Showing 1 - 2 results of 2 for search '"напряженные карбоциклические соединения"', query time: 0.44s Refine Results
  1. 1
    Academic Journal

    Contributors: The work was supported by the Russian Science Foundation (project No. 23-73-00123) and performed using the equipment of the Shared Science and Training Center for Collective Use of RTU MIREA (agreement No. 075-15-2021-689 dated 01.09.2021 (unique identification number 2296.61321Х0010). Quantum-chemical calculations were carried out using the computing resources of the Joint Supercomputer Center of the Russian Academy of Sciences., Работа выполнена при финансовой поддержке гранта Российского научного фонда (проект № 23-73-00123), с использованием оборудования Центра коллективного пользования РТУ МИРЭА (соглашение № 075-15-2021-689 от 01.09.2021 г, уникальный идентификационный номер 2296.61321X0010). Квантово-химические расчеты проведены с использованием вычислительных ресурсов Межведомственного суперкомпьютерного центра Российской Академии Наук.

    Source: Fine Chemical Technologies; Vol 18, No 4 (2023); 355-380 ; Тонкие химические технологии; Vol 18, No 4 (2023); 355-380 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1991/1949; https://www.finechem-mirea.ru/jour/article/view/1991/1960; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1991/1071; Butt N.A., Zhang W. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates. Chem. Soc. Rev. 2015;44(22):7929–7967. https://doi.org/10.1039/C5CS00144G; Dutta S., Bhattacharya T., Werz D.B., Maiti D. Transition-metal-catalyzed C–H allylation reactions. Chem. 2021;7(3):555–605. https://doi.org/10.1016/j.chempr.2020.10.020; Pàmies O., Margalef J., Cañellas S., James J., Judge E., Guiry P.J., et al. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem. Rev. 2021;121(8):4373–4505. https://doi.org/10.1021/acs.chemrev.0c00736; Geurts K., Fletcher S.P., van Zijl A.W., Minnaard A.J., Feringa B.L. Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents. Pure Appl. Chem. 2008;80(5):1025–1037. https://doi.org/10.1351/pac200880051025; Cheng Q., Tu H.-F., Zheng C., Qu J.-P., Helmchen G., You S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019;119(3):1855–1969. https://doi.org/10.1021/acs.chemrev.8b00506; Kazmaier U. (Ed.). Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. 2012th edition. Berlin Heidelberg: Springer; 2011. 628 p.; Ghorai D., Cristòfol À., Kleij A.W. Nickel‐Catalyzed Allylic Substitution Reactions: An Evolving Alternative. Eur. J. Inorg. Chem. 2022;2022(2):e202100820. https://doi.org/10.1002/ejic.202100820; Mizutani K., Yorimitsu H., Oshima K. Cobalt-Catalyzed Allylic Substitution Reaction of Allylic Ethers with Phenyl and Trimethylsilylmethyl Grignard Reagents. Chem. Lett. 2004;33(7):832–833. https://doi.org/10.1246/cl.2004.832; Mohammadkhani L., Heravi M.M. Applications of Transition‐Metal‐Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. Chem. Rec. 2021;21(1):29–68. https://doi.org/10.1002/tcr.202000086; Li C., Liu L., Fu X., Huang J. Norbornene in Organic Synthesis. Synthesis. 2018;50(15):2799–2823. https://doi.org/10.1055/s-0037-1610143; Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.S. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials. Russ. Chem. Rev. 2018;87(12):1169–1205. https://doi.org/10.1070/RCR4834; Durakov S.A., Kolobov A.A., Flid V.R. Features of heterogeneous catalytic transformations of strained carbocyclic compounds of the norbornene series. Fine Chem. Technol. 2022;17(4):275–297. https://doi.org/10.32362/2410-6593-2022-17-4-275-297; Catellani M., Chiusoli G.P., Dradi E., Salerno G. Nickel-catalyzed allylation of norbornene. J. Organometallic Chem. 1979;177(2):C29–C31. https://doi.org/10.1016/S0022-328X(00)94094-4; Dzhemilev U.M., Khusnutdinov R.I., Galeev D.K., Nefedov O.M., Tolstikov G.A. Nickel complex-catalyzed codimerization of allyl esters with compounds in the norbornene series. Russ. Chem. Bull. 1987;36(1):122–131. https://doi.org/10.1007/BF00953861; Leont’eva S.V., Manulik O.S., Evstigneeva E.M., Bobkova E.N., Flid V.R. Unconventional catalytic allylation of 5-norbornene-2,3-dicarboxylic anhydrides: 7-oxa and 7-aza analogues. Kinet. Catal. 2006;47(3):384–388. https://doi.org/10.1134/S0023158406030098; Dzhemilev U.M., Khusnutdinov R.I., Galeev D.K., Tolstikov G.A. Cooligomerization of allyl acetate with norbornadiene and its derivatives catalyzed by nickel complexes. Russ. Chem. Bull. 1987;36(1):137–142. https://doi.org/10.1007/BF00953863; Флид В.Р. Аллилирование ноборнадиена-2,5 гомолигандными η3 -аллильными комплексами переходных металлов. Металлорганическая химия. 1991;4(4):864–871. [Flid V.R. Allylation of nobornadiene-2,5 with homoligand η3 -allyl complexes of transition metals. Metallorganicheskaya Khimiya. 