Showing 1 - 4 results of 4 for search '"национальная программа иммунизации"', query time: 0.56s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: «Пфайзер», компания

    Source: Pediatric pharmacology; Том 15, № 1 (2018); 58-74 ; Педиатрическая фармакология; Том 15, № 1 (2018); 58-74 ; 2500-3089 ; 1727-5776

    File Description: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1594/971; Брико Н.И., Лобзин Ю.В., Баранов А.А., и др. Оценка эффективности вакцинации: основные подходы и спорные вопросы // Педиатрическая фармакология. — 2014. — Т.11. — №4 — С. 8–15. [Briko NI, Lobzin YuV, Baranov AA, et al. Assessment of vaccination program effectiveness: basic approaches and issues. Pediatric pharmacology. 2014;11(4):8–15. (In Russ).] doi:10.15690/pf.v11i4.1057.; Ковтун О.В., Романенко В.В. Эффективность пневмококковых конъюгированных вакцин следующего поколения в разных регионах мира // Вопросы современной педиатрии. — 2014. — Т.13. — №1 — С. 18–25. [Kovtun OP, Romanenko VV. Next generation pneumococcal conjugate vaccines efficacy and effectiveness in different regions of the world. Current pediatrics. 2014;13(1):18–25. (In Russ).] doi:10.15690/vsp.v13i1.908.; who.int [Internet]. Estimates of disease burden and costeffectiveness [cited 2017 Dec 24]. Available from: http://www.who.int/immunization/monitoring_surveillance/burden/estimates/en/.; who.int [Internet]. Executive Summary SAGE October 2017. Pneumococcal Conjugate Vaccine Session [cited 2017 Dec 24]. Available from: http://www.who.int/immunization/sage/meetings/2017/october/1_Hosangadi_PCV_ExecutiveSummary_SAGE_PCV_WG_Oct2017.pdf.; Wahl B, O’Brien K, Greenbaum A, Liu L, Chu Y, Majumder A, et al. Global, regional, and national burden of S. pneumoniae and H. influenzae type b in children in the era of conjugate vaccines: updated estimates from 2000–2015. Submitt Publ. 2017.; Пневмококковые вакцины: документ по позиции ВОЗ. Еженедельный эпидемиологический бюллетень. 6 апреля 2012 г. [2012, Pneumococcal Conjugate Vaccine Session. (In Russ).] Доступно по: http://docplayer.ru/44973384-Ezhenedelnyyepidemiologicheskiy-byulleten.html. Ссылка активна на 10.12.2017.; Королёва М.А. Эпидемиологический мониторинг за гнойными бактериальными менингитами в Российской Федерации: Автореф. дис. … канд. мед. наук. — М.; 2014. — 24 с. [Koroleva MA. Epidemiologicheskii monitoring za gnoinymi bakterial’nymi meningitami v Rossiiskoi Federatsii. [dissertation abstract] Moscow; 2014. 24 p. (In Russ).]; Лабораторная диагностика менингококковой инфекции и гнойных бактериальных менингитов. Методические указания. МУК 4.2.1887-04. [Laboratornaya diagnostika meningokokkovoi infektsii i gnoinykh bakterial’nykh meningitov. Metodicheskie ukazaniya. MUK 4.2.1887-04. (In Russ).]; Мартынова Г.П., Гульман Л.А., Богвилене Я.А. Клиника, течение и исходы гнойного менингоэнцефалита пневмококковой этиологии у детей // Вопросы современной педиатрии. — 2010. — Т.9. — №4 — С. 110–113. [Martynova GP, Gul’man LA, Bogvilene YaA. Clinical symptoms, course and outcomes of pneumococcal purulent meningoencephalitis in children. Current pediatrics. 2010;9(4):110–113. (In Russ).]; Внебольничная пневмония у детей: Клинические рекомендации. — М.: Оригинал-макет; 2015. — 64 с. [Vnebol’nichnaya pnevmoniya u detei: Klinicheskie rekomendatsii. Moscow: Originalmaket; 2015. 64 p. (In Russ).]; Баранов А.А., Намазова-Баранова Л.С., Маянский Н.А., и др. Роль Streptococcus pneumoniae в структуре бактериальных инфекций у детей, госпитализированных в стационары г. Москвы в 2011–2012 гг. // Педиатрическая фармакология. — 2013. — Т.10. — №5 — С. 6–12. [Baranov AA, Namazova-Baranova LS, Mayanskiy NA, et al. Role of Streptococcus pneumoniae in the structure of bacterial infections in the children hospitalized to inpatient hospitals in Moscow in 2011–2012. Pediatric pharmacology. 2013;10(5):6–12. (In Russ).] doi:10.15690/pf.v10i5.816. 612. (In Russ).]; Федеральные клинические рекомендации по вакцинопрофилактике пневмококковой инфекции. — М.; 2016.— 24 с. [Federal’nye klinicheskie rekomendatsii po vaktsinoprofilaktike pnevmokokkovoi infektsii. Moscow; 2016. 24 p. (In Russ).]; Weinberger DM, Trzciński K, Lu YJ, et al. Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog. 2009;5(6):e1000476. doi:10.1371/journal.ppat.1000476.; Scott JA, Hall AJ, Dagan R, et al. Serogroup-specific epidemiology of Streptococcus pneumoniae: associations with age, sex, and geography in 7,000 episodes of invasive disease. Clin Infect Dis. 1996;22(6):973–981. doi:10.1093/clinids/22.6.973.; Reinert RR. Pneumococcal conjugate vaccines – a European perspective. Int J Med Microbiol. 2004;294(5):277–294. doi:10.1016/j.ijmm.2004.04.004.; van Hoek AJ, Andrews N, Waight PA, et al. Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One. 2012;7(7):e39150. doi:10.1371/journal.pone.0039150.; Greenberg D, Givon-Lavi N, Newman N, et al. Nasopharyngeal carriage of individual Streptococcus pneumoniae serotypes during pediatric pneumonia as a means to estimate serotype disease potential. Pediatr Infect Dis J. 2011;30(3):227–233. doi:10.1097/INF.0b013e3181f87802.; Athlin S, Kaltoft M, Slotved HC, et al. Association between serotype-specific antibody response and serotype characteristics in patients with pneumococcal pneumonia, with special reference to degree of encapsulation and invasive potential. Clin Vaccine Immunol. 2014;21(11):1541–1549. doi:10.1128/CVI.00259-14.; Kaur R, Czup K, Casey JR, Pichichero ME. Correlation of nasopharyngeal cultures prior to and at onset of acute otitis media with middle ear fluid cultures. BMC Infect Dis. 2014;14:640. doi:10.1186/s12879-014-0640-y.; Coticchia JM, Chen M, Sachdeva L, Mutchnick S. New paradigms in the pathogenesis of otitis media in children. Front Pediatr. 