; Ilchibaeva T.V., Kondaurova E.M., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression. Behav. Brain Res. 2015;290:45-50. DOI 10.1016/j.bbr.2015.04.041; Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Naumenko V.S. Expression of apoptosis genes in the brain of rats with genetically defined fear-induced aggression. Mol. Biol. (Moscow). 2016;50(5): 814-820. DOI 10.7868/S0026898416030071; Kang S., Gair S.L., Paton M.J., Harvey E.A. Racial and ethnic differences in the relation between parenting and preschoolers’ externalizing behaviors. Early Educ. Dev. 2023;34(4):823-841. DOI 10.1080/10409289.2022.2074202; Klimov L.O., Fedoseeva L.A., Ryazanova M.A., Dymshits G.M., Markel A.L. Expression of renin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2013;154(3):357-660. DOI 10.1007/s10517-013-1950-6; Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. Genome­wide transcriptome analysis of hypothalamus in rats with inherited stress­induced arterial hypertension. BMC Genet. 2016; 17(Suppl.1):13. DOI 10.1186/s12863-015-0307-8; Klimov L.O., Ryazanova M.A., Fedoseeva L.A., Markel A.L. Effects of brain renin-angiotensin system inhibition in ISIAH rats with inherited stress­induced arterial hypertension. Vavilovskii Zhur nal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(6):735-741. DOI 10.18699/VJ17.29-o (in Russian); Klimova N.V., Chadaeva I.V., Shichevich S.G., Kozhemyakina R.V. Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(2):208-215. DOI 10.18699/VJ21.50-o; Kolosova N.G., Stefanova N.A., Korbolina E.E., Fursova A.Z., Kozhevnikova O.S. Senescence-accelerated OXYS rats: a genetic mo del of premature aging and age­related diseases. Adv. Gerontol. 2014;4:294-298. DOI 10.1134/S2079057014040146; Kolpakov V.G., Kulikov A.V., Alekhina T.A., Chuguy V.F., Petrenko O.I., Barykina N.N. Catatonia or depression: the GC rat strain as an animal model of psychopathology. Russ. J. Genet. 2004;40(6): 672-678. DOI 10.1023/B:RUGE.0000033315.79449.d4; Kondaurova E.M., Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear­induced aggression or its absence. Behav. Brain Res. 2016;310:20-25. DOI 10.1016/j.bbr.2016.04.050; Kozhevnikova O.S., Korbolina E.E., Ershov N.I., Kolosova N.G. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 2013;12(11):1745-1761. DOI 10.4161/cc.24825; Lau Y.F., Zhang J. Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol. Carcinog. 2000;27(4):308­321. DOI 10.1002/(sici)1098-2744(200004)27:43.0.co;2-r; Li G., Lv D., Yao Y., Wu H., Wang J., Deng S., Song Y., Guan S., Wang L., Ma W., Yang H., Yan L., Zhang J., Ji P., Zhang L., Lian Z., Liu G. Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota. FASEB J. 2021;35(9):e21783. DOI 10.1096/fj.202100651r; Li W., Wang X., Fan W., Zhao P., Chan Y.C., Chen S., Zhang S., Guo X., Zhang Y., Li Y., Cai J., Qin D., Li X., Yang J., Peng T., Zychlinski D., Hoffmann D., Zhang R., Deng K., Ng K.M., Menten B., Zhong M., Wu J., Li Z., Chen Y., Schambach A., Tse H.F., Pei D., Esteban M.A. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Hum. Mol. Genet. 2012;21(1):32-45. DOI 10.1093/hmg/ddr435; Liddelow S.A., Dziegielewska K.M., Ek C.J., Habgood M.D., Bauer H., Bauer H.C., Lindsay H., Wakefield M.J., Strazielle N., Kratzer I., Mollgard K., Ghersi-Egea J.F., Saunders N.R. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8(7):e65629. DOI 10.1371/journal.pone.0065629; Liu W., Huang Z., Xia J., Cui Z., Li L., Qi Z., Liu W. Gene expression profile associated with Asmt knockout-induced depression-like behaviors and exercise effects in mouse hypothalamus. Biosci. Rep. 2022;42(7):bsr20220800. DOI 10.1042/bsr20220800; Liu X., Zhan Y., Xu W., Liu L., Liu X., Da J., Zhang K., Zhang X., Wang J., Liu Z., Jin H., Zhang B., Li Y. Characterization of transcriptional landscape in bone marrow­derived mesenchymal stromal cells treated with aspirin by RNA­seq. PeerJ. 2022;10:e12819. DOI 10.7717/peerj.12819; Liu Y., Xiang J., Liao Y., Peng G., Shen C. Identification of tryptophan metabolic gene­related subtypes, development of prognostic models, and characterization of tumor microenvironment infiltration in gliomas. Front. Mol. Neurosci. 