1991;4(4):864–871 (in Russ.).]; Tsukada N., Sato T., Inoue Y. Palladium-catalyzed [2+2] cycloaddition of allylic acetates and norbornene. Tetrahedron Lett. 2000;41(21):4181–4184. https://doi.org/10.1016/S0040-4039(00)00600-6; Evstigneeva E.M., Manulik O.S., Flid V.R. Unconventional Allylation of Norbornadiene Catalyzed by Palladium Complexes. Kinet. Catal. 2004;45(2):172–175. https://doi.org/10.1023/B:KICA.0000023787.79493.e7; Evstigneeva E.M., Manulik O.S., Flid V.R., Stolyarov I.P., Kozitsyna N.Yu., Vargaftik M.N., et al. Unusual selective allylation of norbornadiene in the presence of palladium nanoclusters. Russ. Chem. Bull. 2004;53(6):1345–1348. https://doi.org/10.1023/B:RUCB.0000042298.81687.dd; Stolyarov I.P., Gekhman A.E., Moiseev I.I., Kolesnikov A.Yu., Evstigneeva E.M., Flid V.R. Catalytic hydroallylation of norbornadiene with allyl formate. Russ. Chem. Bull. 2007;56(2):320–324. https://doi.org/10.1007/s11172-007-0052-x; Evstigneeva E.M., Flid V.R. Nonconventional allylation of norbornene and norbornadiene derivatives: stoichiometry and catalysis. Russ. Chem. Bull. 2008;57(4):837–844. https://doi.org/10.1007/s11172-008-0121-9; Kostyukovich A.Yu., Burykina J.V., Eremin D.B., Ananikov V.P. Detection and Structural Investigation of Elusive Palladium Hydride Intermediates Formed from Simple Metal Salts. Inorg. Chem. 2021;60(10):7128–7142. https://doi.org/10.1021/acs.inorgchem.1c00173; Ragoussis V., Giannikopoulos A. Palladium catalyzed reductive decarboxylation of allyl α-alkenyl-βketoesters. A new synthesis of (E)-3-alkenones. Tetrahedron Lett. 2006;47(5):683–687. https://doi.org/10.1016/j.tetlet.2005.11.122; Flid V.R., Durakov S.A., Morozova T.A. A possible way to control the course of hydride transfer in allylation of norbornadiene in the presence of palladium phosphine catalysts. Russ. Chem. Bull. 2016;65(11):2639–2643. https://doi.org/10.1007/s11172-016-1629-z; Amatore C., Jutand A. Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. Acc. Chem. Res. 2000;33(5):314–321. https://doi.org/10.1021/ar980063a; Amatore C., Jutand A., Amine M’Barki M. Evidence of the formation of zerovalent palladium from Pd(OAc)2 and triphenylphosphine. Organometallics. 1992;11(9):3009–3013.; Amatore C., Carre E., Jutand A., M’Barki M.A. Rates and Mechanism of the Formation of Zerovalent Palladium Complexes from Mixtures of Pd(OAc)2 and Tertiary Phosphines and Their Reactivity in Oxidative Additions. Organometallics. 1995;14(4):1818–1826. https://doi.org/10.1021/om00004a039; Negishi E., Takahashi T., Akiyoshi K. ‘Bis(triphenylphosphine)palladium:’ its generation, characterization, and reactions. J. Chem. Soc., Chem. Commun. 1986;0(17):1338–1339. https://doi.org/10.1039/C39860001338; Durakov S.A., Melnikov P.V., Martsinkevich E.M., Smirnova A.A., Shamsiev R.S., Flid V.R. Solvent effect in palladium-catalyzed allylation of norbornadiene. Russ. Chem. Bull. 2021;70(1):113–121. https://doi.org/10.1007/s11172-021-3064-z; Agenet N., Amatore C., Gamez S., Gerardin H., Jutand A., Meyer G., et al. Effect of the leaving group and the allylic structure on the kinetics and thermodynamics of the reaction of allylic carboxylates with palladium(0) complexes. Arkivoc. 2005;2002(5):92–101. https://doi.org/10.3998/ark.5550190.0003.511; Yamamoto T., Saito O., Yamamoto A. Oxidative addition of allyl acetate to palladium(0) complexes. J. Am. Chem. Soc. 1981;103(18):5600–5602. https://doi.org/10.1021/ja00408a068; Cristol S.J., Morrill T.C., Sanchez R.A. Bridged Polycyclic Compounds. XLI. The Uncatalyzed Addition of Acetic Acid to Norbornadiene. J. Org. Chem. 1966;31(9):2733–2737. https://doi.org/10.1021/jo01347a003; Durakov S.A., Shamsiev R.S., Flid V.R. The influence of the phosphine ligand nature on palladium catalysts in the norbornadiene allylation with allyl formate. Russ. Chem. Bull. 2021;70(7):1290–1296. https://doi.org/10.1007/s11172-021-3213-4; Durakov S.A., Shamsiev R.S., Flid V.R., Gekhman A.E. Hydride transfer mechanism in the catalytic allylation of norbornadiene with allyl formate. Russ. Chem. Bull. 2018;67(12):2234–2240. https://doi.org/10.1007/s11172-018-2361-7; Durakov S.A., Shamsiev R.S., Flid V.R., Gekhman A.E. Isotope Effect in Catalytic Hydroallylation of Norbornadiene by Allyl Formate. Kinet. Catal. 2019;60(3):245–249. https://doi.org/10.1134/S0023158419030042; Shamsiev R.S., Flid V.R. Interaction of norbornadiene with allyl acetate in the presence of Ni0 complexes: a DFT modeling. Russ. Chem. Bull. 2020;69(4):653–659. https://doi.org/10.1007/s11172-020-2813-8; Flid V.R., Durakov S.A. New heterogenized catalytic systems in norbornadiene allylation. Russ. Chem. Bull. 2018;67(3):469–472. https://doi.org/10.1007/s11172-018-2094-7; Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett. 1997;281(1):151–156. https://doi.org/10.1016/S0009-2614(97)01206-2; Laikov D.N., Ustynyuk Yu.A. PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. 2005;54(3):820–826. https://doi.org/10.1007/s11172-005-0329-x; Riley K.E., Hobza P. Noncovalent interactions in biochemistry. WIREs Computational Molecular Science. 