2013;1:52. doi:10.3389/fped.2013.00052.; Rodgers GL, Arguedas A, Cohen R, Dagan R. Global serotype distribution among Streptococcus pneumoniae isolates causing otitis media in children: potential implications for pneumococcal conjugate vaccines. Vaccine. 2009;27(29):3802–3810. doi:10.1016/j.vaccine.2009.04.021.; Fletcher MA, Schmitt HJ, Syrochkina M, Sylvester G. Pneumococcal empyema and complicated pneumonias: global trends in incidence, prevalence, and serotype epidemiology. Eur J Clin Microbiol Infect Dis. 2014;33(6):879–910. doi:10.1007/s10096-014-2062-6.; Tagarro A, Bote P, Sanchez A, et al. Complications of pneumococcal bacteremia after thirteen-valent conjugate vaccine withdrawal. Pediatr Infect Dis J. 2016;35(12):1281–1287. doi:10.1097/Inf.0000000000001302.; jhsph.edu [Internet]. Pneumococcal Conjugate Vaccine (PCV) Product Assessment. International Vaccine Assess Center, U.S. Centers for Disease Control, University College of London, WHO [cited 2017 Apr 20]. Available from: https://www.jhsph.edu/research/centers-and-institutes/ivac/resources/pcv-product.; Goldblatt D, Southern J, Andrews NJ, et al. Pneumococcal conjugate vaccine 13 delivered as one primary and one booster dose (1 + 1) compared with two primary doses and a booster (2 + 1) in UK infants: a multicentre, parallel group randomised controlled trial. Lancet Infect Dis. 2018;18(2):171–179. doi:10.1016/S1473-3099(17)30654-0.; Брико Н.И., Симонова Е.Г., Костинов М.П., и др. Иммунопрофилактика пневмококковых инфекций. Учебно-методическое пособие для врачей. — М.; 2013. [Briko NI, Simonova EG, Kostinov MP, et al. Immunoprofilaktika pnevmokokkovykh infektsii. Uchebno-metodicheskoe posobie dlya vrachei. Moscow; 2013. (In Russ).]; Käyhty H, Nurkka А, Soininen А, et al. The immunological basis for immunization series: module 12: pneumococcal vaccines [Internet]. Geneva, Switzerland: WHO; 2009 [cited 2017 Dec 24]. Available from: http://apps.who.int/iris/bitstream/10665/44135/1/9789241598217_eng.pdf.; Siber GR, Chang I, Baker S, et al. Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine. 2007;25(19):3816–3826. doi:10.1016/j.vaccine.2007.01.119.; Miller E, Andrews NJ, Waight PA, et al. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis. 2011;11(10):760–768. doi:10.1016/S1473-3099(11)70090-1.; Pilishvili T, Lexau C, Farley MM, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201(1):32–41. doi:10.1086/648593.; Nicholls TR, Leach AJ, Morris PS. The short-term impact of each primary dose of pneumococcal conjugate vaccine on nasopharyngeal carriage: systematic review and meta-analyses of randomized controlled trials. Vaccine. 2016;34(6):703–713. doi:10.1016/j.vaccine.2015.12.048.; van den Bergh MR, Spijkerman J, Swinnen KM, et al. Effects of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine on nasopharyngeal bacterial colonization in young children: a randomized controlled trial. Clin Infect Dis. 2013;56(3):E30–E39. doi:10.1093/cid/cis922.; Truck J, Jawad S, Goldblatt D, et al. The antibody response following a booster with either a 10- or 13-valent pneumococcal conjugate vaccine in toddlers primed with a 13-valent pneumococcal conjugate vaccine in early infancy. Pediatr Infect Dis J. 2016;35(7):787–793. doi:10.1097/Inf.0000000000001180.; who.int [Internet]. Pneumococcal Conjugate Vaccine Review of Impact Evidence (PRIME). Summary of Findings from Systematic Review. 2017 [cited 2017 Dec 24]. Available from: http://www.who.int/immunization/sage/meetings/2017/october/3_FULL_PRIME_REPORT_2017Sep26.pdf.; Tin Tin Htar M, Christopoulou D, Schmitt HJ. Pneumococcal serotype evolution in Western Europe. BMC Infect Dis. 2015;15:419. doi:10.1186/s12879-015-1147-x.; Zhou F, Shefer A, Kong Y, Nuorti JP. Trends in acute otitis mediarelated health care utilization by privately insured young children in the United States, 1997-2004. Pediatrics. 2008;121(2):253–260. doi:10.1542/peds.2007-0619.; Ruckinger S, van der Linden M, Reinert RR, et al. Reduction in the incidence of invasive pneumococcal disease after general vaccination with 7-valent pneumococcal conjugate vaccine in Germany. Vaccine. 2009;27(31):4136–4141. doi:10.1016/j.vaccine.2009.04.057.; Bettinger JA, Scheifele DW, Kellner JD, et al. The effect of routine vaccination on invasive pneumococcal infections in Canadian children, Immunization Monitoring Program, Active 2000-2007. Vaccine. 2010;28(9):2130–2136. doi:10.1016/j.vaccine.2009.12.026.; HHS-CDC news: Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease US, 1998-2003. Ann Pharmacother. 2005;39(11):1967–1968. doi:10.1345/aph.1N096.; Ruiz-Contreras J, Picazo J, Casado-Flores J, et al. Impact of 13-valent pneumococcal conjugate vaccine on pneumococcal meningitis in children. Vaccine. 2017;35(35 Pt B):4646–4651. doi:10.1016/j.vaccine.2017.06.070.; Инструкция по применению вакцины Превенар 13. ЛП-000798-041016. [Instruktsiya po primeneniyu vaktsiny Prevenar 13. LP-000798-041016. (In Russ).]; Инструкция по применению вакцины Синфлорикс. ЛП 001412-220416. [Instruktsiya po primeneniyu vaktsiny Sinfloriks. LP 001412-220416. (In Russ).]; Kaplan SL, Center KJ, Barson WJ, et al. Multicenter surveillance of Streptococcus pneumoniae isolates from middle ear and mastoid cultures in the 13-valent pneumococcal conjugate vaccine era. Clin Infect Dis. 2015;60(9):1339–1345. doi:10.1093/cid/civ067.; Cho YC, Chiu NC, Lu CY, et al. Redistribution of Streptococcus pneumoniae serotypes after nationwide 13-valent pneumococcal conjugate vaccine program in children in Northern Taiwan. Pediatr Infect Dis J. 2017;36(12):334–340. doi:10.1097/INF.0000000000001664.; Nakano S, Fujisawa T, Ito Y, et al. Serotypes, antimicrobial susceptibility, and molecular epidemiology of invasive and noninvasive Streptococcus pneumoniae isolates in paediatric patients after the introduction of 13-valent conjugate vaccine in a nationwide surveillance study conducted in Japan in 2012-2014. Vaccine. 