Showing 1 - 20 results of 218 for search '"нейровизуализация"', query time: 0.88s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 46-53 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 46-53 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1144/703; Kamimura K., Nakajo M., Yoneyama T. et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions // Jpn. J. Radiol. Vol. 37, No. 2. Р. 109–116. Feb. 2019. doi:10.1007/s11604-018-0787-3.; Miller K.D., Ostrom Q.T., Kruchko C. et al. Brain and other central nervous system tumor statistics, 2021 // CA. Cancer J. Clin. 2021. Vol. 71, No. 5. Р. 381–406. doi:10.3322/caac.21693.; Suh C.H., Park J.E., Jung S.C. et al. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis // Neuroradiology. 2019. Vol. 61, No. 5. Р. 525–534. doi:10.1007/s00234-018-02152-2.; Jiang S, Yu H, Wang X, et al. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous proteinbased amide proton transfer MR imaging at 3 Tesla // Eur. Radiol. Vol. 26, No. 1. Р. 64–71, Jan. 2016, doi:10.1007/s00330-015-3805-1.; Zhang H.-W., Liu X.-L., Zhang H.-B. et al. Differentiation of Meningiomas and Gliomas by Amide Proton Transfer Imaging: A Preliminary Study of Brain Tumour Infiltration // Front. Oncol. 2022. Vol. 12. Р. 886968. doi:10.3389/fonc.2022.886968.; Onishi R., Sawaya R., Tsuji K. et al. Evaluation of Temozolomide Treatment for Glioblastoma Using Amide Proton Transfer Imaging and Diffusion MRI // Cancers. 2022. 1907. Vol. 14, No. 8. Р. 1907. doi:10.3390/cancers14081907.; Ma B., Blakeley J.O., Hong X. et al. Applying amide proton transfer‐weighted MRI to distinguish pseudop and rogression from true progression in malignant gliomas // J. Magn. Reson. Imaging. 2016. Vol. 44, No. 2. Р. 456–462. doi:10.1002/jmri.25159.; Du N., Zhou X., Mao R. et al. Preoperative and Noninvasive Prediction of Gliomas Histopathological Grades IDH Molecular Types Using Multiple MRI Characteristics // Front. Oncol. 2022. Vol. 12. Р. 873839. doi:10.3389/fonc.2022.873839.; Hirschler L., Sollmann N., Schmitz‐Abecassis B. et al. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1 // J. Magn. Reson. Imaging. 2023. Vol. 57, No. 6. Р. 1655–1675. doi:10.1002/jmri.28662.; Koike H., Morikawa M., Ishimaru H. et al. Amide Proton Transfer–Chemical Exchange Saturation Transfer Imaging of Intracranial Brain Tumors and Tumor-Like Lesions: Our Experience and a Review // Diagnostics. 2023. Vol. 13, No. 5. Р. 914. doi:10.3390/diagnostics13050914.; Hou H., Chen W., Diao Y. et al. 3D Amide Proton Transfer-Weighted Imaging for Grading Glioma and Correlating IDH Mutation Status: Added Value to 3D Pseudocontinuous Arterial Spin Labelling Perfusion // Mol. Imaging Biol. 2023. Vol. 25, No. 2. Р. 343–352. doi:10.1007/s11307-022-01762-w.; Togao O., Yoshiura T., Keupp J. et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades // Neuro-Oncol. 2014. Vol. 16, No.3. Р. 441–448. doi:10.1093/neuonc/not158.; Mostafa M.A., Abo-Elhoda P.M., Abdelrahman A.S. et al. The added value of relative amide proton transfer (rAPT) to advanced multiparametric MR imaging for brain glioma characterization // Egypt. J. Radiol. Nucl. Med. 2023. Vol. 54, No. 1. Р. 182. doi:10.1186/s43055-023-01104-y.

  5. 5
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 37-45 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 37-45 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1143/702; Игнатьева В.И., Вознюк И.А., Шамалов Н.А., Резник А.В., Виницкий А.А., Деркач Е.В. Социально-экономическое бремя инсульта в Российской Федерации // Журнал неврологии и психиатрии им. С. С. Корсакова. 2023. Т. 123, № 8 (вып. 2). С. 5–15. doi:10.17116/jnevro20231230825.; Campbell B.C.V., Lansberg M.G., Broderick J.P., Derdeyn C.P., Khatri P., Sarraj A., Saver J.L., Vagal A., Albers G.W. Acute Stroke Imaging Research Roadmap IV: Imaging Selection and Outcomes in Acute Stroke Clinical Trials and Practice // Stroke. 2021. Vol. 52, No. 8. P. 2723–2733 doi:10.1161/STROKEAHA.121.035132.; European Society of Radiology (ESR), A. P. Brady, P. Graciano, B. Brkljacic, C. Loewe, M. Szucsich, M. Hierath. The future of radiology in Europe under increasing workload and staff shortages: a survey from the European Society of Radiology (ESR) // Insights into Imaging. 2025. Vol. 16. Art. No. 19. P. 1–10. doi:10.1186/s13244-025-01925-7.; Андропова П.Л., Гаврилов П.В., Савинцева Ж.И. Шкала ASPECTS: межэкспертное соглашение при использовании // Лучевая диагностика и терапия. 2022. Т. 13, № 1. С. 21–27. doi:10.22328/2079-5343-2022-13-1-7-13.; Андропова П.Л., Гаврилов П.В., Савинцева Ж.И., Вовк А.В., Рыбин Е.В. Применение систем искусственного интеллекта в нейрорадиологии острого ишемического инсульта // Лучевая диагностика и терапия. 2021. Т. 12, № 2. С. 30–36. doi:10.22328/2079-5343-2021-12-2-30-36.; Powers W.J., Rabinstein A.A., Ackerson T. et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke // Stroke. 2019. Vol. 50. P. e344–e418. doi:10.1161/STR.0000000000000211.; Щеглова Л.В., Савинова А.В., Камышанская И.Г., Харитонов Н.Ю., Рублева О.В. Использование искусственного интеллекта в диагностике острых нарушений мозгового кровообращения (обзор литературы) // Медицина: теория и практика. 2023. Т. 8, № 4. С. 272–278. doi:10.35478/MTP.2023.4.07.; Soun J.E., Chow D.S., Nagamine M., Takhtawala R.S., Filippi C.G., Yu W., Chang P.D. Artificial Intelligence and Acute Stroke Imaging // American Journal of Neuroradiology. 2021. Vol. 42, No. 1. P. 2–11. doi:10.3174/ajnr.A6897.; Wang Z., Yang W., Li Z., Rong Z., Wang X., Han J., Ma L. A 25-Year Retrospective of the Use of AI for Diagnosing Acute Stroke: Systematic Review // Journal of Medical Internet Research. 2024. Vol. 26. e51234. doi:10.2196/51234.; Larentzakis A., Lygeros N. Artificial intelligence (AI) in medicine as a strategic valuable tool // Pan African Medical Journal. 2021. Vol. 38. P. 244. doi:10.11604/pamj.2021.38.244.25354.

  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: Ю.А. Станкевич, А.А. Тулупов, О.Б. Богомякова, Л.М. Василькив и Р.З. Сагдеев благодарят Российский научный фонд (проект № 19-75-20093) за финансовую поддержку в проведении исследований.