2011;1(1):3–17. https://doi.org/10.1002/wcms.8; Neese F. Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science. 2018;8(1):e1327. https://doi.org/10.1002/wcms.1327; Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865; Laikov D.N. A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem. Phys. Lett. 2005;416(1):116–120. https://doi.org/10.1016/j.cplett.2005.09.046; Najibi A., Goerigk L. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. J. Chem. Theory Comput. 2018;14(11):5725–5738. https://doi.org/10.1021/acs.jctc.8b00842; Pantazis D.A., Chen X.-Y., Landis C.R., Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008;4(6):908–919. https://doi.org/10.1021/ct800047t; Rolfes J.D., Neese F., Pantazis D.A. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Computational Chem. 2020;41(20):1842–1849. https://doi.org/10.1002/jcc.26355; Marenich A.V., Cramer C.J., Truhlar D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113(18):6378–6396. https://doi.org/10.1021/jp810292n; Egiazaryan K.Т., Shamsiev R.S., Flid V.R. Quantum chemical investigation of the oxidative addition reaction of allyl carboxylates to Ni(0) and Pd(0) complexes. Fine Chem. Tech. 2019;14(6):56–65. https://doi.org/10.32362/2410-6593-2019-14-6-56-65; Shamsiev R.S., Egiazaryan K.T., Flid V.R. Modeling of the mechanism of reductive allylation of norbornadiene in the presence of Pd0 complexes. Russ. Chem. Bull. 2021;70(2):316–322. https://doi.org/10.1007/s11172-021-3087-5; Simmons E.M., Hartwig J.F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 2012;51(13):3066–3072. https://doi.org/10.1002/anie.201107334; Shamsiev R.S., Egiazaryan K.T., Flid V.R. Allylation of norbornadiene in the presence of Pd0 phosphine complexes: a DFT modeling. Russ. Chem. Bull. 2022;71(5):905–914. https://doi.org/10.1007/s11172-022-3489-z; Egiazaryan K.T., Shamsiev R.S., Flid V.R. Enantioselectivity of norbornadiene allylation in the presence of Pd phosphine complexes: a quantum chemical prediction. Russ. Chem. Bull. 2023;72(4):838–846. https://doi.org/10.1007/s11172-023-3847-2

  2. 2
    Academic Journal

    Source: Fine Chemical Technologies; Vol 17, No 4 (2022); 275-297 ; Тонкие химические технологии; Vol 17, No 4 (2022); 275-297 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1857/1857; https://www.finechem-mirea.ru/jour/article/view/1857/1864; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1857/708; Флид В.Р., Грингольц М.Л., Шамсиев Р.С., Финкельштейн Е.Ш. Норборнен, норборнадиен и их производные – перспективные полупродукты для органического синтеза и получения полимерных материалов. Успехи химии. 218;87(12):1169–1205.; Gusevskaya E.V., Jiménez-Pinto J., Börner A. Hydroformylation in the Realm of Scents. ChemCatChem. 2014;6(2):382–411. https://doi.org/10.1002/cctc.201300474; González A.G., Barrera J.B. Chemistry and Sources of Mono- and Bicyclic Sesquiterpenes from Ferula Species. In: Herz W., Kirby G.W., Moore R.E., Steglich W., Tamm C. (Eds.). Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Vienna: Springer; 1995. V. 64. P. 1–92. https://doi.org/10.1007/978-3-7091-9337-2_1; Mane J., Clinet I., Muratore A., Clinet J.-C., Chanot J.-J. New aldehydes with norbornane structures, their preparation and use in perfume making: Pat. EP2112132A1. Publ. 28.10.2009.; Buchbauer G., Stappen I., Pretterklieber C., Wolschann P. Structure–activity relationships of sandalwood odorants: synthesis and odor of tricyclo β-santalol. Eur. J. Med. Chem. 2004;39(12):1039–1046. https://doi.org/10.1016/j.ejmech.2004.09.014; Monti H., Corriol C., Bertrand M. Synthese stereoselective DU (±)-β-santalol. Tetrahedron Lett. 1982;23(52):5539–5540. https://doi.org/10.1016/S0040-4039(00)85888-8; Corey E.J., Shibasaki M., Nicolaoua K.C., Malmsten C.L., Samuelsson B. Simple, stereocontrolled total synthesis of a biologically active analog of the prostaglandin endoperoxides (PGH2, PGG2). Tetrahedron Lett. 1976;(10):737–740. https://doi.org/10.1016/s0040-4039(00)77938-x; Lee M., Ikeda I., Kawabe T., Mori S., Kanematsu K. Enantioselective Total Synthesis of cis-Trikentrin B. J. Org. Chem. 1996;61(10):3406–3416. https://doi.org/10.1021/jo951767q; Hajiyeva G.E. Biologically Active Norbornene Derivatives: Synthesis of Bicyclo[2.2.1]heptene Mannich Bases. Chemistry for Sustainable Development. 2021;29(4):391–410. https://doi.org/10.15372/CSD2021317; Songstad D.D., Duncan D.R., Widholm J.M. Effect of l-aminocyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Reports. 1988;7(4):262–265. https://doi.org/10.1007/bf00272538; Brar M.S., Moore M.J., Al-Khayri J.M., Morelock T.E., Anderson E.J. Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna Unguiculata L.). In Vitro Cell. Dev. Biol.-Plant. 1999;35(3):222–225. https://doi.org/10.1007/s11627-999-0082-1; Brooks G.T. Chlorinated Insecticides: Technology and Application. V. 1. CRC Press; 2017. 