2016;34(1):67–76. doi:10.1016/j.vaccine.2015.11.015.; Kuttel MM, Jackson GE, Mafata M, Ravenscroft N. Capsular polysaccharide conformations in pneumococcal serotypes 19F and 19A. Carbohydr Res. 2015;406:27–33. doi:10.1016/j.carres.2014.12.013.; Isturiz R, Sings HL, Hilton B, et al. Streptococcus pneumonia serotype 19A: worldwide epidemiology. Expert Rev Vaccines. 2017;16(10):1007–1027. doi:10.1080/14760584.2017.1362339.; esr.cri.nz [Internet]. New Zealand Public Health Surveillance. Invasive Pneumococcal Disease Reports, 2016 [cited 2017 Dec 24]. Available from: https://surv.esr.cri.nz/surveillance/IPD.php.; Jaakola S, Lyytikäinen O, Rimhanen-Finne R, et al, editors. Infectious Diseases in Finland 2015 [Internet]. National Institute for Health and Welfare, Report 15/2016 [cited 2017 Dec 24]. Available from: https://www.julkari.fi/bitstream/handle/10024/131379/URN_ISBN_978-952-302-710-7.pdf?sequence=1.; thl.fi [Internet]. National Institute for health and welfare. Incidence of invasive pneumococcal disease in Finland [cited 2017 Dec 24]. Available from: https://www.thl.fi/fi/web/thlfi-en/research-and-expertwork/projects-and-programmes/monitoringthe-population-effectiveness-of-pneumococcal-conjugatevaccination-in-the-finnish-national-vaccination-programme/incidence-of-invasive-pneumococcal-disease-in-finland.; Jokinen J, et al. Impact of ten-valent pneumococcal conjugate vaccination on invasive pneumococcal disease in Finnish children — a population-based study. PLoS One. 2015;10(3):e0120290. doi:10.1371/journal.pone.0120290.; Hammitt LL, Akech DO, Morpeth SC, et al. Population effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and non-typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-sectional carriage studies. Lancet Glob Heal. 2014;2(7):e397–e405. doi:10.1016/S2214-109X(14)70224-4.; Wyllie AL, Wijmenga-Monsuur AJ, van Houten MA, et al. Molecular surveillance of nasopharyngeal carriage of Streptococcus pneumonia in children vaccinated with conjugated polysaccharide pneumococcal vaccines. Sci Rep. 2016;6(1):23809. doi:10.1038/srep23809.; Ppaho.org [Internet]. PAHO and OPAS/OMS. SIREVA II (Sistema de Redes de Vigilancia de los Agentes Responsables de Neumonias y Meningitis Bacterianas) [cited 2017 Dec 24]. Available from: http://www.paho.org/hq/index.php?option=com_content&view=article&id=5536%3A2011-sireva-ii&catid=1591%3Aabout&Itemid=3966&lang=pt.; Harboe Z, Dalby T, Weinberger DM, et al. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis. 2014;59(8):1066–1073. doi:10.1093/cid/ciu524.; Waight PA, Andrews NJ, Ladhani SN, et al. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015;15(5):535–543. doi:10.1016/S1473-3099(15)70044-7.; jhsph.edu [Internet]. Gap Analysis of PCV Impact Evaluations in Settings of Routine Use. International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health [cited 2017 Dec 24]. Available from: https://www.jhsph.edu/research/centers-andinstitutes/ivac/resources/RVImpactGapAnalysis_FEB2017_FINAL_public.pdf.; Lyu S, Yao KH, Dong F, et al. Vaccine serotypes of Streptococcus pneumoniae with high-level antibiotic resistance isolated more frequently seven years after the licensure of PCV7 in Beijing. Pediatr Infect Dis J. 2016;35(3):316–321. doi:10.1097/INF.0000000000001000.; Ochoa-Gondar O, Gómez-Bertomeu F, Vila-Córcoles A, et al. [Prevalence of serotypes causing invasive pneumococcal disease in the region of Tarragona, Spain, 2006-2009: vaccine-serotype coverage for the distinct antipneumococcal vaccine formulations. (In Spanish).] Rev Esp Quimioter. 2015;28(1):29–35.; Phongsamart W, Srifeungfung S, Chatsuwan T, et al. Changing trends in serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae causing invasive diseases in Central Thailand, 2009–2012. Hum Vaccin Immunother. 2014;10(7):1866–1873. doi:10.4161/hv.28675.; Pan F, Han L, Huang W, et al. Serotype distribution, antimicrobial susceptibility, and molecular epidemiology of Streptococcus pneumoniae isolated from children in Shanghai, China. PLoS One. 2015;10(11):e0142892. doi:10.1371/journal.pone.0142892.; Al-Sheikh YA, K Gowda L, Mohammed Ali MM, et al. Distribution of serotypes and antibiotic susceptibility patterns among invasive pneumococcal diseases in Saudi Arabia. Ann Lab Med. 2014;34(3):210–215. doi:10.3343/alm.2014.34.3.210.; Zhao C, Zhang F, Chu Y, et al. Phenotypic and genotypic characteristic of invasive pneumococcal isolates from both children and adult patients from a multicenter surveillance in China 2005-2011. PLoS One. 2013;8(12):e82361. doi:10.1371/journal. pone.0082361.; Park M, Kim HS, Shin KS, et al. Changes in the incidence of Streptococcus pneumoniae bacteremia and its serotypes over 10 years in one hospital in South Korea. Vaccine. 2014;32(48):6403–6407. doi:10.1016/j.vaccine.2014.09.062.6403.; paho.org [Internet]. Pan American Health Organization, New Vaccines Map [cited 2017 Dec 24]. Available from: http://www. paho.org/hq/index.php?option=com_content&view=article&id=1938&Itemid=1678&lang=en.; Приказ Минздрава РФ №125н от 21.03.2014 г. «Об утверждении национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям». [Order of the Ministry of Health of the Russian Federation №125n “Ob utverzhdenii natsional’nogo kalendarya profilakticheskikh privivok i kalendarya profilakticheskikh privivok po epidemicheskim pokazaniyam” dated March 21 2014. (In Russ).]; Резолюция заседания Общественного Координационного Совета по пневмококковой инфекции и вакцинации в России // Педиатрическая фармакология. — 2016. — Т.13. — №1 — С. 76–79. [Resolution of the meeting of the Public Coordination Council on Pneumococcal Infection and Vaccination in Russia. Pediatric pharmacology. 2016;13(1):76–79. (In Russ).] doi:10.15690/pf.v13i1.1522.; Лобзин Ю.В., Сидоренко С.В., Харит С.