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 4 (2024); 214-228 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4 (2024); 214-228 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1215/967; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1215/1219; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1215/1220; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1215/1221; Puderbaugh M., Emmady P.D. Neuroplasticity. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK557811/. (accessed 09.10.2024); Roth G.A., Johnson C., Abajobir A., Abd-Allah F., Abera S.F., Abyu G., Ahmed M., Aksut B., Alam T., Alam K. et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. doi:10.1016/j.jacc.2017.04.052.; Xing Y., Bai Y. A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol. 2020;57(10):4218-4231. doi:10.1007/s12035-020-02021-1. Epub 2020 Jul 20. PMID: 32691303.; Cabral D.F., Fried P., Koch S., Rice J., Rundek T., Pascual-Leone A., Sacco R., Wright C.B., Gomes-Osman J. Efficacy of mechanisms of neuroplasticity after a stroke. Restor Neurol Neurosci. 2022;40(2):73-84. doi:10.3233/RNN-211227.; Vos Cato M. H., Mason Natasha L., Kuypers Kim P. C. Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Front. Psychiatry. 2021;12:724606. doi:10.3389/fpsyt.2021.724606.; Gulyaeva N.V. Molecular Mechanisms of Neuroplasticity: An Expanding Universe. Biochemistry (Mosc). 2017;82(3):237-242. doi:10.1134/S0006297917030014.; Логинова М.В. Роль нейрональных киназ в адаптации цнс к воздействию факторов ишемии. дисс. к.б.н, Нижний Новгород; 2022.; Magee J.C., Grienberger C. Synaptic Plasticity Forms and Functions. Annu Rev Neurosci. 2020;43:95-117. doi:10.1146/annurev-neuro-090919-022842.; Gatto R.G. Molecular and microstructural biomarkers of neuroplasticity in neurodegenerative disorders through preclinical and diffusion magnetic resonance imaging studies. J. Integr. Neurosci. 2020, 19(3), 571–592. doi:10.31083/j.jin.2020.03.165.; Tsai S.T., Liew H.K., Li H.M., Lin S.Z., Chen S.Y. Harnessing Neurogenesis and Neuroplasticity with Stem Cell Treatment for Addictive Disorders. Cell Transplantation. 2019;28(9-10):1127-1131. doi:10.1177/0963689719859299.; Turolla A., Venneri A., Farina D., Cagnin A., Cheung V.C.K. Rehabilitation Induced Neural Plasticity after Acquired Brain Injury. Neural Plast. 2018;2018:6565418. doi:10.1155/2018/6565418.; Mateos-Aparicio P., Rodríguez-Moreno A. The Impact of Studying Brain Plasticity. Front Cell Neurosci. 2019;13:66. doi:10.3389/fncel.2019.00066.; Gatto R.G. Molecular and microstructural biomarkers of neuroplasticity in neurodegenerative disorders through preclinical and diffusion magnetic resonance imaging studies. J Integr Neurosci. 2020;19(3):571-592. doi:10.31083/j.jin.2020.03.165.; Kouremenou I., Piper M., Zalucki O. Adult Neurogenesis in the Olfactory System: Improving Performance for Difficult Discrimination Tasks? Bioessays. 2020;42(10):e2000065. doi:10.1002/bies.202000065.; Jurkowski M.P., Bettio L., K Woo E., Patten A., Yau S.Y., Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci. 2020;14:576444. doi:10.3389/fncel.2020.576444.; Cao X., Wang Z., Chen X., Liu Y., Abdoulaye I.A., Ju S., Zhang S., Wu S., Wang Y., Guo Y. Changes in Resting-State Neural Activity and Nerve Fibres in Ischaemic Stroke Patients with Hemiplegia. Brain Topogr. 2023 Mar;36(2):255-268. doi:10.1007/s10548-022-00937-6.; Spampinato M.V., Chan C., Jensen J.H., Helpern J.A., Bonilha L., Kautz S.A., Nietert P.J., Feng W. Diffusional Kurtosis Imaging and Motor Outcome in Acute Ischemic Stroke. AJNR Am J Neuroradiol. 2017;38(7):1328-1334. doi:10.3174/ajnr.A5180.; Zhang S., Zhu W., Zhang Y., Yao Y., Shi J., Wang C.Y., Zhu W. Diffusional kurtosis imaging in evaluating the secondary change of corticospinal tract after unilateral cerebral infarction. Am J Transl Res. 2017;9(3):1426-1434.; Li S., Wang Y., Jiang D., Ni D., Kutyreff C.J., Barnhart T.E., Engle J.W., Cai W. Spatiotemporal Distribution of Agrin after Intrathecal Injection and Its Protective Role in Cerebral Ischemia/Reperfusion Injury. Adv Sci (Weinh). 2019;7(4):1902600. doi:10.1002/advs.201902600.; Melo R.T.R., Damazio L.C.M., Lima M.C., Pereira V.G., Okano B.S., Monteiro B.S., Natali A.J., Carlo R.J.D., Maldonado I.R.S.C. Effects of physical exercise on skeletal muscles of rats with cerebral ischemia. Braz J Med Biol Res. 2019;52(12):e8576. doi:10.1590/1414-431X20198576; Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Hohn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft R, Nieswandt B. Loss of Orai2-mediated capacitative Ca(2+) entry is neuroprotective in acute ischemic stroke. Stroke. 2019;50(11):3238-3245. doi:10.1161/STROKEAHA.119.025357.; Zhang Y., Mao X., Lin R., Li Z., Lin J. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca(2+)- mediated neurotoxicity in a rat model of cerebral ischaemiaMol Neurobiol reperfusion injury. Acupunct Med. 2018;36(6):401-407. doi:10.1136/acupmed-2016-011353.; Luo H.Y., Rahman M., Bobrovskaya L., Zhou X.F. The level of proBDNF in blood lymphocytes is correlated with that in the brain of rats with photothrombotic ischemic stroke. Neurotox Res. 2019l;36(1):49-57. doi:10.1007/s12640-019-00022-0.; Chen C., Chencheng Z., Cuiying L., Xiaokun G. Plasmacytoid dendritic cells protect against middle cerebral artery occlusion induced brain injury by priming regulatory T cells. Front Cell Neurosci. 2020 Jan 31;14:8. doi:10.3389/fncel.2020.00008.; Mourtzi T., Dimitrakopoulos D., Kakogiannis D., Salodimitris C., Botsakis K., Meri D.K., Anesti M., Dimopoulou A., Charalampopoulos I., Gravanis A., Matsokis N., Angelatou F., Kazanis I. Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20. Stem Cell Res Ther. 2021;12(1):335. doi:10.1186/s13287-021-02398-3.; Yamaguchi N., Sawano T., Fukumoto K., Nakatani J., Inoue S., Doe N., Yanagisawa D., Tooyama I., Nakagomi T., Matsuyama T., Tanaka H. Voluntary running exercise after focal cerebral ischemia ameliorates dendritic spine loss and promotes functional recovery. Brain Res. 2021;1767:147542. doi:10.1016/j.brainres.2021.147542.; Shen H., Wang J., Shen L., Wang H., Li W., Ding X. Phosphatase and tensin homolog deletion enhances neurite outgrowth during neural stem cell differentiation. Neuropathology. 