249 p. https://doi.org/10.1201/9781315150390; Tanaka R., Kamei I., Cai Z., Nakayama Y., Shiono T. Ethylene-Propylene Copolymerization Behavior of ansa-Dimethylsilylene(fluorenyl)(amido)dimetyltitanium Complex: Application to Ethylene-Propylene-Diene or Ethylene-Propylene-Norbornene Terpolymers. J. Polym. Sci. Part A: Polym. Chem. 2015;53(5):685–691. https://doi.org/10.1002/pola.27494; Касьян Л.И. Стереохимические аспекты эпоксидирования замещенных норборненов и сопровождающие эту реакцию внутримолекулярные превращения. Успехи химии. 1998;67(4):299–316.; Финкельштейн Е.Ш., Бермешев М.В., Грингольц М.Л., Старанникова Л.Э., Ямпольский Ю.П. Замещенные полинорборнены – перспективные материалы для газоразделительных мембран. Успехи химии. 2011;80(4):362–383.; Fonseca L.R., Silva Sa J.L., Carvalho V.P., Lima-Neto B.S. Cross-link in norbornadiene-based polymers from ring-opening metathesis polymerization with pyrrolidinebased Ru complex. Polym. Bull. 2018;75(8):3705–3721. https://doi.org/10.1007/s00289-017-2236-3; Ono Y., Kawashima N., Kudo H., Nishikubo T., Nagai T. Synthesis of new photoresponsive polyesters containing norbornadiene moieties by the ring-opening copolymerization of donor-acceptor norbornadiene dicarboxylic acid anhydride with donor-acceptor norbornadiene dicarboxylic acid monoglycidyl ester derivatives. J. Polym. Sci. Part A: Polym.Chem. 2005;43(19):4412–4421. https://doi.org/10.1002/pola.20911; Tsubata A., Uchiyama T., Kameyama A., Nishikubo T. Synthesis of Poly(ester-amide)s Containing Norbornadiene (NBD) Residues by the Polyaddition of NBD Dicarboxylic Acid Derivatives with Bis(epoxide)s and Their Photochemical Properties. Macromolecules. 1997;30(19):5649–5654. https://doi.org/10.1021/ma970431a; Yalcinkaya E.E., Balcan M., Güler C. Synthesis, characterization and dielectric properties of polynorbornadiene-clay nanocomposites by ROMP using intercalated Ruthenium catalyst. Mater. Chem. Phys. 2013;143(1):380–386. https://doi.org/10.1016/j.matchemphys.2013.09.014; Alentiev D.A., Bermeshev M.V. Design and Synthesis of Porous Organic Polymeric Materials from Norbornene Derivatives. Polym. Rev. 2022;62(2):400–437. https://doi.org/10.1080/15583724.2021.1933026; Alentiev D.A., Dzhaparidze D.M., Gavrilova N.N., Shantarovich V.P., Kiseleva E.V., Topchiy M.A., et al. Microporous Materials Based on Norbornadiene-Based Cross-Linked Polymers. Polymers. 2018;10(12):1382. https://doi.org/10.3390/polym10121382; Aladyshev A.M., Klyamkina A.N., Nedorezova P.M., Kiseleva E.V. Synthesis of Ethylene-Propylene-Diene Terpolymers and Their Heterophase Compositions with Polypropylene in the Presence of Metallocene Catalytic Systems. Russ. J. Phys. Chem. B. 2020;14(4):691–696. https://doi.org/10.1134/S1990793120040028; Sveinbjornsson B.R., Weitekamp R.A., Miyake G.M., Xia Y., Atwater H.A., Grubbs R.H. Rapid self-assembly of brush block copolymers to photonic crystals. Proceedings of the National Academy of Sciences (PNAS). 2012;109(36):14332–14336. https://doi.org/10.1073/pnas.1213055109; Grubbs R.H., Miyake G.M., Weitekamp R., Piunova V. Chiral polymers for the self-assembly of photonic crystals: Pat. US9575212-B2. Publ. 21.02.2017.; Wang Z., Chan C.L.C., Zhao T.H., Parker R.M., Vignolini S. Recent Advances in Block Copolymer Self-Assembly for the Fabrication of Photonic Films and Pigments. Adv. Optical Mater. 2021;9(21):2100519. https://doi.org/10.1002/adom.202100519; Kudo H., Yamamoto M., Nishikubo T., Moriya O. Novel Materials for Large Change in Refractive Index: Synthesis and Photochemical Reaction of the Ladderlike Poly(silsesquioxane) Containing Norbornadiene, Azobenzene, and Anthracene Groups in the Side Chains. Macromolecules. 2006;39(5):1759–1765. https://doi.org/10.1021/ma052147m; Kato Y., Muta H., Takahashi S., Horie K., Nagai T. Large Photoinduced Refractive Index Change of Polymer Films Containing and Bearing Norbornadiene Groups and Its Application to Submicron-Scale Refractive-Index Patterning. Polym J. 2001;33(11):868–873. https://doi.org/10.1295/polymj.33.868; Philippopoulos C., Economou D., Economou C., Marangozis J. Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy. Ind. Eng. Chem. Prod. Res. Dev. 1983;22(4):627–633. https://doi.org/10.1021/i300012a021; Брень В.А., Дубоносов А.Д., Минкин В.И., Черноиванов В.А. Норборнадиен–квадрициклан — эффективная молекулярная система аккумулирования солнечной энергии. Успехи химии. 1991;60(5):913–948.; Дубоносов А.Д., Брень В.А., Черноиванов В.А. Норборнадиен-квадрициклан – абиотическая система для аккумулирования солнечной энергии. Успехи химии. 2002;71(11):1040–1050.; Jevric M., Petersen A.U., Manso M., Singh S.K., Wang Z., Dreos A., et al. Norbornadiene-Based Photoswitches with Exceptional Combination of Solar Spectrum Match and Long-Term Energy Storage. Chem. Eur. J. 2018;24(49):12767–12772. https://doi.org/10.1002/chem.201802932; Manso M., Petersen A.U., Wang Z., Erhart P., Nielsen M.B., Moth-Poulsen K. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times. Nat. Commun. 