М., и др. Серотипы Streptococcus pneumoniae, вызывающие ведущие нозологические формы пневмококковых инфекций // Журнал инфектологии. — 2013. — Т.5. — №4 — С. 36–42. [Lobzin YuV, Sidorenko SV, Kharit SM, et al. Serotypes of Streptococcus pneumoniae causing major pneumococcal infections. Zhurnal infektologii. 2013;5(4):36–42. (In Russ).]; Белошицкий Г.В. Серотиповая характеристика штаммов S. pneumoniae в Москве // Эпидемиология и вакцинопрофилактика. — 2014. — №1 — С. 90–97. [Beloshitskii GV. Serotipovaya kharakteristika shtammov S. pneumoniae v Moskve. Epidemiologiya i vaktsinoprofilaktika. 2014;(1):90–97. (In Russ).]; Козлов Р.С., Кречикова О.И., Муравьев А.А., и др. Результаты исследования распространенности в России внебольничной пневмонии и острого среднего отита у детей в возрасте до 5 лет (PAPIRUS). Роль S. pneumoniae и H. influenzae в этиологии данных заболеваний // Клиническая микробиология и антимикробная химиотерапия. — 2013. — Т.15. — №4 — 246–260. [Kozlov RS, Krechikova OI, Muravyev AA, et al. РIncidence of communityacquired pneumonia and acute otitis media in children 0–5 years in Russia and role of S. pneumoniae or H. influenzae in the etiology of the diseases. Clinical microbiology and antimicrobial chemotherapy. 2013;15(4):246–260. (In Russ).]; Mayanskiy N, Alyabieva N, Ponomarenko O, et al. Serotypes and antibiotic resistance of non-invasive Streptococcus pneumonia circulating in pediatric hospitals in Moscow, Russia. Int J Infect Dis. 2014;20:58–62. doi:10.1016/j.ijid.2013.11.005.; Tatochenko V, Sidorenko S, Namazova-Baranova L, et al. Streptococcus pneumoniae serotype distribution in children in the Russian Federation before the introduction of pneumococcal conjugate vaccines into the National Immunization Program. Expert Rev Vaccines. 2014;13(2):257–264. doi:10.1586/14760584.2013.871205.; Alyabyeva N, Mayanskiy N, Ponomarenko O, et al. Serotype distribution and antibiotic resistance of Streptococcus pneumonia isolated from children with acute otitis media in Russia. In: Poster ESPID, 2012; Thessaloniki, Greece. p. 431.; Kozlov R, Chagaryan A, Kozlova L. Penicicllin resistance of predominant serotypes of Streptococcus pneumoniae in children of the Russian Federation. In: Poster ECCMID, 2012. Proceedings of the 7th World Congress of the World Society for Pediatric Infectious Diseases (WSPID); 2011 Nov 16–19; Melbourne, Australia. Abstract 26.; Естественное движение населения в разрезе субъектов РФ за январь-декабрь 2016 года. [Estestvennoe dvizhenie naseleniya v razreze sub”ektov RF za yanvar’-dekabr’ 2016 goda. (In Russ).]; Естественное движение населения в разрезе субъектов РФ за январь-февраль 2017 года. [Estestvennoe dvizhenie naseleniya v razreze sub”ektov RF za yanvar’-fevral’ 2017 goda. (In Russ).]; Dagan R, Pelton S, Bakaletz L. Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. Lancet Infect Dis. 2016;16(4):480–492. doi:10.1016/S1473-3099(15)00549-6.; Dagan R, Ben-Shimol S, Leibovitz E. Implementation of PCV7/PCV13 in Israel had a signifi cant impact on both pneumococcal and non-pneumococcal complex otitis media rates. Poster Abstract Session: Adult and Pediatric Vaccines. Proceedings of 2014 Meeting of the Infectious Diseases Society of America; 2014 Oct 10; Philadelphia, PA, USA.; https://www.pedpharma.ru/jour/article/view/1594

  3. 3
    Academic Journal

    Contributors: МСД, компания

    Source: Pediatric pharmacology; Том 15, № 1 (2018); 80-85 ; Педиатрическая фармакология; Том 15, № 1 (2018); 80-85 ; 2500-3089 ; 1727-5776

    File Description: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1596/973; msfaccess.org [Internet]. Médecins Sans Frontières [Doctors without borders]. Human Papillomavirus Vaccines (HPV) WHO recommendations & general information. 2014. [cited 2017 Jun 13]. Available from: https://www.msfaccess.org/sites/default/files/MSF_assets/Vaccines/Docs/VAC_report_ProductCardHPV_ENG_2014.pdf; who.int [Internet]. WHO vaccine-preventable diseases: monitoring system. 2017 global summary [cited 2017 Jun 13]. Available from: http://apps.who.int/immunization_monitoring/globalsummary/schedules; Региональные бюро ВОЗ. [WHO regional offices. (In Russ).] Доступно по: http://www.who.int/about/regions/ru/ Ссылка активна на 29.09.2017.; Альянс ГАВИ. ВОЗ. [GAVI Alliance. (In Russ).] Доступно по: http://www.euro.who.int/ru/about-us/partners/global-healthpartnerships/gavi-alliance. Ссылка активна на 29.09.2017.; gavi.org [Internet]. GAVI: The Vaccine Alliance. Country Hub [cited 2017 Aug 9]. Available from: http://www.gavi.org/country/; gavi.org [Internet]. GAVI: The Vaccine Alliance. HPV. Countries approved for support 2017 [cited 2017 Aug 9]. Available from: http://www.gavi.org/results/countries-approved-for-support/; Franceschi S, Chantal Umulisa M, Tshomo U, et al. Urine testing to monitor the impact of HPV vaccination in Bhutan and Rwanda. Int J Cancer. 2016;139(3):518–526. doi:10.1002/ijc.30092.; Ngabo F, Franceschi S, Baussano I, et al. Human papillomavirus infection in Rwanda at the moment of implementation of a national HPV vaccination programme. BMC Infect Dis. 2016;16:225. doi:10.1186/s12879-016-1539-6.; Bruni L, Barrionuevo-Rosas L, Albero G, et al. ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in Rwanda [Internet]. Summary Report 27 July 2017 [cited 2017 Oct 9]. Available from: http://www.hpvcentre.net/statistics/reports/RWA.pdf; UNICEF Supply Division. Human Papillomavirus Vaccine Supply & Demand Update. 2015 [Internet]. [cited 2017 Aug 10]. Available from: https://www.unicef.org/supply/files/Human_Papillomavirus_Vaccine(HPV)_Supply_and_Demand_Update_-_July_2015.pdf; nci.nih.gov [Internet]. President’s cancer panel annual report. Part 4. Increasing global HPV vaccination*. 