2020;40(3):224-231. doi:10.1111/neup.12633.; Ito M., Aswendt M., Lee A.G., Ishizaka S., Cao Z., Wang E.H., Levy S.L., Smerin D.L., McNab J.A., Zeineh M., Leuze C., Goubran M., Cheng M.Y., Steinberg G.K. RNA-Sequencing Analysis Revealed a Distinct Motor Cortex Transcriptome in Spontaneously Recovered Mice After Stroke. Stroke. 2018;49(9):2191-2199. doi:10.1161/STROKEAHA.118.021508.; Jeevanandham B., Kalyanpur T., Gupta P., Cherian M. Comparison of post-contrast 3D-T1-MPRAGE, 3D-T1-SPACE and 3D-T2-FLAIR MR images in evaluation of meningeal abnormalities at 3-T MRI. Br J Radiol. 2017;90(1074):20160834. doi:10.1259/bjr.20160834.; Дятлова А.А., Станкевич Ю.А., Богомякова О.Б., Василькив Л.В., Тулупов А.А. Возможности метода диффузионно-тензорной МРТ в динамической оценке ишемического инсульта. REJR 2022; 12(3):29-38. doi:10.21569/2222-7415-2022-12-3-29-38.; Туркин А.М., Погосбекян Э.Л., Тоноян А.С., Шульц Е.И., Максимов И.И., Долгушин М.Б., Хачанова Н.В., Фадеева Л.М., Мельникова-Пицхелаури Т.В., Пицхелаури Д.И., Пронин И.Н., Корниенко В.Н. Диффузионная куртозисная МРТ в оценке перитуморального отека глиобластом и метастазов в головной мозг. Медицинская визуализация. 2017;(4):97-112. doi:10.24835/1607-0763-2017-4-97-112.; Афандиев Р.М., Захарова Н.Е., Погосбекян Э.Л., Потапов А.А., Пронин И.Н. Диффузиoннo-тeнзoрная и диффузиoннo-куртoзиcнaя магнитно-резонансная томография в oцeнкe диффузнoгo aкcoнaльнoгo пoврeждeния (обзор литературы). Радиология – практика. 2022;(1):77-90. doi:10.52560/2713-0118-2022-1-77-90.; Тоноян А.С., Пронин И.Н., Пицхелаури Д.И., Захарова Н.Е., Хачанова Н.В., Фадеева Л.М., Погосбекян Э.Л., Потапов А.А., Шульц Е.И., Александрова Е.В., Гаврилов А.Г., Корниенко В.Н. Диффузионно-куртозисная магнитно-резонансная томография – новый метод оценки негауссовской диффузии в нейрорадиологии. Медицинская физика. 2014; 64 (4): 57-63.; Chen V.C., Kao C.J., Tsai Y.H., McIntyre R.S., Weng J.C. Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. J Pers Med. 2021 3;11(3):174. doi:10.3390/jpm11030174.; Анпилогова К.С., Чегина Д.С., Игнатова Т.С., Ефимцев А.Ю., Труфанов Г.Е. Структурная реорганизация проводящих путей белого вещества головного мозга у пациентов со спастической диплегией после транслингвальной нейростимуляции. Трансляционная медицина. 2021;8(4):27-34. doi:10.18705/2311-4495-2021-8-4-27-34.; Погосбекян Э.Л., Туркин А.М., Баев А.А., Шульц Е.И., Хачанова Н.В., Максимов И.И., Фадеева Л.М., Пронин И.Н., Корниенко В.Н. Диффузионная куртозисная мрт в оценке микроструктуры вещества головного мозга. результаты исследований здоровых добровольцев. Медицинская визуализация. 2018;(4):108-126. doi:10.24835/1607-0763-2018-4-108-126.; Räty S., Ruuth R., Silvennoinen K., Sabel B.A., Tatlisumak T., Vanni S. Resting-state Functional Connectivity After Occipital Stroke. Neurorehabil Neural Repair. 2022;36(2):151-163. doi:10.1177/15459683211062897.; Just N., Adriaensen H., Ella A., Chevillard P.M., Batailler M., Dubois J.P., Keller M., Migaud M. Blood oxygen level dependent fMRI and perfusion MRI in the sheep brain. Brain Res. 2021;1760:147390. doi:10.1016/j.brainres.2021.147390.; Rocca M.A., Schoonheim M.M., Valsasina P., Geurts J.J.G., Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi:10.1016/j.nicl.2022.103076.; Al-Arfaj H.K., Al-Sharydah A.M., AlSuhaibani S.S., Alaqeel S., Yousry T. Task-Based and Resting-State Functional MRI in Observing Eloquent Cerebral Areas Personalized for Epilepsy and Surgical Oncology Patients: A Review of the Current Evidence. J Pers Med. 2023;13(2):370. doi:10.3390/jpm13020370.; Azeez AK, Biswal BB. A Review of Resting-State Analysis Methods. Neuroimaging Clin N Am. 2017;27(4):581-592. doi:10.1016/j.nic.2017.06.001.; Буккиева Т.А., Чегина Д.С., Ефимцев А.Ю., Левчук А.Г., Исхаков Д.К., Соколов А.В., Фокин В.А., Труфанов Г.Е. Функциональная МРТ покоя. Общие вопросы и клиническое применение. REJR 2019; 9(2):150-170. doi:10.21569/2222-7415- 2019-9-2-150-170.; Manzhurtsev A.V., Yakovlev A.N., Bulanov P.A., Menshchikov P.E., Ublinskiy M.V., Melnikov I.A., Akhadov T.A., Semenova N.A. Macromolecular-Suppressed GABA-Edited MR Spectroscopy in the Posterior Cingulate Cortex of Patients With Acute Mild Traumatic Brain Injury. J Magn Reson Imaging. 2023;57(5):1433-1442. doi:10.1002/jmri.28410.; Dąbrowski J., Czajka A., Zielińska-Turek J., Jaroszyński J., Furtak-Niczyporuk M., Mela A., Poniatowski Ł.A., Drop B., Dorobek M., Barcikowska-Kotowicz M., Ziemba A. Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast. 2019;2019:9708905. doi:10.1155/2019/9708905.; Braun R.G., Wittenberg G.F. Motor Recovery: How Rehabilitation Techniques and Technologies Can Enhance Recovery and Neuroplasticity. Semin Neurol. 2021;41(2):167-176. doi:10.1055/s-0041-1725138.; Wang F., Zhang S., Zhou F., Zhao M., Zhao H. Early physical rehabilitation therapy between 24 and 48 h following acute ischemic stroke onset: a randomized controlled trial. Disabil Rehabil. 2022;44(15):3967-3972. doi:10.1080/09638288.2021.1897168.; Belagaje S.R. Stroke Rehabilitation. Continuum (Minneap Minn). 2017;23(1, Cerebrovascular Disease):238-253. doi:10.1212/CON.0000000000000423.; Liu Y., Yin J.H., Lee J.T., Peng G.S., Yang F.C. Early Rehabilitation after Acute Stroke:The Golden Recovery Period. Acta Neurol Taiwan. 2022. Epub ahead of print.; Ashcroft S.K., Ironside D.D., Johnson L., Kuys S.S., Thompson-Butel A.G. Effect of Exercise on Brain-Derived Neurotrophic Factor in Stroke Survivors: A Systematic Review and Meta-Analysis. Stroke. 2022;53(12):3706-3716. doi:10.1161/STROKEAHA.122.039919.; Kato A., Hayashi H. Aerobic Exercise for Upper Limb Function in a Patient With Severe Paralysis With Subacute Stroke: A Case Report. Cureus. 2023;15(5):e39502. doi:10.7759/cureus.39502.; Broatch J.R., Zarekookandeh N., Glarin R., Strik M., Johnston L.A., Moffat B.A., Bird L.J., Gunningham K., Churilov L., Johns H.T., Askew C.D., Levinger I., O'Riordan S.F., Bishop D.J., Brodtmann A. Train Smart Study: protocol for a randomised trial investigating the role of exercise training dose on markers of brain health in sedentary middle-aged adults. BMJ Open. 2023;13(5):e069413. doi:10.1136/bmjopen-2022-069413.; Zhang Y., Qiu X., Chen J., Ji C., Wang F., Song D., Liu C., Chen L., Yuan P. Effects of exercise therapy on patients with poststroke cognitive impairment: A systematic review and meta-analysis. Front Neurosci. 2023;17:1164192. doi:10.3389/fnins.2023.1164192.; Lee K.E., Choi M., Jeoung B. Effectiveness of Rehabilitation Exercise in Improving Physical Function of Stroke Patients: A Systematic Review. Int J Environ Res Public Health. 