2018;9(1):1945. https://doi.org/10.1038/s41467-018-04230-8; Wang Z., Roffey A., Losantos R., Lennartson A., Jevric M., Petersen A.U., et al. Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ. Sci. 2019;12(1):187–193. https://doi.org/10.1039/C8EE01011K; Dreos A., Wang Z., Udmark J., Ström A., Erhart P., Börjesson K., et al. Liquid Norbornadiene Photoswitches for Solar Energy Storage. Adv. Energy Mater. 2018;8(18):1703401. https://doi.org/10.1002/aenm.201703401; Большаков Г.Ф. Химия и технология компонентов жидкого ракетного топлива. Л: Химия; 1983. 318 с.; Norton R.V., Fisher D.H., Graham G.M., Frank P.J. Method for preparing high density liquid hydrocarbon fuels: Pat. US-4355194-A. Publ. 19.10.1982.; Burns L.D. Motor fuel: Pat. US-4387257-A. Publ. 07.06.1983.; Lun P., Qiang D., Xiutianfeng E., Genkuo N., Xiangwen Z., Jijun Z. Synthesis Chemistry of High- Density Fuels for Aviation and Aerospace Propulsion. Prog. Chem. 2015;27(11):1531–1541. https://doi.org/10.7536/PC150531; Kim J., Shim B., Lee G., Han J., Jeon J.-K. Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst. Appl. Chem. Eng. 2018;29(2):185–190. https://doi.org/10.14478/ace.2017.1116; Norton R.V., Fisher D.H. High density fuel compositions: Pat. US-4286109-A. Publ. 25.08.1981.; Kim J., Shim B., Lee G., Han J., Kim J.M., Jeon J.-K. Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts. Catal. Today. 2018;303:71–76. https://doi.org/10.1016/j.cattod.2017.08.024; Burdette G.W. Liquid hydrocarbon air breather fuel: Pat. US-441074-A. Publ. 18.10.1983.; Zou J.-J., Zhang X., Pan L. High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis. 1st ed. Wiley-VCH; 2020. 512 p.; Zhang C., Zhang X., Zou J., Li G. Catalytic dimerization of norbornadiene and norbornene into hydrocarbons with multiple bridge rings for potential highdensity fuels. Coord. Chem. Rev. 2021;436:213779. https://doi.org/10.1016/j.ccr.2021.213779; Zarezin D.P., Rudakova M.A., Shorunov S.V., Sultanova M.U., Samoilov V.O., Maximov A.L., et al. Design and preparation of liquid polycyclic norbornanes as potential high performance fuels for aerospace propulsion. Fuel Processing Technology. 2022;225(3):107056. https://doi.org/10.1016/j.fuproc.2021.107056; Shi C., Xu J., Pan L., Zhang X., Zou J.-J. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway. Chin. J. Chem. Eng. 2021;35(3):83–91. https://doi.org/10.1016/j.cjche.2021.05.004; Zhang X., Pan L., Wang L., Zou J.-J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chem. Eng. Sci. 2018;180:95–125. https://doi.org/10.1016/j.ces.2017.11.044; Смагин В.М., Иоффе А.Э., Григорьев А.А., Стрельчик Б.С., Ермолаева Е.М., Сиротина И.Г. Получение норборнадиена важного полупродукта органического синтеза. Химическая промышленность. 1983;4:198–201.; Стрельчик Б.С., Смагин В.М., Черных С.П., Темкин О.Н., Стычинский Г.Ф., Беленький В.М. Способ получения норборнадиена: пат. 2228324C1 РФ. Заявка № 2002125524/04А; заявл. 25.09.2002; опубл. 10.052004.; Iaccino L.L., Lemoine R.O.V. Processes and systems for converting hydrocarbons to cyclopentadiene: Pat. WO2017078892A1. Publ. 11.05.2017.; Ахмедьянова Р.А., Милославский Д.Г. Получение циклопентадиена-1,3 из пиролизных фракций, содержащих дициклопентадиен. Вестник технологического университета. 2016;19(23):33–34.; Лиакумович А.Г., Седова С.Н., Деев А.В., Магсумов И.А., Ерхов А.В., Черезова Е.Н. Изучение особенностей стадии ректификации дициклопентадиена в смеси производственных потоков нефтехимического и коксохимического сырья при его выделении. Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2010;(12):30–33.; Muldoon J.A., Harvey B.G. Bio-Based Cycloalkanes: The Missing Link to High-Performance Sustainable Jet Fuels. ChemSusChem. 2020;13(22):5777–5807. https://doi.org/10.1002/cssc.202001641; Harvey B.G. Cyclopentadiene fuels: Pat. US-11078139-B1. 2021.; Дураков С.А., Шамсиев Р.С., Флид В.Р., Гехман А.Е. О механизме гидридного переноса в реакции каталитического аллилирования норборнадиена аллилформиатом. Известия Академии наук. Серия химическая. 2018;67(12):2234–2240.; Дураков С.А., Шамсиев Р.С., Флид В.Р., Гехман А.Е. О механизме гидридного переноса в реакции каталитического аллилирования норборнадиена аллилформиатом. Кинетика и катализ. 2019;60(3):275–279.; Дураков С.А., Мельников П.В., Марцинкевич Е.М., Смирнова А.А., Шамсиев Р.С., Флид В.Р. Эффект растворителя в палладий-катализируемом аллилировании норборнадиена. Известия Академии наук. Серия химическая. 2021;70(1):113–121.; Эфрос И.Е., Дмитриев Д.В., Флид В.Р. Каталитические синтезы полициклических соединений на основе норборнадиена в присутствии никелевых катализаторов. VII. проблемы регио- и стереоселективности в процессах циклоприсоединения активированных олефинов к норборнадиену. Кинетика и катализ. 2010;51(3):391–395.; García-López J.A., Frutos-Pedreño R., Bautista D., Saura-Llamas I., Vicente J. Norbornadiene as a Building Block for the Synthesis of Linked Benzazocinones and Benzazocinium Salts through Tetranuclear Carbopalladated Intermediates. Organometallics. 