2013 [cited 2017 Aug 10]. Available from: https://deainfo.nci.nih.gov/advisory/pcp/annualreports/hpv/Part4.htm#ref16; paho.org [Internet]. About the Pan American Health Organization (PAHO) [cited 2017 Aug 10]. Available from: http://www.paho.org/hq/index.php?option=com_content&view=article&id=91&Itemid=220&lang=en; Smith LM, Strumpf EC, Kaufman JS, et al. The early benefits of human papillomavirus vaccination on cervical dysplasia and anogenital warts. Pediatrics. 2015;135(5):E1131–E1140. doi:10.1542/peds.2014-2961.; Kim J, Bell C, Sun MG, et al. Effect of human papillomavirus vaccination on cervical cancer screening in Alberta. CMAJ. 2016;188(12):E281–E288. doi:10.1503/cmaj.151528.; Ogilvie GS, Naus M, Money DM, et al. Reduction in cervical intraepithelial neoplasia in young women in British Columbia after introduction of the HPV vaccine: an ecological analysis. Int J Cancer. 2015;137(8):1931–1937. doi:10.1002/ijc.29508.; Markowitz LE, Hariri S, Lin C, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. J Infect Dis. 2013;208(3):385–393. doi:10.1093/infdis/jit192.; Hariri S, Bennett NM, Niccolai LM, et al. Reduction in HPV 16/18-associated high grade cervical lesions following HPV vaccine introduction in the United States 2008–2012. Vaccine. 2015;33(13):1608–1613. doi:10.1016/j.vaccine.2015.01.084.; Powell SE, Hariri S, Steinau M, et al. Impact of human papillomavirus (HPV) vaccination on HPV 16/18-related prevalence in precancerous cervical lesions. Vaccine. 2012;31(1):109–113. doi:10.1016/j.vaccine.2012.10.092.; Hariri S, Unger ER, Powell SE, et al. The HPV vaccine impact monitoring project (HPV-IMPACT): assessing early evidence of vaccination impact on HPV-associated cervical cancer precursor lesions. Cancer Causes Control. 2012;23(2):281–288. doi:10.1007/s10552-011-9877-6.; Bruni L, Barrionuevo-Rosas L, Albero G, et al. ICO Information Centre on HPV and Cancer (HPV Information Centre). Human; Papillomavirus and Related Diseases in Libya [Internet]. Summary Report 27 July 2017 [cited 2017 Oct 9]. Available from: http://www.hpvcentre.net/statistics/reports/LBY.pdf.; Ben Khaial F, Bodalal Z, Elramli A, et al. Cervical cancer in northeastern Libya: 2000–2008. J Obstet Gynaecol. 2014;34(6):523–526. doi:10.3109/01443615.2014.914478.; Hussein WM, Anwar WA, Attaleb M, et al. A review of the infection-associated cancers in North African countries. Infect Agent Cancer. 2016;11:35. doi:10.1186/s13027-016-0083-8.; Bruni L, Barrionuevo-Rosas L, Albero G, et al. ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in Bahrain [Internet]. Summary Report 27 July 2017 [cited 2017 Oct 9]. Available from: http://www.hpvcentre.net/statistics/reports/BHR.pdf; Hajjaj AA, Senok AC, Al-Mahmeed AE, et al. Human papillomavirus infection among women attending health facilities in the Kingdom of Bahrain. Saudi Med J. 2006;27(4):487–491.; Moosa K, Alsayyad AS, Quint W, et al. An epidemiological study assessing the prevalence of human papillomavirus types in women in the Kingdom of Bahrain. BMC Cancer. 2014;14:905. doi:10.1186/1471-2407-14-905.; Bhatia R, Kavanagh K, Cubie HA, et al. Use of HPV testing for cervical screening in vaccinated womenInsights from the SHEVa (Scottish HPV Prevalence in Vaccinated Women) study. Int J Cancer. 2016;138(12):2922–2931. doi:10.1002/ijc.30030.; Mesher D, Panwar K, Thomas SL, et al. Continuing reductions in HPV 16/18 in a population with high coverage of bivalent HPV vaccination in England: an ongoing cross-sectional study. BMJ Open. 2016;6(2):e009915. doi:10.1136/bmjopen-2015-009915.; Pollock KG, Kavanagh K, Potts A, et al. Reduction of low- and high-grade cervical abnormalities associated with high uptake of the HPV bivalent vaccine in Scotland. Br J Cancer. 2014;111(9):1824–1830. doi:10.1038/bjc.2014.479.; Canvin M, Sinka K, Hughes G, Mesher D. Decline in genital warts diagnoses among young women and young men since the introduction of the bivalent HPV (16/18) vaccination programme in England: an ecological analysis. Sex Transm Infect. 2017;93(2):125–128. doi:10.1136/sextrans-2016-052626.; Luostarinen T, Apter D, Dillner J, et al. Vaccination protects against invasive HPV-associated cancers. Int J Cancer. 2018. [Epub ahead of print] doi:10.1002/ijc.31231.; Tshomo U, Franceschi S, Dorji D, et al. Human papillomavirus infection in Bhutan at the moment of implementation of a national HPV vaccination programme. BMC Infect Dis. 2014;14(1):408. doi:10.1186/1471-2334-14-408.; Osborne SL, Tabrizi SN, Brotherton JML, et al. Assessing genital human papillomavirus genoprevalence in young Australian women following the introduction of a national vaccination program. Vaccine. 2015;33(1):201–208. doi:10.1016/j.vaccine.2014.10.045.; Ali H, Donovan B, Wand H, et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ. 2013;346:f2032. doi:10.1136/bmj.f2032.; Garland SM, Kjaer SK, Munoz N, et al. Impact and effectiveness of the quadrivalent human papillomavirus vaccine: a systematic review of 10 years of real-world experience. Clin Infect Dis. 2016;63(4):519–527. doi:10.1093/cid/ciw354.; Gertig DM, Brotherton JM, Budd AC, et al. Impact of a populationbased HPV vaccination program on cervical abnormalities: a data linkage study. BMC Med. 2013;11:227. doi:10.1186/1741-7015- 11-227.; Chow EP, Machalek DA, Tabrizi SN, et al. Quadrivalent vaccinetargeted human papillomavirus genotypes in heterosexual men after the Australian female human papillomavirus vaccination programme: a retrospective observational study. Lancet Infect Dis. 2017;17(1):68–77. doi:10.1016/S1473-3099(16)30116-5.; Machalek DA, Chow EP, Garland SM, et al. Human papillomavirus prevalence in unvaccinated heterosexual males following a National Female Vaccination Program. J Infect Dis. 2016;215(2):202–208. doi:10.1093/infdis/jiw530.; https://www.pedpharma.ru/jour/article/view/1596

  4. 4
    Academic Journal

    Contributors: MSD company, Компаниия MSD