2022;19(19):12739. doi:10.3390/ijerph191912739.; Maier M., Ballester B.R., Verschure P.F.M.J. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci. 2019;13:74. doi:10.3389/fnsys.2019.00074.; Dietmann A., Blanquet M., Rösler K.M., Scheidegger O. Effects of high resistance muscle training on corticospinal output during motor fatigue assessed by transcranial magnetic stimulation. Front Physiol. 2023;14:1125974. doi:10.3389/fphys.2023.1125974.; Biderman N., Gershman S.J., Shohamy D. The role of memory in counterfactual valuation. J Exp Psychol Gen. 2023;152(6):1754-1767. doi:10.1037/xge0001364.; Verhoeven F.M., Newell K.M. Unifying practice schedules in the timescales of motor learning and performance. Hum Mov Sci. 2018;59:153-169. doi:10.1016/j.humov.2018.04.004.; Reichelt A.C., Hare D.J., Bussey T.J., Saksida L.M. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci. 2019;42(7):458-470. doi:10.1016/j.tins.2019.04.003.; Reber T.P., Mackay S., Bausch M., Kehl M.S., Borger V., Surges R., Mormann F. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat Commun. 2023;14(1):2496. doi:10.1038/s41467-023-38190-5.; Li C., Kovács G. The effect of short-term training on repetition probability effects for non-face objects. Biol Psychol. 2022;175:108452. doi:10.1016/j.biopsycho.2022.108452; Kim H., Kim J., Lee H.J., Lee J., Na Y., Chang W.H., Kim Y.H. Optimal stimulation site for rTMS to improve motor function: Anatomical hand knob vs. hand motor hotspot. Neurosci Lett. 2021;740:135424. doi:10.1016/j.neulet.2020.135424.; Vivar C., Peterson B., Pinto A., Janke E., van Praag H. Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired. eNeuro. 2023;10(5):ENEURO.0084-23.2023. doi:10.1523/ENEURO.0084-23.2023.; Norman S.L., Wolpaw J.R., Reinkensmeyer D.J. Targeting neuroplasticity to improve motor recovery after stroke: an artificial neural network model. Brain Commun. 2022;4(6):fcac264. doi:10.1093/braincomms/fcac264.; Banduni O., Saini M., Singh N., Nath D., Kumaran S.S., Kumar N., Srivastava M.V.P., Mehndiratta A. Post-Stroke Rehabilitation of Distal Upper Limb with New Perspective Technologies: Virtual Reality and Repetitive Transcranial Magnetic Stimulation-A Mini Review. J Clin Med. 2023;12(8):2944. doi:10.3390/jcm12082944.; Stockbridge M.D., Bunker L.D., Hillis A.E. Reversing the Ruin: Rehabilitation, Recovery, and Restoration After Stroke. Curr Neurol Neurosci Rep. 2022;22(11):745-755. doi:10.1007/s11910-022-01231-5.; Gregor S., Saumur T.M., Crosby L.D., Powers J., Patterson K.K. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl. 2021;3(2):100111. doi:10.1016/j.arrct.2021.100111.; Demers M., Varghese R., Winstein C. Retrospective Analysis of Task-Specific Effects on Brain Activity After Stroke: A Pilot Study. Front Hum Neurosci. 2022;16:871239. doi:10.3389/fnhum.2022.871239.; Wilkins K.B., Owen M., Ingo C., Carmona C., Dewald J.P.A., Yao J. Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention. Front Neurol. 2017;8:284. doi:10.3389/fneur.2017.00284.; He D, Cao S, Le Y, Wang M, Chen Y, Qian B. Virtual Reality Technology in Cognitive Rehabilitation Application: Bibliometric Analysis. JMIR Serious Games. 2022 Oct 19;10(4):e38315. doi:10.2196/38315.; Munoz-Novoa M., Kristoffersen M.B., Sunnerhagen K.S., Naber A., Alt Murphy M., Ortiz-Catalan M. Upper Limb Stroke Rehabilitation Using Surface Electromyography: A Systematic Review and Meta-Analysis. Front Hum Neurosci. 2022;16:897870. doi:10.3389/fnhum.2022.897870.; Clark B., Whitall J., Kwakkel G., Mehrholz J., Ewings S., Burridge J. The effect of time spent in rehabilitation on activity limitation and impairment after stroke. Cochrane Database Syst Rev. 20215;10(10):CD012612. doi:10.1002/14651858.CD012612.pub2.; Wissel J., Ri S. Assessment, goal setting, and botulinum neurotoxin a therapy in the management of post-stroke spastic movement disorder: updated perspectives on best practice. Expert Rev Neurother. 2022;22(1):27-42. doi:10.1080/14737175.2021.2021072.; Gail A. Turning decisions into actions. PLoS Biol. 2022;20(12):e3001927. doi:10.1371/journal.pbio.3001927.; Johnson B.P., Cohen L.G. Reward and plasticity: Implications for neurorehabilitation. Handb Clin Neurol. 2022;184:331-340. doi:10.1016/B978-0-12-819410-2.00018-7; Sabah K., Dolk T., Meiran N., Dreisbach G. When less is more: costs and benefits of varied vs. fixed content and structure in short-term task switching training. Psychol Res. 2019;83(7):1531-1542. doi:10.1007/s00426-018-1006-7.; Sidarta A., Lim Y.C., Wong R.A., Tan I.O., Kuah C.W.K., Ang W.T. Current clinical practice in managing somatosensory impairments and the use of technology in stroke rehabilitation. PLoS One. 2022;17(8):e0270693. doi:10.1371/journal.pone.0270693.; Welniarz Q., Roze E., Béranger B., Méneret A., Vidailhet M., Lehéricy S., Pouget P., Hallett M., Meunier S., Galléa C. Identification of a Brain Network Underlying the Execution of Freely Chosen Movements. Cereb Cortex. 2021;32(1):216-230. doi:10.1093/cercor/bhab204.; Stewart J.C., Baird J.F., Lewis A.F., Fritz S.L., Fridriksson J. Effect of behavioural practice targeted at the motor action selection network after stroke. Eur J Neurosci. 2022;56(4):4469-4485. doi:10.1111/ejn.15754.; Sakai K., Goto K., Tanabe J., Amimoto K., Kumai K., Kamio H., Ikeda Y. Effects of visual-motor illusion on functional connectivity during motor imagery. Exp Brain Res. 2021;239(7):2261-2271. doi:10.1007/s00221-021-06136-2.; Bonnavion P., Fernández E.P., Varin C., de Kerchove d'Exaerde A. It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. Neurochem Int. 2019;124:200-214. doi:10.1016/j.neuint.2019.01.009.; Hardwick R.M., Caspers S., Eickhoff S.B., Swinnen S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev. 2018;94:31-44. doi:10.1016/j.neubiorev.2018.08.003.; Lugtmeijer S., Lammers N.A., de Haan E.H.F., de Leeuw F.E., Kessels R.P.C. Post-Stroke Working Memory Dysfunction: A Meta-Analysis and Systematic Review. Neuropsychol Rev. 2021;31(1):202-219. doi:10.1007/s11065-020-09462-4.; Tulupov A.A., Korostyshevskaya A.M., Savelov A.A., Stankevich Y.A., Bogomyakova O.B., Vasilkiv L.M., Petrovsky E.D., Zhuravleva K.V., Sagdeev R.Z. Magnetic resonance in the evaluation circulation and mass transfer in human. Russ Chem Bull. 2021;70(12):2266-2277. doi:10.1007/s11172-021-3344-7.