2022;15:1037835. DOI 10.3389/fnmol.2022.1037835; Lu Z. PubMed and Beyond: A Survey of Web Tools for Searching Biomedical Literature. Database (Oxford). 2011;2011:baq036. DOI 10.1093/database/baq036; Lv J.W., Zheng Z.Q., Wang Z.X., Zhou G.Q., Chen L., Mao Y.P., Lin A.H., Reiter R.J., Ma J., Chen Y.P., Sun Y. Pan-cancer genomic analyses reveal prognostic and immunogenic features of the tumor melatonergic microenvironment across 14 solid cancer types. J. Pi­ neal Res. 2019;66(3):e12557. DOI 10.1111/jpi.12557; Markel A.L. Development of a new strain of rats with inherited stressinduced arterial hypertension. In: Sassard J. (Ed.) Genetic Hypertension. London: John Libbey Eurotext Ltd., 1992;218:405-407; Markel A.L., Maslova L.N., Shishkina G.T., Mahanova N.A., Jacobson G.S. Developmental influences on blood pressure regulation in ISIAH rats. In: McCarty R., Blizard D.A., Chevalier R.L. (Eds.) Development of the Hypertensive Phenotype: Basic and Clinical Studies. In the series Handbook of Hypertension. Amsterdam: Elsevier, 1999;493-526; Martín-Carro B., Donate-Correa J., Fernández-Villabrille S., MartínVírgala J., Panizo S., Carrillo-López N., Martínez-Arias L., Navarro-González J.F., Naves-Díaz M., Fernández-Martín J.L., Alonso-Montes C., Cannata-Andía J.B. Experimental models to study diabetes mellitus and its complications: limitations and new opportunities. Int. J. Mol. Sci. 2023;24(12):10309. DOI 10.3390/ijms 241210309; Melke J., Goubran Botros H., Chaste P., Betancur C., Nygren G., Anckar säter H., Rastam M., Ståhlberg O., Gillberg I.C., Delorme R., Chabane N., Mouren­Simeoni M.C., Fauchereau F., Durand C.M., Chevalier F., Drouot X., Collet C., Launay J.M., Leboyer M., Gillberg C., Bourgeron T. Abnormal melatonin synthesis in autism spectrum disorders. Mol. Psychiatry. 2008;13(1):90-98. DOI 10.1038/sj.mp.4002016; Modlinska K., Pisula W. The Norway rat, from an obnoxious pest to a laboratory pet. eLife. 2020;9:e50651. DOI 10.7554/eLife.50651; Moskaliuk V.S., Kozhemyakina R.V., Bazovkina D.V., Terenina E., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V., Naumenko V.S., Kulikova E. On an association between fear-induced aggression and striatal­enriched protein tyrosine phosphatase (STEP) in the brain of Norway rats. Biomed. Pharmacother. 2022; 147:112667. DOI 10.1016/j.biopha.2022.112667; Moskaliuk V.S., Kozhemyakina R.V., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V., Naumenko V.S., Kulikova E.A. On associations between fear-induced aggression, Bdnf transcripts, and serotonin receptors in the brains of Norway rats: an influence of antiaggressive drug TC­2153. Int. J. Mol. Sci. 2023;24(2):983. DOI 10.3390/ijms24020983; Naumenko V.S., Kozhemjakina R.V., Plyusnina I.Z., Popova N.K. Expression of serotonin transporter gene and startle response in rats with genetically determined fear­induced aggression. Bull. Exp. Biol. Med. 2009;147(1):81-83. DOI 10.1007/s10517-009-0441-2; Oshchepkov D., Ponomarenko M., Klimova N., Chadaeva I., Bragin A., Sharypova E., Shikhevich S., Kozhemyakina R. A rat model of human behavior provides evidence of natural selection against underexpression of aggressiveness-related genes in humans. Front. Genet. 2019;10:1267. DOI 10.3389/fgene.2019.01267; Oshchepkov D., Chadaeva I., Kozhemyakina R., Zolotareva K., Khandaev B., Sharypova E., Ponomarenko P., Bogomolov A., Klimova N.V., Shikhevich S., Redina O., Kolosova N.G., Nazarenko M., Kolchanov N.A., Markel A., Ponomarenko M. Stress reactivity, susceptibility to hypertension, and differential expression of genes in hypertensive compared to normotensive patients. Int. J. Mol. Sci. 2022a;23(5):2835. DOI 10.3390/ijms23052835; Oshchepkov D., Chadaeva I., Kozhemyakina R., Shikhevich S., Sharypova E., Savinkova L., Klimova N.V., Tsukanov A., Levitsky V.G., Markel A.L. Transcription factors as important regulators of changes in behavior through domestication of gray rats: quantitative data from RNA sequencing. Int. J. Mol. Sci. 2022b;23(20):12269. DOI 10.3390/ijms232012269; Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. London: Acad. Press, Elsevier Inc., 2013. Penning L.C., Vrieling H.E., Brinkhof B., Riemers F.M., Rothuizen J., Rutteman G.R., Hazewinkel H.A. A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet. Immunol. Immunopathol. 