    Source: Current Pediatrics; Том 16, № 4 (2017); 273-285 ; Вопросы современной педиатрии; Том 16, № 4 (2017); 273-285 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/1786/712; who.int [Internet]. Distribution of the estimated deaths among children under 5 years of age, from diseases that are preventable by vaccination in 2008 [cited 2017 Jul 1]. Available from: http://www.who.int/immunization/monitoring_surveillance/burden/estimates/en/.; Tate JE, Burton AH, Boschi-Pinto C, et al. Global, regional, and national estimates of rotavirus mortality in children; Tate JE, Burton AH, Boschi-Pinto C, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(2):136–141. doi:10.1016/S1473-3099(11)70253-5.; WHO Global rotavirus surveillance network — a strategic review of the first 5 years (2008–2012). Wkly Epidemiol Rec. 2014;89(30):340–344.; Bernstein DI. Rotavirus overview. Pediatr Infect Dis J. 2009;28(3 Suppl):S50-53. doi:10.1097/INF.0b013e3181967bee.; Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2016 году». — М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека; 2017. — 220 с. [Gosudarstvennyi doklad «O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2016 godu». Moscow: Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebitelei i blagopoluchiya cheloveka; 2017. 220 p. (In Russ).]; Плоскирева А.А. Острые кишечные инфекции вирусной этиологии у детей: клиника, диагностика и терапия: Автореф. … докт. мед. наук. — М.; 2016. — 49 с. [Ploskireva AA. Ostrye kishechnye infektsii virusnoi etiologii u detei: klinika, diagnostika i terapiya. [dissertation abstract] Moscow; 2016. 49 p. (In Russ).]; Лукьянова А.М., Бехтерева М.К., Птичникова Н.Н. Клиникоэпидемиологическая характеристика вирусных диарей у детей // Журнал инфектологии. — 2014. — Т.6. — №1 — С. 60–66. [Lukjanova AM, Bekhtereva MK, Ptichnikova NN. Clinical and epidemiological characteristic viral diarrhea in children. Jurnal infektologii. 2014;6(1):60–66. (In Russ).]; Lobzin YV, Kharit SM, Goveia MG, et al. Burden of childhood rotavirus disease in the outpatient setting of the Russian Federation. Pediatr Infect Dis J. 2017;36(5):472–476. doi:10.1097/INF.0000000000001472.; Vesikari T, Van Damme P, Giaquinto C, et al. European Society for Paediatric Infectious Diseases consensus recommendations for rotavirus vaccination in Europe: update 2014. Pediatr Infect Dis J. 2015;34(6):635–643. doi:10.1097/Inf.0000000000000683.; Chandran A, Heinzen RR, Santosham M, Siberry GK. Nosocomial rotavirus infections: a systematic review. J Pediatr. 2006;149(4):441–447. doi:10.1016/j.jpeds.2006.01.054.; Таточенко В.К. Вакцинопрофилактика ротавирусной инфекции // Медицинский совет. — 2016. — №7 — С. 36–38. [Tatochenko VK. Rotavirus vaccination. Medical Council. 2016;(7): 36–38. (In Russ).] doi:10.21518/2079-701x-2016-07-36-38.; Феклисова Л.В., Шаповалова Р.Ф., Лиханская Е.И., и др. Экскреция ротавирусов в фекалиях пациентов педиатрических стационаров в течение года // Врач. — 2016. — №10 — С. 77–82. [Fekllsova LV, Shapovalova RF, Likhanskaya EI, et al. Fecal rotaviruses excretion in patients at children’s hospitals during a year. Vrach (Moscow, Russia). 2016;(10):7–82. (In Russ).]; Костинов М.П., Зверев В.В. Экономическая эффективность вакцинации против ротавирусной инфекции в Российской Федерации // Журнал микробиологии, эпидемиологии и иммунобиологии. — 2012. — №3 — С. 50–55. [Kostinov MP, Zverev VV. Ekonomicheskaya effektivnost’ vaktsinatsii protiv rotavirusnoi infektsii v Rossiiskoi Federatsii. Journal of microbiology, epidemiology, and immunobiology. 2012;(3):50–55. (In Russ).]; Rotavirus vaccines: an update. Wkly Epidemiol Rec. 2009;84(50):533–540.; Loharikar A, Dumolard L, Chu S, et al. Status of new vaccine introduction — worldwide, September 2016. MMWR Morb Mortal Wkly Rep. 2016;65(41):1136–1140. doi:10.15585/mmwr.mm6541a3.; who.int [Internet]. WHO vaccine-preventable diseases: monitoring system. 2016 global summary [cited 2017 Jul 8]. Available from: http://apps.who.int/immunization_monitoring/globalsummary/schedules.; Santosham M, Steele D. Rotavirus vaccines a new hope. N Engl J Med. 2017;376(12):1170–1172. doi:10.1056/NEJMe1701347.; Soares-Weiser K, MacLehose H, Bergman H, et al. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev. 2012;(2):CD008521 doi:10.1002/14651858.CD008521.pub3.; Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11–22. doi:10.1056/NEJMoa052434.; Zaman K, Dang DA, Victor JC, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebocontrolled trial. Lancet. 2010;376(9741):615–623. doi:10.1016/S0140-6736(10)60755-6.; Breiman RF, Zaman K, Armah G, et al. Analyses of health outcomes from the 5 sites participating in the Africa and Asia clinical efficacy trials of the oral pentavalent rotavirus vaccine. Vaccine. 2012;30 Suppl 1:A24–A29. doi:10.1016/j.vaccine.2011.08.124.; Cunliffe NA, Witte D, Ngwira BM, et al. Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: A randomized, double-blind, placebo controlled trial. Vaccine. 2012;30 Suppl 1:A36–A43. doi:10.1016/j.vaccine.2011.09.120.; Aliabadi N, Tate JE, Haynes AK, Parashar UD. Sustained decrease in laboratory detection of rotavirus after implementation of routine vaccination — United States, 2000-2014. MMWR Morb Mortal Wkly Rep. 2015;64(13):337–342.; Vesikari T, Matson DO, Dennehy P, et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med. 2006;354(1):23–33. doi:10.1056/NEJMoa052664.; Jonesteller CL, Burnett E, Yen C, et al. Effectiveness of Rotavirus Vaccination: а systematic review of the first decade of global postlicensure data, 2006-2016. Clin Infect Dis. 2017;65(5):840–850. doi:10.1093/cid/cix369.; Burnett E, Jonesteller CL, Tate JE, et al. Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea. J Infect Dis. 2017;215(11):1666–1672. doi:10.1093/infdis/jix186.; Patel MM, Glass R, Desai R, et al. Fulfilling the promise of rotavirus vaccines: how far have we come since licensure? Lancet Infect Dis. 2012;12(7):561–570. doi:10.1016/S1473-3099(12) 70029-4.; Paulke-Korinek M, Kundi M, Rendi-Wagner P, et al. Herd immunity after two years of the universal mass vaccination program against rotavirus gastroenteritis in Austria. Vaccine. 2011;29(15):27912796. doi:10.1016/j.vaccine.2011.01.104.; Buttery JP, Lambert SB, Grimwood K, et al. Reduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia’s National Childhood vaccine schedule. Pediatr Infect Dis J. 2011;30(1 Suppl):S25–S29. doi:10.1097/INF.0b013e3181fefdee.; Pendleton A, Galic M, Clarke C, et al. Impact of rotavirus vaccination in Australian children below 5 years of age: a database study. Hum Vaccine Immunother. 2013;9(8):1617–1625. doi:10.4161/hv.24831.; Standaert B, Gomez JA, Raes M, et al. Impact of rotavirus vaccination on hospitalisations in Belgium: comparing model predictions with observed data. PLoS One. 2013;8(1):e53864. doi:10.1371/journal.pone.0053864.; Vesikari T, Uhari M, Renko M, et al. Impact and effectiveness of RotaTeq® vaccine based on 3 years of surveillance following introduction of a rotavirus immunization program in Finland. Pediatr Infect Dis J. 2013;32(12):1365–1373. doi:10.1097/Inf.0000000000000086.; Yen C, Tate JE, Wenk JD, et al. Diarrhea-associated hospitalizations among US children over 2 rotavirus seasons after vaccine introduction. Pediatrics. 2011;127(1):E9–E15. doi:10.1542/peds.2010-1393.; Payne DC, Staat MA, Edwards KM, et al. Direct and indirect effects of rotavirus vaccination upon childhood hospitalizations in 3 US Counties, 2006-2009. Clin Infect Dis. 2011;53(3):245–253. doi:10.1093/cid/cir307.; Leshem E, Moritz RE, Curns AT, et al. Rotavirus vaccines and health care utilization for diarrhea in the United States (2007–2011). Pediatrics. 2014;134(1):15–23. doi:10.1542/peds.2013-3849.; Staat MA, Payne DC, Donauer S, et al. Effectiveness of pentavalent rotavirus vaccine against severe disease. Pediatrics. 2011;128(2):e267–275. doi:10.1542/peds.2010-3722.; Wang FT, Mast TC, Glass RJ, et al. Effectiveness of the pentavalent rotavirus vaccine in preventing gastroenteritis in the United States. Pediatrics. 2010;125(2):e208–213. doi:10.1542/peds.2009-1246.; Cortese MM, Parashar UD; Centers for Disease Control and Prevention (CDC). Prevention of rotavirus gastroenteritis among infants and children: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2009; 58(RR-2):1–25.; Tate JE, Parashar UD. Rotavirus vaccines in routine use. Clin Infect Dis. 2014;59(9):1291–1301. doi:10.1093/cid/ciu564.; Hartwig S, Uhari M, Renko M, et al. Hospital bed occupancy for rotavirus and all cause acute gastroenteritis in two Finnish hospitals before and after the implementation of the national rotavirus vaccination program with RotaTeq. BMC Health Serv Res. 2014;14:632. doi:10.1186/s12913-014-0632-z.; Hemming-Harlo M, Vesikari T, Uhari M, et al. Sustained high effectiveness of RotaTeq on hospitalizations attributable to rotavirus-associated gastroenteritis during 4 Years in Finland. J Pediatric Infect Dis Soc. 2016:piw061. doi:10.1093/jpids/piw061.; www.gov.uk [Internet]. Public Health England. Rotavirus data 2006 to 2015 November 2016. National laboratory data for residents of England and Wales [cited 2017 Jul 1]. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/598374/Rotavirus_2016_Data.pdf.; Santos VS, Marques DP, Martins-Filho PR, et al. Effectiveness of rotavirus vaccines against rotavirus infection and hospitalization in Latin America: systematic review and meta-analysis. Infect Dis Poverty. 2016;5(1):83. doi:10.1186/s40249-016-0173-2.; do Carmo GM, Yen C, Cortes J, et al. Decline in diarrhea mortality and admissions after routine childhood rotavirus immunization in Brazil: a time-series analysis. PLoS Med. 2011;8(4):e1001024. doi:10.1371/journal.pmed.1001024.; De Oliveira LH, Giglio N, Ciapponi A, et al. Temporal trends in diarrhea-related hospitalizations and deaths in children under age 5 before and after the introduction of the rotavirus vaccine in four Latin American countries. Vaccine. 2013;31 Suppl 3:C99–108. doi:10.1016/j.vaccine.2013.05.065.; Yen C, Armero Guardado JA, Alberto P, et al. Decline in rotavirus hospitalizations and health care visits for childhood diarrhea following rotavirus vaccination in El Salvador. Pediatr Infect Dis J. 2011;30(1 Suppl):S6–S10. doi:10.1097/INF.0b013e3181fefa05.; Bayard V, DeAntonio R, Contreras R, et al. Impact of rotavirus vaccination on childhood gastroenteritis-related mortality and hospital discharges in Panama. Int J Infect Dis. 2012;16(2):e94–98. doi:10.1016/j.ijid.2011.09.003.; Becker-Dreps S, Melendez M, Liu L, et al. Community diarrhea incidence before and after rotavirus vaccine introduction in Nicaragua. Am J Trop Med Hyg. 2013;89(2):246–250. doi:10.4269/ajtmh.13-0026.; Inchauste L, Patzi M, Halvorsen K, et al. Impact of rotavirus vaccination on child mortality, morbidity, and rotavirus-related hospitalizations in Bolivia. Int J Infect Dis. 2017;61:79–88. doi:10.1016/j.ijid.2017.06.006.; Quintanar-Solares M, Yen C, Richardson V, et al. Impact of rotavirus vaccination on diarrhea-related hospitalizations among children < 5 years of age in Mexico. Pediatr Infect Dis J. 2011;30(1 Suppl):S11–S15. doi:10.1097/INF.0b013e3181fefb32.; Gastanaduy PA, Sanchez-Uribe E, Esparza-Aguilar M, et al. Effect of rotavirus vaccine on diarrhea mortality in different socioeconomic regions of Mexico. Pediatrics. 2013;131(4):E1115–E1120. doi:10.1542/peds.2012-2797.; Richardson V, Hernandez-Pichardo J, Quintanar-Solares M, et al. Effect of rotavirus vaccination on death from childhood diarrhea in Mexico. N Engl J Med. 2010;362(4):299–305. doi:10.1056/NEJMoa0905211.; Lanzieri TM, Linhares AC, Costa I, et al. Impact of rotavirus vaccination on childhood deaths from diarrhea in Brazil. Int J Infect Dis. 2011;15(3):e206–210. doi:10.1016/j.ijid.2010.11.007.; Groome MJ, Page N, Cortese MM, et al. Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: a case-control study. Lancet Infect Dis. 2014;14(11):1096–1104. doi:10.1016/ S1473-3099(14)70940-5.; Madhi SA, Cunliffe NA, Steele D, et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med. 2010;362(4):289–298. doi:10.1056/NEJMoa0904797.; Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;376(9741):606–614. doi:10.1016/S0140-6736(10)60889-6.; Рычкова О.А., Казакевич Г.В., Дубинина О.А., и др. Профилактика ротавирусной инфекции: путь расширения региональной программы вакцинации Тюменской области // Фарматека. — 2016. — №11 — С. 106–111. [Rychkova OA, Kazakevich GV, Dubinina OA, et al. Prevention of rotavirus infection: the way of expansion of the regional vaccination program in Tyumen Region. Farmateka. 2016;(11):106–111. (In Russ).]; Южакова А.Г., Мартынова Г.П. Вакцинопрофилактика ротавирусной инфекции: социальная значимость и эффективность // Журнал инфектологии. — 2017. — Т.9. — №2 — С. 65–71. [Yuzhakova AG, Martynova GP. Vaccine prevention of rotavirus infection: social significance and effectiveness. Journal Infectology. 2017;9(2):65–71. (In Russ).] doi:10.22625/2072-6732-2017-9-2-65-71.; Lopman BA, Payne DC, Tate JE, et al. Post-licensure experience with rotavirus vaccination in high and middle income countries; 2006 to 2011. Curr Opin Virol. 2012;2(4):434–442. doi:10.1016/j.coviro.2012.05.002.; Lambert SB, Faux CE, Hall L, et al. Early evidence for direct and indirect effects of the infant rotavirus vaccine program in Queensland. Med J Aust. 2009;191(3):157–160.; Patel MM, Steele D, Gentsch JR, et al. Real-world impact of rotavirus vaccination. Pediatr Infect Dis J. 2011;30(1 Suppl):S1–5. doi:10.1097/INF.0b013e3181fefa1f.; Field EJ, Vally H, GrimwoodK, Lambert SB. Pentavalent rotavirus vaccine and prevention of gastroenteritis hospitalizations in Australia. Pediatrics. 2010;126(3):e506–512. doi:10.1542/peds.2010-0443.; Raes M, Strens D, Vergison A, et al. Reduction in pediatric rotavirus-related hospitalizations after universal rotavirus vaccination in Belgium. Pediatr Infect Dis J. 2011;30(7):e120–125. doi:10.1097/INF.0b013e318214b811.; Safadi MA, Berezin EN, Munford V, et al. Hospital-based surveillance to evaluate the impact of rotavirus vaccination in Sao Paulo, Brazil. Pediatr Infect Dis J. 2010;29(11):1019–1022. doi:10.1097/INF.0b013e3181e7886a.; Lopman BA, Curns AT, Yen C, Parashar UD. Infant rotavirus vaccination may provide indirect protection to older children and adults in the United States. J Infect Dis. 2011;204(7):980–986. doi:10.1093/infdis/jir492.; Anderson E. Rotavirus decreased in adults after widespread vaccination among children [Internet]. IDSA 49th Annual Meeting [updated 2011 October 21; cited 2017 Aug 1]. Available from: https://www.healio.com/pediatrics/vaccine-preventable-diseases/news/online/%7B6ae3569a-8446-4f3a-bb14-2f45a70a59aa%7D/rotavirus-decreased-in-adults-after-widespread-vaccination-among-children.; Cortese MM, Dahl RM, Curns AT, Parashar UD. Protection against gastroenteritis in US households with children who received rotavirus vaccine. J Infect Dis. 2015;211(4):558–562. doi:10.1093/infdis/jiu503.; Anderson EJ, Shippee DB, Weinrobe MH, et al. Indirect protection of adults from rotavirus by pediatric rotavirus vaccination. Clin Infect Dis. 2013;56(6):755–760. doi:10.1093/cid/cis1010.; Pitzer VE, Atkins KE, de Blasio BF, et al. Direct and indirect effects of rotavirus vaccination: comparing predictions from transmission dynamic models. PLoS One. 2012;7(8):e42320. doi:10.1371/journal.pone.0042320.; Standaert B, Strens D, Alwan A, Raes M. Mediumto long-term impact of rotavirus vaccination on hospital care in Belgium: a 7-year follow-up of the Rotavirus Belgium Impact Study (RotaBIS). Infect Dis Ther. 2016;5(1):31–44. doi:10.1007/s40121-015-0099-1.; Atherly D, Dreibelbis R, Parashar UD, et al. Rotavirus vaccination: cost-effectiveness and impact on child mortality in developing countries. J Infect Dis. 2009;200 Suppl 1:S28–S38. doi:10.1086/605033.; Uprety P, Lindsey JC, Levin MJ, et al. Inflammation and immune activation in antiretroviral-treated human immunodeficiency virus type 1-infected African infants and rotavirus vaccine responses. J Infect Dis. 2017;215(6):928–932. doi:10.1093/infdis/jix060.; Wendy B. Vaccination with 3-dose paediatric rotavirus vaccine (RotaTeq): impact on the timeliness of uptake of the primary course of DTPa vaccine. Vaccine. 2012;30(35):5293–5297. doi:10.1016/j.vaccine.2012.04.071.; Rivero-Calle I, Gomez-Rial J, Martinon-Torres F. Systemic features of rotavirus infection. J Infect. 2016;72 Suppl:S98–S105. doi:10.1016/j.jinf.2016.04.029.; Blutt SE, Matson DO, Crawford SE, et al. Rotavirus antigenemia in children is associated with viremia. PLoS Med. 2007;4(4):660–668. doi:10.1371/journal.pmed.0040102.; Dalgıç N, Haşim Ö, Pullu M, et al. Is rotavirus diarrhea a systemic viral infection? Çocuk Enf Derg. 2010;4(2):48–55.; Payne DC, Baggs J, Zerr DM, et al. Protective association between rotavirus vaccination and childhood seizures in the year following vaccination in US children. Clin Infect Dis. 2014;58(2):173-177. doi:10.1093/cid/cit671.; Рудакова А.В., Харит С.М., Усков А.Н., Лобзин Ю.В. Оценка предотвращенных затрат на терапию ротавирусной инфекции при вакцинации 5-валентной вакциной в Российской Федерации // Журнал инфектологии. — 2014. — Т.6. — №2 — С. 71–75. [Rudakova AV, Kharit SM, Uskov AN, Lobzin Yu V. Otsenka predotvrashchennykh zatrat na terapiyu rotavirusnoi infektsii pri vaktsinatsii 5-valentnoi vaktsinoi v Rossiiskoi Federatsii. Zhurnal infektologii. 2014:6(2);71–75 (In Russ).]