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: TRAUMA; Том 17, № 5 (2016); 45-49
    ТРАВМА; Том 17, № 5 (2016); 45-49

    File Description: application/pdf

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Contributors: Not declared., Отсутствует.

    Source: Current Pediatrics; Том 23, № 5 (2024); 301-308 ; Вопросы современной педиатрии; Том 23, № 5 (2024); 301-308 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3600/1396; Abbas L, Joseph A, Kunzler E, Jacobe HT. Morphea: progress to date and the road ahead. Ann Transl Med. 2021;9(5):437. doi: https://doi.org/10.21037/atm-20-6222; Chiu YE, Vora S, Kwon EK, Maheshwari M. A significant proportion of children with morphea en coup de sabre and Parry-Romberg syndrome have neuroimaging findings. Pediatr Dermatol. 2012;29(6):738–748. doi: https://doi.org/10.1111/pde.12001; Fan W, Obiakor B, Jacobson R, et al. Clinical and therapeutic course in head variants of linear morphea in adults: a retrospective review. Arch Dermatol Res. 2023;315(5):1161–1170. doi: https://doi.org/10.1007/s00403-022-02478-1; Coican A, Giansiracusa DM, Greenfield MF. En Coup de Sabre in a Pediatric Patient Treated With Calcipotriene. Cureus. 2023;15(7):e41459. doi: https://doi.org/10.7759/cureus.41459; Ulc E, Rudnicka L, Waśkiel-Burnat A, et al. Therapeutic and Reconstructive Management Options in Scleroderma (Morphea) en Coup de Sabre in Children and Adults. A Systematic Literature Review. J Clin Med. 2021;10(19):4517. doi: https://doi.org/10.3390/jcm10194517; Knobler R, Moinzadeh P, Hunzelmann N, et al. European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: localized scleroderma, systemic sclerosis and overlap syndromes. J Eur Acad Dermatol Venereol. 2017;31(9):6. doi: https://doi.org/10.1111/jdv.14458; Tkachenko E, Cunningham MJ, O’Donnell PJ, Levin NA. Adultonset bilateral Parry-Romberg syndrome. JAAD Case Rep. 2019;5(3): 209–212. doi: https://doi.org/10.1016/j.jdcr.2018.11.015; Shah SS, Chhabra M. Parry-Romberg Syndrome. 2022 Nov 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.; De la Garza-Ramos C, Jain A, Montazeri SA, et al. Brain Abnormalities and Epilepsy in Patients with Parry-Romberg Syndrome. AJNR Am J Neuroradiol. 2022;43(6):850–856. doi: https://doi.org/10.3174/ajnr.A7517; Doolittle DA, Lehman VT, Schwartz KM, et al. CNS imaging findings associated with Parry-Romberg syndrome and en coup de sabre: correlation to dermatologic and neurologic abnormalities. Neuroradiology. 2015;57(1):21–34. doi: https://doi.org/10.1007/s00234-014-1448-6; Knights H, Minas E, Khan F, et al. Magnetic resonance imaging findings in children with Parry-Romberg syndrome and en coup de sabre. Pediatr Rheumatol Online J. 2021;19(1):42. doi: https://doi.org/10.1186/s12969-021-00512-6; Weibel L, Harper JI. Linear morphoea follows Blaschko’s lines. Br J Dermatol. 2008;159(1):175–181. doi: https://doi.org/10.1111/j.1365-2133.2008.08647.x; Torok KS, Li SC, Jacobe HM, et al. Immunopathogenesis of Pediatric Localized Scleroderma. Front Immunol. 2019;10:908. doi: https://doi.org/10.3389/fimmu.2019.00908; Meng L, Wang Q. Neuroimaging findings of linear scleroderma of the head and face: a case report. J Int Med Res. 2022;50(1):3000605211066002. doi: https://doi.org/10.1177/03000605211066002; Magro CM, Halteh P, Olson LC, et al. Linear scleroderma “en coup de sabre” with extensive brain involvement — Clinicopathologic correlations and response to anti-Interleukin-6 therapy. Orphanet J Rare Dis. 2019;14(1):110. doi: https://doi.org/10.1186/s13023-019-1015-7

  19. 19
    Academic Journal

    Source: Current Pediatrics; Том 22, № 6 (2023); 521-527 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 521-527 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3360/1354; van Erp TGM, Walton E, Hibar DP, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84(9): 644–654. doi: https://doi.org/10.1016/j.biopsych.2018.04.023; Opel N, Goltermann J, Hermesdorf M, et al. Cross-Disorder Analysis of Brain Structural Abnormalities in Six Major Psychiatric Disorders: A Secondary Analysis of Mega- and Meta-analytical Findings From the ENIGMA Consortium. Biol Psychiatry. 20201;88(9):678–686. doi: https://doi.org/10.1016/j.biopsych.2020.04.027; Vetter NC, Backhausen LL, Buse J, et al. Altered brain morphology in boys with attention deficit hyperactivity disorder with and without comorbid conduct disorder/oppositional defiant disorder. Hum Brain Mapp. 2020;41(4):973–983. doi: https://doi.org/10.1002/hbm.24853; Arribarat G, Peran P. Quantitative MRI markers in Parkinson’s disease and parkinsonian syndromes. Curr Opin Neurol. 2020;33(2):222–229. doi: https://doi.org/10.1097/WCO.0000000000000796; Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, et al. The evolution of Big Data in neuroscience and neurology. J Big Data. 2023; 10(1):116. doi: https://doi.org/10.1186/s40537-023-00751-2; Martínez K, Colom R. Imaging the Intelligence of Humans. In: The Cambridge Handbook of Intelligence and Cognitive Neuroscience. Barbey AK, Karama S, Haier RJ, eds. Cambridge University Press; 2021. pp. 44–69. doi: https://doi.org/10.1017/9781108635462; Gaser C. Structural MRI: Morphometry. In: Neuroeconomics. Reuter M, Montag C, eds. Springer Berlin, Heidelberg; 2016. pp. 399–409. doi: https://doi.org/10.1007/978-3-642-35923-1; Marquand AF, Kia SM, Zabihi M, et al. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24(10):1415–1424. doi: https://doi.org/10.1038/s41380-019-0441-1; Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry. 1998;172:527–532. doi: https://doi.org/10.1192/bjp.172.6.527; Hayashi T, Hou Y, Glasser MF, et al. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage. 2021;229: 117726. doi: https://doi.org/10.1016/j.neuroimage.2021.117726; Hoogman M, Muetzel R, Guimaraes JP, et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am J Psychiatry. 2019;176(7): 531–542. doi: https://doi.org/10.1176/appi.ajp.2019.18091033; Kong XZ, Postema MC, Guadalupe T, et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp. 2022;43(1):167–181. doi: https://doi.org/10.1002/hbm.25033; Grasby KL, Jahanshad N, Painter JN, et al. The genetic architecture of the human cerebral cortex. Science. 2020 Mar 20;367(6484):eaay6690. doi: https://doi.org/10.1126/science.aay6690; Bookheimer SY, Salat DH, Terpstra M, et al. The Lifespan Human Connectome Project in Aging: An overview. Neuroimage. 