2007;120(3-4):212-222. DOI 10.1016/j.vetimm.2007.08.006; Perepechaeva M.L., Grishanova A.Y., Rudnitskaya E.A., Kolosova N.G. The mitochondria-targeted antioxidant SkQ1 downregulates aryl hydrocarbon receptor-dependent genes in the retina of OXYS rats with AMD­like retinopathy. J. Ophthalmol. 2014;2014:530943. DOI 10.1155/2014/530943; Popova N.K., Naumenko V.S., Plyusnina I.Z. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci. Behav. Physiol. 2007;37(6):631-635. DOI; Plekanchuk V.S., Ryazanova M.A. Expression of glutamate receptor genes in the hippocampus and frontal cortex in GC rat strain with genetic catatonia. J. Evol. Biochem. Phys. 2021;57(1):156-163. DOI 10.1134/S0022093021010154; Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385. DOI 10.1016/S0031-9384(96)00445-310.1007/s11055-007-0062-z; Popova N.K., Naumenko V.S., Kozhemyakina R.V., Plyusnina I.Z. Functional characteristics of serotonin 5-HT2A and 5-HT2C receptors in the brain and the expression of the 5-HT2A and 5-HT2C receptor genes in aggressive and non­aggressive rats. Neurosci. Behav. Physiol. 2010;40(4):357-361. DOI 10.1007/s11055-010-9264-x; Ryazanova M.A., Fedoseeva L.A., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hyperten sion. BMC Genet. 2016;17(Suppl.3):151. DOI 10.1186/s12863-016-0462-6; Ryazanova M.A., Prokudina O.I., Plekanchuk V.S., Alekhina T.A. Expression of catecholaminergic genes in the midbrain and prepulse inhibition in rats with a genetic catatonia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7): 798-803. DOI 10.18699/VJ17.296 (in Russian); Ryazanova M.A., Plekanchuk V.S., Prokudina O.I., Makovka Y.V., Alekhina T.A., Redina O.E., Markel A.L. Animal models of hypertension (ISIAH rats), catatonia (GC rats), and audiogenic epilepsy (PM rats) developed by breeding. Biomedicines. 2023;11(7):1814. DOI 10.3390/biomedicines11071814; Sengupta P. The laboratory rat: relating its age with human’s. Int. J. Prev. Med. 2013;4(6):624-630; Schmidt I. Metabolic diseases: the environment determines the odds, even for genes. News Physiol. Sci. 2002;17:115-121. DOI 10.1152/nips.01380.2001; Shikhevich S., Chadaeva I., Khandaev B., Kozhemyakina R., Zolotareva K., Kazachek A., Oshchepkov D., Bogomolov A., Klimova N.V., Ivanisenko V.A., Demenkov P., Mustafin Z., Markel A., Savinkova L., Kolchanov N.A., Kozlov V., Ponomarenko M. Differentially expressed genes and molecular susceptibility to human agerelated diseases. Int. J. Mol. Sci. 2023;24(4):3996. DOI 10.3390/ijms24043996; Singh G., Bhat B., Jayadev M.S.K., Madhusudhan C., Singh A. mutTCPdb: a comprehensive database for genomic variants of a tropical country neglected disease-tropical calcific pancreatitis. Database (Oxford ). 2018;2018:bay043. DOI 10.1093/database/bay043; Stefanova N.A., Kolosova N.G. The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease­like pathology. Int. J. Mol. Sci. 2023;24(2):1462. DOI 10.3390/ijms24021462; Stefanova N.A., Maksimova K.Y., Rudnitskaya E.A., Muraleva N.A., Kolosova N.G. Association of cerebrovascular dysfunction with the development of Alzheimer’s disease-like pathology in OXYS rats. BMC Genomics. 2018;19(Suppl.3):75. DOI 10.1186/s12864-0184480­9; Stefanova N.A., Ershov N.I., Maksimova K.Y., Muraleva N.A., Tyumentsev M.A., Kolosova N.G. The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer’s disease-like pathology. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74(1):33-43. DOI 10.1093/gerona/gly198; Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., Rappaport N., Safran M., Lancet D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016;54:1.30.1-1.30.33. DOI 10.1002/cpbi.5; Stenson P.D., Mort M., Ball E.V., Shaw K., Phillips A., Cooper D.N. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014;133(1):1­9. DOI 10.1007/s00439-013-1358-4; Sun S., Wang Y., Maslov A.Y., Dong X., Vijg J. SomaMutDB: a database of somatic mutations in normal human tissues. Nucleic Acids Res. 2022;50(D1):D1100-D1108. DOI 10.1093/nar/gkab914; Suzuki H., Han S.D., Lucas L.R. Increased 5-HT1B receptor density in the basolateral amygdala of passive observer rats exposed to aggression. Brain Res. Bull. 2010;83(1-2):38-43. DOI 10.1016/j.brainresbull.2010.06.007; Tain Y.L., Huang L.T., Chan J.Y., Lee C.T. Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int. J. Mol. Sci. 2015;16(3):4744-4758. DOI 10.3390/ijms16034744; Talarowska M., Szemraj J., Zajączkowska M., Galecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med. Sci. Monit. 2014;20:905-912. DOI 10.12659/MSM.890160; Taylor J.R., Morshed S.A., Parveen S., Mercadante M.T., Scahill L., Peterson B.S., King R.A., Leckman J.F., Lombroso P.J. An animal model of Tourette’s syndrome. Am. J. Psychiatry. 2002;159(4):657-660. DOI 10.1176/appi.ajp; Tharmalingam S., Khurana S., Murray A., Lamothe J., Tai T.C. Whole transcriptome analysis of adrenal glands from prenatal glucocorticoid programmed hypertensive rodents. Sci. Rep. 2020;10(1): 18755. DOI 10.1038/s41598-020-75652-y; Trent S., Dean R., Veit B., Cassano T., Bedse G., Ojarikre O.A., Humby T., Davies W. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder. Psychoneuroendocrinology. 2013; 38(8):1370-1380. DOI 10.1016/j.psyneuen.2012.12.002; Wall V.L., Fischer E.K., Bland S.T. Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol. Behav. 2012;107(3):440-450. DOI 10.1016/j.physbeh.2012.09.002; Watanabe Y., Yoshida M., Yamanishi K., Yamamoto H., Okuzaki D., No jima H., Yasunaga T., Okamura H., Matsunaga H., Yamanishi H. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the kidneys. Int. J. Mol. Med. 2015;36(3):712-724. DOI 10.3892/ijmm.2015. 2281; Wu H.M., Zhao C.C., Xie Q.M., Xu J., Fei G.H. TLR2-melatonin feedback loop regulates the activation of NLRP3 inflammasome in murine allergic airway inflammation. Front. Immunol. 2020;11:172.; Xiao G., Wang T., Zhuang W., Ye C., Luo L., Wang H., Lian G., Xie L. RNA sequencing analysis of monocrotaline-induced PAH reveals dysregulated chemokine and neuroactive ligand receptor pathways. Aging (Albany NY ). 2020;12(6):4953-4969. DOI 10.18632/aging.102922; Xie F., Wang L., Liu Y., Liu Z., Zhang Z., Pei J., Wu Z., Zhai M., Cao Y. ASMT regulates tumor metastasis through the circadian clock system in triple­negative breast cancer. Front. Oncol. 2020;10:537247. DOI 10.3389/fonc.2020.537247; Yang H., Zhang Z., Ding X., Jiang X., Tan L., Lin C., Xu L., Li G., Lu L., Qin Z., Feng X., Li M. RP58 knockdown contributes to hypoxia-ischemia-induced pineal dysfunction and circadian rhythm disruption in neonatal rats. J. Pineal Res. 2023;75(1):e12885. DOI 10.1111/jpi.12885; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. DOI 10.1186/1471-2105-13-134; Yoshida M., Watanabe Y., Yamanishi K., Yamashita A., Yamamoto H., Okuzaki D., Shimada K., Nojima H., Yasunaga T., Okamura H., Matsunaga H., Yamanishi H. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the brain. Int. J. Mol. Med. 2014;33(4):887-896. DOI 10.3892/ijmm.2014.1631; Yuan X., Wu Q., Liu X., Zhang H., Xiu R. Transcriptomic profile analysis of brain microvascular pericytes in spontaneously hypertensive rats by RNA­Seq. Am. J. Transl. Res. 2018;10(8):2372-2386. PMID 30210677; Zhang H.F., Wang J.H., Wang Y.L., Gao C., Gu Y.T., Huang J., Wang J.H., Zhang Z. Salvianolic acid A protects the kidney against oxidative stress by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway in 5/6 nephrectomized rats. Oxid. Med. Cell. Longev. 2019;2019:2853534. DOI 10.1155/2019/2853534; Zhang Z., Silveyra E., Jin N., Ribelayga C.P. A congenic line of the C57BL/6J mouse strain that is proficient in melatonin synthesis. J. Pineal Res. 2018;65(3):e12509. DOI 10.1111/jpi.12509; https://vavilov.elpub.ru/jour/article/view/3979

  19. 19
    Academic Journal

    Contributors: The study was conducted with the financial support of the Ministry of Science and Education of the Russian Federation (Appendix No. 9 to Subsidy Agreement No. 075-15-2021-1346 dated October 4, 2021)., Исследование проведено при финансовой поддержке Министерства науки и образования Российской Федерации (Приложение № 9 к Соглашению о субсидии № 075-15-2021-1346 от 04.10.2021).