2017;36(2):372–383. https://doi.org/10.1021/acs.organomet.6b00795; Егиазарян K.T., Шамсиев Р.С., Флид В.Р. Квантово-химическое исследование реакции окислительного присоединения аллилкарбоксилатов к комплексам Ni(0) и Pd(0). Тонкие Химические Технологии. 2019;14(6):56–65.; Шамсиев Р.С., Флид В.Р. Квантово-химическое исследование механизма каталитического [2+2+2]-циклоприсоединения сложных эфиров акриловой кислоты к норборнадиену в присутствии комплексов никеля(0). Известия Академии наук. Серия химическая. 2013;62(11):2301–2305.; Шамсиев Р.С., Дробышев А.В., Флид В.Р. Квантово-химическое исследование механизма каталитической димеризации норборнадиена в присутствии гидридного комплекса Ni(I). Журнал органической химии. 2013;49(3):358–362.; Siadati S.A., Nami N., Zardoost M.R. A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3,4–Dihydroisoquinoline-N-Oxide. Progress in Reaction Kinetics and Mechanism. 2011;36(3):252–258. https://doi.org/10.3184/146867811X13095326582455; Kuisma M.J., Lundin A.M., Moth-Poulsen K., Hyldgaard P., Erhart P. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage. J. Phys. Chem. C. 2016;120(7):3635–3645. https://doi.org/10.1021/acs.jpcc.5b11489; Atta-Kumi J., Pipim G.B., Tia R., Adei E. Investigating the site-, regio-, and stereo-selectivities of the reactions between organic azide and 7-heteronorbornadiene: a DFT mechanistic study. J. Mol. Model. 2021;27(9):248. https://doi.org/10.1007/s00894-021-04857-3; Friend C.M., Xu B. Heterogeneous Catalysis: A Central Science for a Sustainable Future. Acc. Chem. Res. 2017;50(3):517–521. https://doi.org/10.1021/acs.accounts.6b00510; Hübner S., de Vries J.G., Farina V. Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts? Adv. Synth. Catal. 2016;358(1):3–25. https://doi.org/10.1002/adsc.201500846; Hu X., Yip A.C.K. Heterogeneous Catalysis: Enabling a Sustainable Future. Front. Catal. 2021;1:667675. https://doi.org/10.3389/fctls.2021.667675; Vogt C., Weckhuysen B.M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022;6(2):89–111. https://doi.org/10.1038/s41570-021-00340-y; Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. Алициклические соединения. М.: Химия; 1999. 647 с.; Фельдблюм В.Ш. Синтез и применение непредельных циклических углеводородов. М.: Химия; 1982. 208 c.; Schrauzer G.N. On Transition Metal-Catalyzed Reactions of Norbornadiene and the Concept of π Complex Multicenter Processes. In: Eley D.D., Pines H., Weisz P.B. (Eds.). Advances in Catalysis. 1968. V. 18. P. 373–396. https://doi.org/10.1016/S0360-0564(08)60431-9; Khan R., Chen J., Fan B. Versatile Catalytic Reactions of Norbornadiene Derivatives with Alkynes. Adv. Synth. Catal. 2020;362(8):1564–1601. https://doi.org/10.1002/adsc.201901494; Джемилев У.М., Хуснутдинов Р.И., Толстиков Г.А. Норборнадиены в синтезе полициклических напряженных углеводородов с участием металлокомплексных катализаторов. Успехи химии. 1987;56(1):65–94.; Аникин О.В., Корнилов Д.А., Никитина Т.В., Киселев В.Д. Переменная активность реагентов со связями С=С и N=N в реакциях циклоприсоединения. Химическая физика. 2018;37(8):3–6.; Chen Y., Kiattansakul R., Ma B., Snyder J.K. Transition Metal-Catalyzed [4+2+2] Cycloadditions of Bicyclo[2.2.1]hepta-2,5-dienes (Norbornadienes) and Bicyclo[2.2.2]octa-2,5-dienes. J. Org. Chem. 2001;66(21):6932–6942. https://doi.org/10.1021/jo010268o; Bermeshev M.V., Chapala P.P. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Prog. Polym. Sci. 2018;84:1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003; Petrov V.A., Vasil’ev N.V. Synthetic Chemistry of Quadricyclane. Curr. Org. Synthesis. 2006;3(2):215–259. http://doi.org/10.2174/157017906776819204; Orrego-Hernández J., Dreos A., Moth-Poulsen K. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications. Acc. Chem. Res. 2020;53(8):1478–1487. https://doi.org/10.1021/acs.accounts.0c00235; Akioka T., Inoue Y., Yanagawa A., Hiyamizu M., Takagi Y., Sugimori A. A comparative study on photocatalytic hydrogen transfer and catalytic hydrogenation of norbornadiene and quadricyclane catalyzed by [Rh6(CO)16]. J. Mol. Catal. A: Chem. 2003;202(1):31–39. https://doi.org/10.1016/S1381-1169(03)00201-2; Cuppoletti A., Dinnocenzo J.P., Goodman J.L., Gould I.R. Bond-Coupled Electron Transfer Reactions: Photoisomerization of Norbornadiene to Quadricyclane. J. Phys. Chem. A. 1999;103(51):11253–11256. https://doi.org/10.1021/jp992884i; Lahiry S., Haldar C. Use of semiconductor materials as sensitizers in a photochemical energy storage reaction, norbornadiene to quadricyclane. Solar Energy. 1986;37(1):71–73. https://doi.org/10.1016/0038-092X(86)90109-X; Ghandi M., Rahimi A., Mashayekhi G. Triplet photosensitization of myrcene and some dienes within zeolite Y through heavy atom effect. J. Photochem. Photobiol. A. 2006;181(1):56–59. https://doi.org/10.1016/j.jphotochem.2005.10.033; Gu L., Liu F. Photocatalytic isomerization of norbornadiene over Y zeolites. React. Kinet. Catal. Lett. 2008;95(1):143–151. https://doi.org/10.1007/s11144-008-5326-2; Zou J.