2019;185:335–348. doi: https://doi.org/10.1016/j.neuroimage.2018.10.009; Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–319. doi: https://doi.org/10.1016/S2215-0366(17)30049-4; van Rooij D, Anagnostou E, Arango C, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry. 2018;175(4):359–369. doi: https://doi.org/10.1176/appi.ajp.2017.17010100; Nam KW, Castellanos N, Simmons A, et al. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage. 2015;115:64–75. doi: https://doi.org/10.1016/j.neuroimage.2015.04.015; Vargha -Khadem F, Watkins KE, Price CJ, et al. Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A. 1998;95(21):12695–12700. doi: https://doi.org/10.1073/pnas.95.21.12695; Wright IC, Ellison ZR, Sharma T, et al. Mapping of grey matter changes in schizophrenia. Schizophr Res. 1999;35(1):1–14. doi: https://doi.org/10.1016/s0920-9964(98)00094-2; Wright IC, McGuire PK, Poline JB, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage. 1995;2(4):244–252. doi: https://doi.org/10.1006/nimg.1995.1032; Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. doi: https://doi.org/10.1006/nimg.1998.0395; Ai L, Craddock RC, Tottenham N, et al. Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging. Neuroimage. 2021;226:117585. doi: https://doi.org/10.1016/j.neuroimage.2020.117585; Ashburner J, Friston KJ. Voxel-based morphometry — the methods. Neuroimage. 2000;11(6 Pt 1):805–821. doi: https://doi.org/10.1006/nimg.2000.0582; De Bellis MD, Keshavan MS, Beers SR, et al. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex. 2001;11(6):552–557. doi: https://doi.org/10.1093/cercor/11.6.552; Backhausen LL, Herting MM, Tamnes CK, Vetter NC. Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychol Rev. 2022;32(2):400–418. doi: https://doi.org/10.1007/s11065-021-09496-2; Dong HM, Castellanos FX, Yang N, et al. Charting brain growth in tandem with brain templates at school age. Sci Bull (Beijing). 2020;65(22):1924–1934. doi: https://doi.org/10.1016/j.scib.020.07.027; Raznahan A, Shaw P, Lalonde F, et al. How does your cortex grow? J Neurosci. 2011;31(19):7174–7177. doi: https://doi.org/10.1523/JNEUROSCI.0054-11.2011; Greve DN. An Absolute Beginner’s Guide to Surface- and Voxel-based Morphometric Analysis. In: Proceedings of the International Society for Magnetic Resonance in Medicine. 2011. vol. 19. p. 33.; Noorde rmeer SDS, Luman M, Greven CU, et al. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder. Biol Psychiatry. 2017;82(9): 642–650. doi: https://doi.org/10.1016/j.biopsych.2017.07.008; Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009; 29(31):9661–9664. doi: https://doi.org/10.1523/JNEUROSCI.2160-09.2009; Li Z, Zhang J, Wang F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes. Ann Transl Med. 2020;8(18):1150. doi: https://doi.org/10.21037/atm-20-5845; Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–781. doi: https://doi.org/10.1016/j.neuroimage.2012.01.021; Winkler AM, Kochunov P, Blangero J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53(3):1135–1146. doi: https://doi.org/10.1016/j.neuroimage.2009.12.028; Pua EPK, Barton S, Williams K, et al. Individualised MRI training for paediatric neuroimaging: A child-focused approach. Dev Cogn Neurosci. 2020;41:100750. doi: https://doi.org/10.1016/j.dcn.2019.100750; Raschle NM, Lee M, Buechler R, et al. Making MR imaging child’s play — pediatric neuroimaging protocol, guidelines and procedure. J Vis Exp. 2009;(29):1309. doi: https://doi.org/10.3791/1309; Reuter M, Tisdall MD, Qureshi A, et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage. 2015;107:107–115. doi: https://doi.org/10.1016/j.neuroimage.2014.12.006; Tijsse n RH, Jansen JF, Backes WH. Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T. Hum Brain Mapp. 2009;30(8):2641–2655. doi: https://doi.org/10.1002/hbm.20695; Barisano G, Sepehrband F, Ma S, et al. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol. 2019;92(1094):20180492. doi: https://doi.org/10.1259/bjr.20180492; Backhausen LL, Herting MM, Buse J, et al. Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci. 2016;10:558. doi: https://doi.org/10.3389/fnins.2016.00558; Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–980. doi: https://doi.org/10.1016/j.neuroimage.2006.01.021; Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. doi: https://doi.org/10.1016/j.neuroimage.2010.06.010; Ma J, Miller MI, Younes L. A bayesian generative model for surface template estimation. Int J Biomed Imaging. 2010:2010:974957. doi: https://doi.org/10.1155/2010/974957; Tsai CJ, Lin HY, Tseng IW, Gau SS. Brain voxel-based morphometry correlates of emotion dysregulation in attention-deficit hyperactivity disorder. Brain Imaging Behav. 2021;15(3):1388–1402. doi: https://doi.org/10.1007/s11682-020-00338-y; Paus T, Wong AP, Syme C, Pausova Z. Sex differences in the adolescent brain and body: Findings from the saguenay youth study. J Neurosci Res. 2017;95(1-2):362–370. doi: https://doi.org/10.1002/jnr.23825; Mills KL, Goddings AL, Herting MM, et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016;141:273–281. doi: https://doi.org/10.1016/j.neuroimage.2016.07.044; Vijayakumar N, Mills KL, Alexander-Bloch A, et al. Structural brain development: A review of methodological approaches and best practices. Dev Cogn Neurosci. 2018;33:129–148. doi: https://doi.org/10.1016/j.dcn.2017.11.008; Ingre M. Why small low-powered studies are worse than large high-powered studies and how to protect against “trivial” findings in research: comment on Friston (2012). Neuroimage. 2013;81: 496–498. doi: https://doi.org/10.1016/j.neuroimage.2013.03.030

  20. 20