    Source: Pharmacy & Pharmacology; Том 10, № 6 (2022); 525-535 ; Фармация и фармакология; Том 10, № 6 (2022); 525-535 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2022-10-6

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/1218/926; https://www.pharmpharm.ru/jour/article/view/1218/927; Checkoway H., Lundin J.I., Kelada S.N. Neurodegenerative diseases // IARC Sci. Publ. – 2011. – P. 407–419.; Bougea A. Synuclein in neurodegeneration // Adv. Clin. Chem. – 2021. – Vol. 103. – P. 97–134. DOI:10.1016/bs.acc.2020.08.007; Ozansoy M., Başak A.N. The central theme of Parkinson’s disease: α-synuclein // Mol Neurobiol. – 2013. – Vol. 47, No. 2. – P. 460–465. DOI:10.1007/s12035-012-8369-3; George J.M. The synucleins // Genome Biol. – 2002. – Vol. 3, No. 1. – Art. ID: 3002. DOI:10.1186/gb-2001-3-1-reviews3002; Breydo L., Wu J.W., Uversky V.N. Α-synuclein misfolding and Parkinson’s disease // Biochim. Biophys. Acta. – 2012. – Vol. 1822, No. 2. – P. 261–285. DOI:10.1016/j.bbadis.2011.10.002; Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., de Silva H.A., Kittel A., Saitoh T. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system // Neuron. – 1995. – Vol. 14, No. 2. – P. 467–475. DOI:10.1016/0896-6273(95)90302-x; Lee S.J., Jeon H., Kandror K.V. Alpha-synuclein is localized in a subpopulation of rat brain synaptic vesicles // Acta Neurobiol. Exp. (Wars). – 2008. – Vol. 68, No. 4. – P. 509–515.; Lashuel H.A., Overk C.R., Oueslati A., Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target // Nat. Rev. Neurosci. – 2013. – Vol. 14, No. 1. – P. 38–48. DOI:10.1038/nrn3406; Dalfó E., Ferrer I. Alpha-synuclein binding to rab3a in multiple system atrophy // Neurosci. Lett. – 2005. – Vol. 380, No. 1–2. – P. 170–175. DOI:10.1016/j.neulet.2005.01.034; Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Südhof T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro // Science. – 2010. – Vol. 329, No. 5999. – P. 1663–1667. DOI:10.1126/science.1195227; Ninkina N., Connor-Robson N., Ustyugov A.A., Tarasova T.V., Shelkovnikova T.A., Buchman V.L. A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression // Sci. Rep. – 2015. – Vol. 5. – Art. ID: 16615. DOI:10.1038/srep16615; Roman A.Y., Limorenko G., Ustyugov A.A., Tarasova T.V., Lysikova E.A., Buchman V.L., Ninkina N. Generation of mouse lines with conditionally or constitutively inactivated Snca gene and Rosa26-stop-lacZ reporter located in cis on the mouse chromosome 6 // Transgenic Res. – 2017. – Vol. 26, No. 2. – P. 301–307. DOI:10.1007/s11248-016-9995-8; Chaprov K.D., Lysikova E.A., Teterina E.V., Buchman V.L. Kinetics of alpha-synuclein depletion in three brain regions following conditional pan-neuronal inactivation of the encoding gene (Snca) by tamoxifen-induced Cre-recombination in adult mice // Transgenic Res. – 2021. – Vol. 30, No. 6. – P. 867–873. DOI:10.1007/s11248-021-00286-3; Krüger R., Kuhn W., Müller T., Woitalla D., Graeber M., Kösel S., Przuntek H., Epplen J.T., Schöls L., Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease // Nat. Genet. – 1998. – Vol. 18, No. 2. – P. 106–108. DOI:10.1038/ng0298-106; Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., Chandrasekharappa S., Athanassiadou A., Papapetropoulos T., Johnson W.G., Lazzarini A.M., Duvoisin R.C., Di Iorio G., Golbe L.I., Nussbaum R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease // Science. – 1997. – Vol. 276, No. 5321. – P. 2045–2047. DOI:10.1126/science.276.5321.2045; Angelova P.R., Choi M.L., Berezhnov A.V., Horrocks M.H., Hughes C.D., De S., Rodrigues M., Yapom R., Little D., Dolt K.S., Kunath T., Devine M.J., Gissen P., Shchepinov M.S., Sylantyev S., Pavlov E.V., Klenerman D., Abramov A.Y., Gandhi S. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation // Cell Death Differ. – 2020. – Vol. 27, No. 10. – P. 2781–2796. DOI:10.1038/s41418-020-0542-z; Angelova P.R., Horrocks M.H., Klenerman D., Gandhi S., Abramov A.Y., Shchepinov M.S. Lipid peroxidation is essential for α-synuclein-induced cell death // J. Neurochem. – 2015. – Vol. 133, No. 4. – P. 582–589. DOI:10.1111/jnc.13024; Choi M.L., Chappard A., Singh B.P., Maclachlan C., Rodrigues M., Fedotova E.I., Berezhnov A.V., De S., Peddie C.J., Athauda D., Virdi G.S., Zhang W., Evans J.R., Wernick A.I., Zanjani Z.S., Angelova P.R., Esteras N., Vinokurov A.Y., Morris K., Jeacock K., Tosatto L., Little D., Gissen P., Clarke D.J., Kunath T., Collinson L., Klenerman D., Abramov A.Y., Horrocks M.H., Gandhi S. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity // Nat. Neurosci. – 2022. – Vol. 25, No. 9. – P. 1134–1148. DOI:10.1038/s41593-022-01140-3. Erratum in: Nat. Neurosci. – 2022. – Vol. 25, No. 11. – Art. ID: 1582.; Choi M.L., Gandhi S. Crucial role of protein oligomerization in the pathogenesis of Alzheimer’s and Parkinson’s diseases // FEBS J. – 2018. – Vol. 285, No. 19. – P. 3631–3644. DOI:10.1111/febs.14587; Srinivasan E., Chandrasekhar G., Chandrasekar P., Anbarasu K., Vickram A.S., Karunakaran R., Rajasekaran R., Srikumar P.S. Alpha-Synuclein Aggregation in Parkinson’s Disease // Front. Med. (Lausanne). – 2021. – Vol. 8. – Art. ID: 736978. DOI:10.3389/fmed.2021.736978; Chaprov K.D., Goloborshcheva V.V., Tarasova T.V., Teterina E.V., Korokin M.V., Soldatov V.O., Pokrovskiy M.V., Kucheryanu V.G., Morozov S.G., Ovchinnikov R.K. Increased Expression of the Multimerin-1 Gene in α-Synuclein Knokout Mice // Dokl. Biol. Sci. – 2020. – Vol. 494, No. 1. – P. 260–263. DOI:10.1134/S0012496620050014; Soldatov V.O., Kubekina M.V., Silaeva Yu.Yu., Bruter A.V., Deykin A.V. On the way from SARS-CoV-sensitive mice to murine COVID-19 model // Research Results in Pharmacology. – 2022. – Vol. 6, No. 2. – P. 1–7. DOI:10.3897/rrpharmacology.6.53633; Bruter A.V., Korshunova D.S., Kubekina M.V., Sergiev P.V., Kalinina A.A., Ilchuk L.A., Silaeva Y.Y., Korshunov E.N., Soldatov V.O., Deykin A.V. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic Res. 2021 Apr 14;30(3):289–301. DOI:10.1007/s11248-021-00249-8. Epub ahead of print.; Кузубова Е.В., Радченко А.И., Покровский В.М., Патраханов Е.А., Новикова А.А., Степенко Ю.В., Дейкин А.В. Патологические состояния, ассоциированные с белком тау: механизмы развития и возможные биологические мишени для фармакологической коррекции тау-протеинопатии (обзор) // Научные результаты биомедицинских исследований. – 2022. – Т. 8, № 4. – С. 474–797. DOI:10.18413/2658-6533-2022-8-4-0-6; Dolskiy A.A., Gudymo A.S., Taranov O.S., Grishchenko I.V., Shitik E.M., Prokopov D.Y., Soldatov V.O., Sobolevskaya E.V., Bodnev S.A., Danilchenko N.V., Moiseeva A.A., Torzhkova P.Y., Bulanovich Y.A., Onhonova G.S., Ivleva E.K., Kubekina M.V., Belykh A.E., Tregubchak T.V., Ryzhikov A.B., Gavrilova E.V., Maksyutov R.A., Deykin A.V., Yudkin D.V. The Tissue Distribution of SARS-CoV-2 in Transgenic Mice With Inducible Ubiquitous Expression of hACE2 // Front. Mol. Biosci. – 2022. – Vol. 8. – Art. ID: 821506. DOI:10.3389/fmolb.2021.821506; https://www.pharmpharm.ru/jour/article/view/1218

  20. 20
    Academic Journal

    Contributors: Publication of this article has been supported by Sotex PharmFirma., Расчеты выполнены по государственному заданию № 0063-2019-0003 «Математические методы анализа данных и прогнозирования» с использованием инфраструктуры Центра коллективного пользования «Высокопроизводительные вычисления и большие данные» ФИЦ «Информатика и управление» РАН. Статья опубликована при поддержке компании ЗАО «ФармФирма «Сотекс».