-J., Zhang M.-Y., Zhu B., Wang L., Zhang X., Mi Z. Isomerization of Norbornadiene to Quadricyclane Using Ti-Containing MCM-41 as Photocatalysts. Catal. Lett. 2008;124(1–2):139–145. https://doi.org/10.1007/s10562-008-9441-5; Zou J.-J., Liu Y., Pan L., Wang L., Zhang X. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti–MCM-41. Appl. Catal. B. 2010;95(3):439–445. https://doi.org/10.1016/j.apcatb.2010.01.024; Pan L., Zou J.-J., Zhang X., Wang L. Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO2. Ind. Eng. Chem. Res. 2010;49(18):8526–8531. https://doi.org/10.1021/ie100841w; Zou J.-J., Pan L., Wang li., Zhang X. Photoisomerization of Norbornadiene to Quadricyclane Using Ti-Containing Photocatalysts. In: Saha S. (Ed.). Molecular Photochemistry – Various Aspects. 2012. P. 41–62. https://doi.org/10.5772/26597; Hirao K., Yamashita A., Yonemitsu O. Cycloreversion of acylquadricyclane to acylnorbornadiene promoted by metal oxides. Tetrahedron Lett. 1988;29(33):4109–4112. https://doi.org/10.1016/S0040-4039(00)80429-3; Koser G.F., Faircloth J.N. Silver(I)-promoted reactions of strained hydrocarbons. Oxidation vs. rearrangement. J. Org. Chem. 1976;41(3):583–585. https://doi.org/10.1021/jo00865a048; Ford J.F., Mann C.K., Vickers T.J. Monitoring the Heterogeneously Catalyzed Conversion of Quadricyclane to Norbornadiene by Raman Spectroscopy. Appl. Spectrosc. 1994;48(5):592–595. https://doi.org/10.1366/0003702944924907; Manassen J. Catalysis of a symmetry restricted reaction by transition metal complexes. The importance of the ligand. J. Catal. 1970;18(1):38–45. https://doi.org/10.1016/0021-9517(70)90309-X; Miki S., Ohno T., Iwasaki H., Yoshida Z. Cobalt(II) tetraphenylporphyrin-catalyzed isomerization of electronegative substituted quadricyclanes. Tetrahedron Lett. 1985;26(29):3487–3490. https://doi.org/10.1016/S0040-4039(00)98671-4; Miki S., Maruyama T., Ohno T., Tohma T., Toyama S., Yoshida Z. Alumina-anchored Cobalt(II) Schiff Base Catalyst for the Isomerization of Trimethyldicyanoquadricyclane to the Norbornadiene. Chem. Lett. 1988;17(5):861–864. https://doi.org/10.1246/cl.1988.861; Кузнецова Н.А., Калия О.Л., Леонтьева С.В., Манулик О.С., Негримовский В.М., Флид В.Р., Шамсие Р.С., Южакова О.А., Яштулов Н.А. Катализатор и способ валентной изомеризации квадрициклана в норборнадиен: пат. RU 2470030 C1 РФ. Заявка № 2011146910/04; заявл. 21.11. 2011; опубл. 20.11.2012.; Флид В.Р., Леонтьева С.В., Калия О.Л., Дураков С.А. Способ проведения процесса обратимой изомеризации норборнадиена в квадрициклан: пат. RU 2618527 C1 РФ. Заявка № 2015148230; заявл. 10.11. 2015; опубл. 04.05.2017.; Roduner E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006;35(7):583–592. https://doi.org/10.1039/B502142C; Pujari S.P., Scheres L., Marcelis A.T.M., Zuilhof H. Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed. Engl. 2014;53(25):6322–6356. https://doi.org/10.1002/anie.201306709; Luchs T., Lorenz P., Hirsch A. Efficient Cyclization of the Norbornadiene‐Quadricyclane Interconversion Mediated by a Magnetic [Fe3O4−CoSalphen] Nanoparticle Catalyst. ChemPhotoChem. 2020;4(1):52–58. https://doi.org/10.1002/cptc.201900194; Lorenz P., Luchs T., Hirsch A. Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches. Chem. Eur. J. 2021;27(15):4993–5002. https://doi.org/10.1002/chem.202005427; Suld G., Schneider A., Myers Jr H.K.M. Catalytic dimerization of norbornadiene to Binor-S: Pat. US-4031150-A. Publ. 21.06.1977.; Warrener R.N., Butler D.N., Golic M. The synthesis of geometric variants of rigidly-linked uracil-{spacer}-uracil and uracil-{spacer}-effector molecules using block assembly methods. Nucleosides Nucleotides. 1999;18(11–12):2631–2660. https://doi.org/10.1080/07328319908044631; Алентьев Д.А., Джапаридзе Д.М., Бермешев М.В., Старанникова Л.Э., Филатова М.П., Ямпольский Ю.П., Финкельштейн Е.Ш. Аддитивная сополимеризация кремнийсодержащего трициклононена с димером норборнадиена-2,5. Высокомолекулярные соединения. Серия Б. 2019;61(6):475–480.; Rosenkoetter K.E., Garrison M.D., Quintana R.L., Harvey B.G. Synthesis and Characterization of a High-Temperature Thermoset Network Derived from a Multicyclic Cage Compound Functionalized with Exocyclic Allylidene Groups. ACS Appl. Polym. Mater. 2019;1(10):2627–2637. https://doi.org/10.1021/acsapm.9b00542; Соломатин Д.В., Кузнецова О.П., Зверева У.Г., Рочев В.Я., Бекешев В.Г., Прут Э.В. Механизм образования тонкодисперсных резиновых порошков на основе тройных этилен-пропилен-диеновых вулканизатов. Химическая физика. 2016;35(7):60–70.; Kettles T., Tam W. Bicyclo[2.2.1] hepta-2,5-diene (Norbornadiene). In: e-EROS Encyclopedia of Reagents for Organic Synthesis. 