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 19-28 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 19-28 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1998/1490; Ohuma E.O., Moller A.B., Bradley E., Chakwera S., Hussain-Alkhateeb L., Lewin A. еt al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023; 402(10409): 1261– 1271. DOI:10.1016/S0140-6736(23)00878-4; Hamilton B.E., Martin J.A., Osterman M.J.K. Births: Provisional data for 2022. Vital Statistics Rapid Release; no 28. Hyattsville, MD: National Center for Health Statistics. June 2023. DOI:10.15620/cdc:127052; Здравоохранение в России. 2023: Статистический сборник. Росстат. М., З–46 2023; 179 с.; Huff K., Rose R.S., Engle W.A. Late Preterm Infants: Morbidities, Mortality, and Management Recommendations. Pediatr Clin North Am. 2019; 66(2): 387–402. DOI:10.1016/j.pcl.2018.12.008; Sharma D., Padmavathi I.V., Tabatabaii S.A., Farahbakhsh N. Late preterm: a new high-risk group in neonatology. J Matern Fetal Neonatal Med. 2021; 34(16): 2717–2730. DOI:10.1080/14767058.2019.1670796; Караваева А.Л., Тимофеева Л.А., Цечоева Т.К., Тютюнник В.Л., Кан Н.Е., Зубков В.В. Поздние недоношенные в зоне повышенного внимания. Обзор литературы. Часть 2. Особенности заболеваемости поздних недоношенных новорожденных. Неонатология: новости, мнения, обучение. 2023; 11(1): 65–75. DOI:10.33029/2308-2402-2023-11-1-65-75; Софронова Л.Н., Федорова Л.А., Кянксеп А.Н., Шеварева Е.А., Ялфимова Е.А. Поздние недоношенные — группа высокого риска ранних и отдаленных осложнений. Педиатрия им. Г.Н. Сперанского. 2018; 97 (1): 131–140. DOI:10.24110/0031-403X-2018-97-1-131-140; Саркисян Е.А., Думова С.В., Чугунова О.Л., Устенко Е.С., Шумилов П.В. Анатомо-физиологические особенности поздних недоношенных детей, ведущие к формированию у них различных патологических процессов. Педиатрия им. Г.Н. Сперанского. 2023; 102 (1): 71–81. DOI:10.24110/0031-403X2023-102-1-71-81; Volpe J.J. Commentary — The late preterm infant: Vulnerable cerebral cortex and large burden of disability. J Neonatal Perinatal Med. 2022; 15(1): 1–5. DOI:10.3233/NPM-210803; Favrais G., Saliba E. Neurodevelopmental outcome of latepreterm infants: Literature review. Arch Pediatr. 2019; 26(8): 492–496. DOI:10.1016/j.arcped.2019.10.005; Ramdin T., Ballot D., Rakotsoane D., Madzudzo L., Brown N., Chirwa T. еt al. Neurodevelopmental outcome of late preterm infants in Johannesburg, South Africa. BMC Pediatr. 2018; 18(1): 326. DOI:10.1186/s12887-018-1296-3; Townley Flores C., Gerstein A., Phibbs C.S., Sanders L.M. Short-Term and Long-Term Educational Outcomes of Infants Born Moderately and Late Preterm. J Pediatr. 2021; 232: 31–37. e2. DOI:10.1016/j.jpeds.2020.12.070; Shah P., Kaciroti N., Richards B., Oh W., Lumeng J.C. Developmental Outcomes of Late Preterm Infants From Infancy to Kindergarten. Pediatrics. 2016; 138(2): e20153496. DOI:10.1542/peds.2015-3496; Ballantyne M., Benzies K.M., McDonald S., Magill-Evans J., Tough S. Risk of developmental delay: Comparison of late preterm and full-term Canadian infants at age 12 months. Early Hum Dev. 2016; 101: 27–32. DOI:10.1016/j.earlhumdev.2016.04.004; Sejer E.P.F., Bruun F.J., Slavensky J.A., Mortensen E.L., Schiøler Kesmodel U. Impact of gestational age on child intelligence, attention and executive function at age 5: a cohort study. BMJ Open. 2019; 9(9): e028982. DOI:10.1136/ bmjopen-2019-028982; Яхиева-Онихимовская Д.А., Колесникова С.М., Филиппова В.В. Сравнительная характеристика новорожденных с «поздней недоношенностью» и доношенных новорожденных детей с синдромом задержки развития плода. Здравоохранение Дальнего Востока. 2020; 1(83): 59–64. DOI:10.33454/1728-1261-2020-1-59-64; Laptook A.R. Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants. Clin Perinatol. 2013; 40(4): 723–738. DOI:10.1016/j.clp.2013.07.005; Özek E., Kersin S.G. Intraventricular hemorrhage in preterm babies. Turk Pediatri Ars. 2020; 55(3): 215–221. DOI:10.14744/TurkPediatriArs.2020.66742; Scheinost D., Chang J., Lacadie C., Brennan-Wydra E., Constable R.T., Chawarska K. et al. Functional connectivity for the language network in the developing brain: 30 weeks of gestation to 30 months of age. Cereb Cortex. 2022; 32(15): 3289–3301. DOI:10.1093/cercor/bhab415; Fumagalli M., Ramenghi L.A., De Carli A., Bassi L., Farè P., Dessimone F. еt al. Cranial ultrasound findings in late preterm infants and correlation with perinatal risk factors. Ital J Pediatr. 2015; 41: 65. DOI:10.1186/s13052-015-0172-0; Волянюк Е.В., Закирова А.М. Пограничные состояния в периоде адаптации поздних недоношенных детей. Практическая медицина. 2020; 18(6): 97–100. DOI:10.32000/2072-1757-2020-6-97-100; Pisani F., Facini C., Bianchi E., Giussani G., Piccolo B., Beghi E. Incidence of neonatal seizures, perinatal risk factors for epilepsy and mortality after neonatal seizures in the province of Parma, Italy. Epilepsia. 2018; 59(9): 1764–1773. DOI:10.1111/epi.14537; Elbaum C., Beam K.S., Dammann O., Dammann C.E.L. Antecedents and outcomes of hypothermia at admission to the neonatal intensive care unit. J Matern Fetal Neonatal Med. 2021; 34(1): 66–71. DOI:10.1080/14767058.2019.1597043; Быкова Ю.К., Филиппова Е.А., Ватолин К.В., Ушакова Л.В., Амирханова Д.Ю. Структурные изменения головного мозга, гипоксически-ишемическое состояние на ранних стадиях центральной нервной системы у новорожденных разного гестационного возраста. Сопоставление эхографической картины с данными морфологических исследований. Неонатология: Новости. Мнения. Обучение. 2016; 3: 28–38.; Проект клинических рекомендаций Российской ассоциации специалистов перинатальной медицины совместно с Российским обществом неонатологов: здоровый новорожденный, рожденный в условиях стационара. 2023. https://www.raspm.ru/files/zdorovyi_stacionar.pdf / Ссылка активна на 4.04.2024.; Mazmanyan P.A., Nikoghosyan K.V., Kerobyan V.V., Mellor K.J., Diez-Sebastian J., Martinez-Biarge M. Preterm cranial ultrasound scanning is both feasible and effective in a middle-income country. Acta Paediatr. 2016; 105(7): e291–9. DOI:10.1111/apa.13411; Diwakar R.K., Khurana O. Cranial Sonography in Preterm Infants with Short Review of Literature. J Pediatr Neurosci. 2018; 13(2): 141–149. DOI:10.4103/jpn.JPN_60_17; Ballardini E., Tarocco A., Baldan A., Antoniazzi E., Garani G., Borgna-Pignatti C. Universal cranial ultrasound screening in preterm infants with gestational age 33–36 weeks. A retrospective analysis of 724 newborns. Pediatr Neurol. 2014; 51(6): 790–794. DOI:10.1016/j.pediatrneurol.2014.08.012; Асташева И.Б., Гусева М.Р., Атамурадов Р., Маренков В.В., Кюн Ю.А. Современные возможности диагностики поражения зрительного анализатора при перинатальном поражении центральной нервной системы у доношенных и недоношенных детей. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022; 122(12): 7–15. DOI:10.17116/jnevro20221221217; Walsh J.M., Doyle L.W., Anderson P.J., Lee K.J., Cheong J.L. Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology. 2014; 273(1): 232–240. DOI:10.1148/radiol.14132410.; Cheong J.L., Thompson D.K., Spittle A.J., Potter C.R., Walsh J.M., Burnett A.C. et al. Brain Volumes at Term-Equivalent Age Are Associated with 2-Year Neurodevelopment in Moderate and Late Preterm Children. J Pediatr. 