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 15, No 1 (2023); 110-118 ; Неврология, нейропсихиатрия, психосоматика; Vol 15, No 1 (2023); 110-118 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-1

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1964/1504; Сарвилина ИВ, Лила АМ, Громова ОА, Торшин ИЮ. Анализ механизмов развития нейроревматологических последствий COVID-19 и возможности их фармакологической коррекции. Современная ревматология. 2022;16(2):92-8. doi:10.14412/1996-7012-2022-2-92-98; Торшин ИЮ, Громова ОА, Лила АМ и др. Результаты постгеномного анализа молекулы глюкозамина сульфата указывают на перспективы лечения коморбидных заболеваний. Современная ревматология. 2018;12(4):129-36. doi:10.14412/1996-7012-2018-4-129-136; Громова ОА, Торшин ИЮ, Семенов ВА и др. О неврологических ролях хондроитина сульфата и глюкозамина сульфата: систематический анализ. Неврология, нейропсихиатрия, психосоматика. 2019;11(3):137-43. doi:10.14412/2074-2711-2019-3-137-143; Gromova OA, Torshin IYu, Semenov VA, et al. On the neurological roles of chondroitin sulfate and glucosamine sulfate: a systematic analysis. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3):137-43. doi:10.14412/2074-2711-2019-3-137-143 (In Russ.).; Canning DR, Brelsford NR, Lovett NW. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell Dev Biol Anim. 2016 Jan;52(1):35-44. doi:10.1007/s11626-015-9941-8; Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol. 2015 Jul;269:169-87. doi:10.1016/j.expneurol.2015.04.006; Белова ОВ, Арефьева ТИ, Москвина СН. Иммуновоспалительные аспекты болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(2):110-9. doi:10.17116/jnevro2020120021110; Ghorbani S, Yong VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain. 2021 Aug 17;144(7):1958-73. doi:10.1093/brain/awab059; Jang DG, Sim HJ, Song EK, et al. Extracellular matrixes and neuroinflammation. BMB Rep. 2020 Nov;53(10):491-9. doi:10.5483/BMBRep.2020.53.10.156; Bosiacki M, Gassowska-Dobrowolska M, Kojder K, et al. Perineuronal Nets and Their Role in Synaptic Homeostasis. Int J Mol Sci. 2019 Aug 22;20(17):4108. doi:10.3390/ijms20174108; Canas N, Gorina R, Planas AM, et al. Chondroitin sulfate inhibits lipopolysaccharideinduced inflammation in rat astrocytes by preventing nuclear factor kappa B activation. Neuroscience. 2010 May 19;167(3):872-9. doi:10.1016/j.neuroscience.2010.02.069; Лила АМ, Торшин ИЮ, Громова ОА. Стоит ли переосмыслить полученный полвека назад положительный опыт применения хондроитинсульфатов при атеросклерозе? ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(2):184-91. doi:10.17749/2070-4909/farmakoekonomika.2020.043; Торшин ИЮ, Лила АМ, Громова ОА и др. Антикоагулянтные и антиагрегантные эффекты хондроитина сульфата. РМЖ. 2020;(7):44-8.; Yamada J, Maeda S, Soya M, et al. Alleviation of cognitive deficits via upregulation of chondroitin sulfate biosynthesis by lignan sesamin in a mouse model of neuroinflammation. J Nutr Biochem. 2022 Oct;108:109093. doi:10.1016/j.jnutbio.2022.109093; McCrary MR, Jiang MQ, Jesson K, et al. Glycosaminoglycan scaffolding and neural progenitor cell transplantation promotes regenerative immunomodulation in the mouse ischemic brain. Exp Neurol. 2022 Nov;357:114177. doi:10.1016/j.expneurol.2022.114177. Epub 2022 Jul 20.; Yao M, Fang J, Li J, et al. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J Neuroinflammation. 2022 Aug 18;19(1):207. doi:10.1186/s12974-022-02561-4; Karumbaiah L, Enam SF, Brown AC, et al. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjug Chem. 2015 Dec 16;26(12):2336-49. doi:10.1021/acs.bioconjchem.5b00397; Rauvala H, Paveliev M, Kuja-Panula J, Kulesskaya N. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regen Res. 2017 May;12(5):687-91. doi:10.4103/1673-5374.206630; Wu Y, Sheng W, Chen L, et al. Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell. 2004 May;15(5):2093-104. doi:10.1091/mbc.e03-09-0667; Liu C, Fan L, Xing J, et al. Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Biomater Sci. 2019 Apr 23;7(5):1995-2008. doi:10.1039/c8bm01363b; Betancur MI, Mason HD, Alvarado-Velez M, et al. Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury. ACS Biomater Sci Eng. 2017 Mar 13;3(3):420-30. doi:10.1021/acsbiomaterials.6b00805; Торшин ИЮ, Громова ОА, Лила АМ и др. Толл-подобные рецепторы как компонент патофизиологии остеоартрита: противовоспалительное, анальгетическое и нейропротекторное действие. Неврология, нейропсихиатрия, психосоматика. 2021;13(4):123-9. doi:10.14412/2074-2711-2021-4-123-129; Zhao N, Wu L, Zhang X, et al. Low molecular weight chondroitin sulfate ameliorates pathological changes in 5XFAD mice by improving various functions in the brain. Neuropharmacology. 2021 Nov 1;199:108796. doi:10.1016/j.neuropharm.2021.108796; Alfonso-Loeches S, Pascual M, Gomez-Pinedo U, et al. Toll-like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia. 2012 May;60(6):948-64. doi:10.1002/glia.22327; Calamia V, Lourido L, Fernandez-Puente P, et al. Secretome analysis of chondroitin sulfatetreated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res Ther. 2012 Oct 2;14(5):R202. doi:10.1186/ar4040; Cauwe B, van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2007 MayJun;42(3):113-85. doi:10.1080/10409230701340019; Shingleton WD, Hodges DJ, Brick P, Cawston TE. Collagenase: a key enzyme in collagen turnover. Biochem Cell Biol. 1996;74(6):759-75. doi:10.1139/o96-083; Лила АМ, Громова ОА, Торшин ИЮ и др. Молекулярные эффекты хондрогарда при остеоартрите и грыжах межпозвоночного диска. Неврология, нейропсихиатрия, психосоматика. 2017;9(3):88-97. doi:10.14412/2074-2711-2017-3-88-97; Martin-de-Saavedra MD, del Barrio L, Canas N, et al. Chondroitin sulfate reduces cell death of rat hippocampal slices subjected to oxygen and glucose deprivation by inhibiting p38, NFkappaB and iNOS. Neurochem Int. 2011 May;58(6):676-83. doi:10.1016/j.neuint.2011.02.006; Egea J, Garcia AG, Verges J, et al. Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis Cartilage. 2010 Jun;18 Suppl 1:S24-7. doi:10.1016/j.joca.2010.01.016; Chen R, Gong P, Tao T, et al. O-GlcNAc Glycosylation of nNOS Promotes Neuronal Apoptosis Following Glutamate Excitotoxicity. Cell Mol Neurobiol. 2017 Nov;37(8):1465-75. doi:10.1007/s10571-017-0477-1; Fluri F, Grunstein D, Cam E, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats. Exp Neurol. 2015 Mar;265:142-51. doi:10.1016/j.expneurol.2015.01.005; Hwang SY, Shin JH, Hwang JS, et al. Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia. 2010 Nov 15;58(15):1881-92. doi:10.1002/glia.21058; Jhelum P, Radhakrishnan M, Paul ARS, et al. Neuroprotective and Proneurogenic Effects of Glucosamine in an Internal Carotid Artery Occlusion Model of Ischemia. Neuromolecular Med. 2022 Sep;24(3):268-73. doi:10.1007/s12017-021-08697-5; Zhang Q, Li J, Liu C, et al. Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Abeta)-induced damage in vitro and in vivo. Neuroscience. 2015 Oct 1;305:169-82. doi:10.1016/j.neuroscience.2015.08.002; Wang G, Zhou HH, Luo L, et al. Voluntary wheel running is capable of improving cognitive function only in the young but not the middleaged male APPSwe/PS1De9 mice. Neurochem Int. 2021 May;145:105010. doi:10.1016/j.neuint.2021.105010; Nemoto W, Yamada K, Nakagawasai O, et al. Effect of repeated oral administration of chondroitin sulfate on neuropathic pain induced by partial sciatic nerve ligation in mice. J Pharmacol Sci. 2018 Aug;137(4):403-6. doi:10.1016/j.jphs.2018.03.003. Epub 2018 Mar 23.; Nemoto W, Yamada K, Ogata Y, et al. Chondroitin sulfate attenuates formalininduced persistent tactile allodynia. J Pharmacol Sci. 2016 Aug;131(4):275-8. doi:10.1016/j.jphs.2016.07.009; Самарцев ИН, Живолупов СА, Баранцевич ЕР, Данилов АБ. Оценка терапевтической эффективности Алфлутопа в комплексном лечении пациентов с хронической болью в нижней части спины (наблюдательное исследование ЦЕЙТНОТ). Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(2):24-30. doi:10.17116/jnevro202112102124