2012. https://doi.org/10.1002/047084289X.rn01411; Mrowca J.J., Katz T.J. Catalysis of a Cycloaddition Reaction by Rhodium on Carbon. J. Am. Chem. Soc. 1966;88(17):4012–4015. https://doi.org/10.1021/ja00969a021; Chung H.S., Chen C.S.H., Kremer R.A., Boulton J.R., Burdette G.W. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels. Energy Fuels. 1999;13(3):641–649. https://doi.org/10.1021/ef980195k; Гольдшлегер Н.Ф., Азбель Б.И., Исаков Я.И., Шпиро Е.С., Миначёв Х.М. Циклодимеризация бицикло[2.2.1]гепта-2,5-диена в присутствии родийцеолитных катализаторов. Известия Академии наук. Серия химическая. 1994;43(11):1913–1919. [Gol’dshleger N.F., Azbel’ B.I., Isakov Ya.I., Shpiro E.S., Minachev Kh.M. Cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene in the presence of rhodiumcontaining zeolite catalysts. Russ. Chem. Bull. 1994;43(11):1802–1808. https://doi.org/10.1007/BF00696305 ]; Azbel’ B.I., Gol’Dshleger N.F., Khidekel’ M.L., Sokol V.I., Porai-Koshits M.A. Cyclodimerization of bicyclo [2.2.1]hepta-2,5-diene by rhodium carboxylates. J. Molecul. Catal. 1987;40(1):57–63. https://doi.org/10.1016/0304-5102(87)80006-8; Юффа А.Я., Лисичкин Г.В. Гетерогенные металлокомплексные катализаторы. Успехи химии. 1978;47(8):1414–1443.; Флид В.Р., Иванов А.В., Манулик О.С., Белов А.П. Гетерогенно-каталитическая димеризация бицикло[2.2.1]-гептадиена. Кинетика и катализ. 1994;35(5):774–775.; Леонтьева C.В., Дмитриев Д.В., Кацман Е.А., Флид В.Р. Каталитические синтезы полициклических соединений на основе норборнадиена в присутствии комплексов никеля. V. Содимеризация норборнадиена и метилвинилкетона на гетерогенизированных никелевых катализаторах. Кинетика и катализ. 2006;47(4):597–601.; Li C., Zhang C., Liu R., Wang L., Zhang X., Li G. Heterogeneously supported active Pd(0) complex on silica mediated by PEG as efficient dimerization catalyst for the production of high energy density fuel. Mol. Catal. 2022;520:112170. https://doi.org/10.1016/j.mcat.2022.112170; Jeong B.H., Han J.S., Jeon J.K., Park E.S., Jeong K.H. Method for Producing Norbornadiene Dimer Using Hetorogneous Catalyst: Pat. KR101616071B1. Publ. 27.04.2016.; Jeong K., Kim J., Han J., Jeong B., Jeon J.K. Dimerization of Bicyclo[2.2.1.]hepta-2,5-diene Over Various Zeolite Catalysts. Top. Catal. 2017;60(9–11):743–749. https://doi.org/10.1007/s11244-017-0780-6; Kim J., Shim B., Lee G., Han J., Kim J.M., Jeon J.-K. Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts. Catalysis Today. 2018;303:71–76. https://doi.org/10.1016/j.cattod.2017.08.024; Jeong K., Kim J., Han J., Jeon J.-K. Synthesis of High-Energy-Density Fuel Through the Dimerization of Bicyclo[2.2.1]Hepta-2,5-Diene Over a Nanoporous Catalyst. J. Nanosci. Nanotechnol. 2017;17(11):8255–8259. https://doi.org/10.1166/jnn.2017.15097; Khan N., Abhyankar A.C., Nandi T. Cyclodimerization of norbornadiene (NBD) into high energy-density fuel pentacyclotetradecane (PCTD) over mesoporous silica supported Co–Ni nanocatalyst. J. Chem. Sci. 2021;133(1):29. https://doi.org/10.1007/s12039-021-01890-w; Wu M.M., Xiong Y. Process for the catalytic cyclodimerization of cyclic olefins: Pat. US5545790A. Publ. 13.08.1996.; Audeh C.A., Boulton J.R., Kremer R.A., Xiong Y. Heterogeneous catalytic oligomerization of norbornene: Pat. US5461181A. Publ. 24.10.1995.; Джемилев У.М., Кутепов Б.И., Григорьева Н.Г., Бубённов С.В., Целютина М.И., Гизетдинова А.Ф. Способ селективного получения димеров норборнена: пат. RU2505514C1 РФ. Заявка № RU2012136669/04A; заявл. 27.08.2012; опубл. 27.01.2014.; Grigor’eva N.G., Bubennov S.V., Khalilov L.M., Kutepov B.I. Dimerization of norbornene on zeolite catalysts. Chinese J. Catal. 2015;36(3):268–273. https://doi.org/10.1016/S1872-2067(14)60251-5; Bubennov S.V., Grigor’eva N.G., Serebrennikov D.V., Agliullin M.R., Kutepov B.I. Oligomerization of Unsaturated Compounds in the Presence of Amorphous Mesoporous Aluminosilicates. Pet. Chem. 2019;59(7):682–690. https://doi.org/10.1134/S096554411907003X; Chen Y., Shi C., Jia T., Cai Q., Pan L., Xie J., et al. Catalytic synthesis of high-energy–density jet-fuel-range polycyclic fuel by dimerization reaction. Fuel. 2022;308:122077. https://doi.org/10.1016/j.fuel.2021.122077; Ananikov V.P., Beletskaya I.P. Toward the Ideal Catalyst: From Atomic Centers to a “Cocktail” of Catalysts. Organometallics. 2012;31(5):1595–1604. https://doi.org/10.1021/om201120n; Eremin D.B., Ananikov V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev. 2017;346:2–19. https://doi.org/10.1016/j.ccr.2016.12.021; Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. Transition metal ‘cocktail’-type catalysis. Curr. Opin. Green Sustain. Chem. 2021;31:100502. https://doi.org/10.1016/j.cogsc.2021.100502; Cantillo D., Kappe C.O. Immobilized Transition Metals as Catalysts for Cross-Couplings in Continuous Flow—A Critical Assessment of the Reaction Mechanism and Metal Leaching. ChemCatChem. 2014;6(12):3286–3305. https://doi.org/10.1002/cctc.201402483