2016; 174: 91–97.e1. DOI:10.1016/j.jpeds.2016.04.002.; Клинические рекомендации Российской ассоциации специалистов перинатальной медицины: амплитудно-интегрированная электроэнцефалография в оценке функционального состояния центральной нервной системы у новорожденных разного гестационного возраста. 2015. https://www.raspm.ru/files/elektro-enctfalo-grafia.pdf / Ссылка активна на 4.04.2024; Jiang C.M., Yang Y.H., Chen L.Q., Shuai X.H., Lu H., Xiang J.H. et al. Early amplitude-integrated EEG monitoring 6 h after birth predicts long-term neurodevelopment of asphyxiated late preterm infants. Eur J Pediatr. 2015; 174(8): 1043–1052. DOI:10.1007/s00431-015-2490-z; Shen L., Tao M.Y., Shi Y.X., Yin J., Yin Q.G. Value of amplitude-integrated electroencephalogram combined with quantitative indices of cranial magnetic resonance imaging in predicting short-term neurodevelopment in moderately and late preterm infants: a prospective study. Zhongguo Dang Dai Er Ke Za Zhi. 2021; 23(10): 987–993. English, Chinese. DOI:10.7499/j.issn.1008-8830.2106077; Srinivas J.R. Neurodevelopmental outcome of late-preterm infants: A pragmatic review. Aust J Gen Pract. 2018; 47(11): 776–781.; Karnati S., Kollikonda S., Abu-Shaweesh J. Late preterm infants — Changing trends and continuing challenges. Int J Pediatr Adolesc Med. 2020; 7(1): 36–44. DOI:10.1016/j.ijpam.2020.02.006; Smyrni N., Koutsaki M., Petra M., Nikaina E., Gontika M., Strataki H. et al. Moderately and Late Preterm Infants: Short- and Long-Term Outcomes From a Registry-Based Cohort. Front Neurol. 2021; 12: 628066. DOI:10.3389/fneur.2021.628066.; You J., Shamsi B.H., Hao M.C., Cao C.H., Yang W.Y. A study on the neurodevelopment outcomes of late preterm infants. BMC Neurol. 2019; 19(1): 108. DOI:10.1186/s12883-019-1336-0; Hirvonen M., Ojala R., Korhonen P., Haataja P., Eriksson K., Gissler M. et al. Cerebral palsy among children born moderately and late preterm. Pediatrics. 2014; 134(6): e1584– e1593. DOI:10.1542/peds.2014-0945; Pisani F., Prezioso G., Spagnoli C. Neonatal seizures in preterm infants: A systematic review of mortality risk and neurological outcomes from studies in the 2000’s. Seizure. 2020; 75: 7–17. DOI:10.1016/j.seizure.2019.12.005; McLaren R.Jr., Clark M., Narayanamoorthy S., Rastogi S. Antenatal factors for neonatal seizures among late preterm births. J Matern Fetal Neonatal Med. 2022; 35(25): 9544–9548. DOI:10.1080/14767058.2022.2047924; Balasundaram P., Avulakunta I.D. Bayley Scales Of Infant and Toddler Development. In: StatPearls. Treasure Island (FL): StatPearls Publishing; November 21, 2022. https://pubmed.ncbi.nlm.nih.gov/33620792 / Ссылка активна на 4.04.2024.; Del Rosario C., Slevin M., Molloy E.J., Quigley J., Nixon E. How to use the Bayley Scales of Infant and Toddler Development. Arch Dis Child Educ Pract Ed. 2021; 106(2): 108–112. DOI:10.1136/archdischild-2020-319063; Guddemi M., Sambrook A., Wells S., Randel B., Fite K., Selva G., Gagnon K. Arnold Gesell’s Developmental Assessment Revalidation Substantiates Child-Oriented Curriculum. Sage Open, 2014; 4(2). SAGE Open. 4. DOI:10.1177/2158244014528918; Johnson S., Bountziouka V., Brocklehurst P., Linsell L., Marlow N., Wolke D., Manktelow B.N. Standardisation of the Parent Report of Children’s Abilities-Revised (PARCA-R): a norm-referenced assessment of cognitive and language development at age 2 years. Lancet Child Adolesc Health. 2019; 3(10): 705–712. DOI:10.1016/S2352-4642(19)30189-0; Frontiers Production Office. Erratum: The MacArthur-Bates Communicative Development Inventories: updates from the CDI Advisory Board. Front Psychol. 2023; 14: 1258830. Published 2023 Aug 10. DOI:10.3389/fpsyg.2023.1258830; Chin W.C., Wu W.C., Hsu J.F., Tang I., Yao T.C., Huang Y.S. Correlation Analysis of Attention and Intelligence of Preterm Infants at Preschool Age: A Premature Cohort Study. Int J Environ Res Public Health. 2023; 20(4): 3357. DOI:10.3390/ijerph20043357; Perra O., McGowan J.E., Grunau R.E., Doran J.B., Craig S., Johnston L. et al. Parent ratings of child cognition and language compared with Bayley-III in preterm 3-year-olds. Early Hum Dev. 2015; 91(3): 211–216. DOI:10.1016/j.earlhumdev.2015.01.009; Bogičević L., Verhoeven M., van Baar A.L. Toddler skills predict moderate-to-late preterm born children’s cognition and behaviour at 6 years of age. PLoS One. 2019; 14(11): e0223690. DOI:10.1371/journal.pone.0223690; Hay W.W. Optimizing nutrition of the preterm infant. Zhongguo Dang Dai Er Ke Za Zhi. 2017; 19(1): 1–21. DOI:10.7499/j.issn.1008–8830.2017.01.001; Саркисян Е.А., Думова С.В., Волкова А.И., Чугунова О.Л., Журавлева И.В., Левченко Л.А. и др. Современные подходы к респираторной патологии у поздних недоношенных новорожденных. Рос вестн перинатол и педиатр. 2023; 68:(4): 14–ХХ. DOI:10.21508/1027-4065-2023-68-4-14-ХХ; Wight N.E. Academy of Breastfeeding Medicine. ABM Clinical Protocol #1: Guidelines for Glucose Monitoring and Treatment of Hypoglycemia in Term and Late Preterm Neonates, Revised 2021. Breastfeed Med. 2021; 16(5): 353– 365. DOI:10.1089/bfm.2021.29178.new; Battin M., Harris D.L., Hegarty J.E., Weston P.J. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. Cochrane Database Syst Rev. 2022; 3(3): CD011027. DOI:10.1002/14651858.CD011027.pub3; Yalçinkaya R., Zenciroğlu A. Evaluation of Neonatal Polycythemia in Terms of Gestational Age, Hematocrit, and Platelet Levels. Türkiye Çocuk Hast Derg. 2022; 16(6): 495–500. DOI:10.4274/tmsj.galenos.2023.2022-8-1; Hulzebos C.V., Vitek L., Coda Zabetta C.D., Dvořák A., Schenk P., van der Hagen E.A.E. et al. Screening methods for neonatal hyperbilirubinemia: benefits, limitations, requirements, and novel developments. Pediatr Res. 2021; 90(2): 272–276. DOI:10.1038/s41390-021-01543-1; Wallenstein M.B., Bhutani V.K. Jaundice and kernicterus in the moderately preterm infant. Clin Perinatol. 2013; 40(4): 679–688. DOI:10.1016/j.clp.2013.07.007; Lastrucci V., Puglia M., Pacifici M., Buscemi P., Sica M., Alderotti G. et al. Delayed Start of Routine Vaccination in Preterm and Small-for-Gestational-Age Infants: An Area-Based Cohort Study from the Tuscany Region, Italy. Vaccines (Basel). 2022; 10(9): 1414. DOI:10.3390/ vaccines10091414; Puopolo K.M., Benitz W.E., Zaoutis T.E. Committee on fetus and newborn; committee on infectious diseases. Management of Neonates Born at ≥35 0/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics. 2018; 142(6): e20182894. DOI:10.1542/peds.2018-2894