-
1Academic Journal
Authors: Shevchenko V.E., Nikiforova Z.N., Kushnir T.I., Kudryavtsev I.A., Mitrofanov A.A., Bekyashev A.K., Arnotskaya N.E.
Contributors: It is funded under the state budget theme No. 2021-76., Финансируется в рамках госбюджетной темы № 2021-76.
Source: Advances in Molecular Oncology; Vol 9, No 3 (2022); 60-68 ; Успехи молекулярной онкологии; Vol 9, No 3 (2022); 60-68 ; 2413-3787 ; 2313-805X
Subject Terms: glioblastoma stem cells, ferroptosis, glioblastoma multiforme, proteome, mass spectrometry, стволовые клетки глиобластомы, ферроптоз, мультиформная глиобластома, протеом, масс-спектрометрия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/459/271; https://umo.abvpress.ru/jour/article/view/459
-
2Academic Journal
Authors: Kushnir T.I., Arnotskaya N.E., Kudryavtsev I.A., Mitrofanov A.A., Bekyashev A.K., Zgoda V.G., Shevchenko V.E.
Contributors: It is funded under the state budget theme No. 2021-76., Финансируется в рамках госбюджетной темы № 2021-76.
Source: Advances in Molecular Oncology; Vol 8, No 4 (2021); 75-83 ; Успехи молекулярной онкологии; Vol 8, No 4 (2021); 75-83 ; 2413-3787 ; 2313-805X
Subject Terms: curcumin, glioblastoma multiforme, proteome, excision DNA repair, mass spectrometry, мультиформная глиобластома, куркумин, протеом, эксцизионная репарация ДНК, масс-спектрометрия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/392/246; https://umo.abvpress.ru/jour/article/view/392
-
3Academic Journal
Authors: Kushnir T.I., Arnotskaya N.E., Kudryavtsev I.A., Mitrofanov A.A., Bekyashev A.K., Shevchenko V.E.
Contributors: Финансируется в рамках госбюджетной темы № 2021-76
Source: Advances in Molecular Oncology; Vol 8, No 1 (2021); 32-40 ; Успехи молекулярной онкологии; Vol 8, No 1 (2021); 32-40 ; 2413-3787 ; 2313-805X
Subject Terms: glioblastoma multiforme, hypoxia, proteome, secretome, prognostic markers, mass spectrometry, мультиформная глиобластома, гипоксия, протеом, секретом, прогностические маркеры, масс-спектрометрия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/330/222; https://umo.abvpress.ru/jour/article/view/330
-
4Academic Journal
Authors: T. I. Kushnir, N. E. Arnotskaya, I. A. Kudryavtsev, V. E. Shevchenko, Т. И. Кушнир, Н. Е. Арноцкая, И. А. Кудрявцев, В. Е. Шевченко
Source: Advances in Molecular Oncology; Том 7, № 1 (2020); 8-16 ; Успехи молекулярной онкологии; Том 7, № 1 (2020); 8-16 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2020-7-1
Subject Terms: инвазия, glioblastoma multiforme, angiogenesis, apoptosis, invasion, мультиформная глиобластома, ангиогенез, апоптоз
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/252/196; Shahcheraghi S.H., Zangui M., Lotfi M. et al. Therapeutic potential of curcumin in the treatment of glioblastoma multiforme. Curr Pharm Des 2019;25(3):333–42. DOI:10.2174/1381612825666190313123704.; Erices J.I., Torres A., Niechi I. et al. Current natural therapies in the treatment against glioblastoma. Phytother Res 2018;32(11):2191–201. DOI:10.1002/ptr.6170.; Huang B.R., Tsai C.H., Chen C.C. et al. Curcumin promotes connexin 43 degradation and temozolomide-induced apoptosis in glioblastoma cells. Am J Chin Med 2019;47(3):657–74. DOI:10.1142/S0192415X19500344.; Arevalo A.T., Erices J.I., Uribe D.A. et al. Current therapeutic alternatives and new perspectives in glioblastoma multiforme. Curr Med Chem 2017;24(25):2781–95. DOI:10.2174/0929867324666170303122241.; Schor N.F. New approaches to pharma-cotherapy of tumors of the nervous system during childhood and adolescence. Pharmacol Ther 2009;122(1):44–55. DOI:10.1016/j.pharmthera.2009.01.001.; Mierzwa M.L., Nyati M.K., Morgan M.A. et al. Recent advances in combined modality therapy. Oncologist 2010;15(4):372–81. DOI:10.1634/theoncologist.2009-S105.; Philip-Ephraim E.E., Eyong K.I., Williams U.E. et al. The role of radiotherapy and chemotherapy in the treatment of primary adult high grade gliomas: assessment of patients for these treatment approaches and the common immediate side effects. ISRN Oncol 2012;902178. DOI:10.5402/2012/902178.; Klinger N.V., Mittal S. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors. Oxidative Medicine and Cellular Longevity 2016:1–14. DOI:10.1155/2016/9324085.; Misso G., Di Martino M.T., De R.G. et al. Mir-34: a new weapon against cancer? Molr Ther Nucl Acid 2014;3(9):e195. DOI:10.1038/mtna.2014.47.; Shah A.H., Bregy A., Heros D.O. et al. Dendritic cell vaccine for recurrent highgrade gliomas in pediatric and adult subjects: clinical trial protocol. Neurosurgery 2013;73(5):863–7. DOI:10.1227/NEU.0000000000000107.; Gulati S., Jakola A.S., Johannesen T.B., Solheim O. Survival and treatment patterns of glioblastoma in the elderly: a population-based study. World Neurosurg 2012;78(5):518–26. DOI:10.1016/j.wneu.2011.12.008.; Shabaninejad Z., Pourhanifeh M.H., Movahedpour A. et al. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 2020;188:112040. DOI:10.1016/j.ejmech.2020.112040.; Sherriff J., Tamangani J., Senthil L. et al. Patterns of relapse in glioblastoma multiforme following concomitant chemoradiotherapy with temozolomide. Br J Radiol 2013;86(1022):20120414. DOI:10.1259/bjr.20120414.; Hesari A., Rezaei M., Rezaei M. et al. Effect of curcumin on glioblastoma cells. J Cell Physiol 2019;234(7):10281–8. DOI:10.1002/jcp.27933.; Kunati S.R., Yang S., William B.M., Xu Y. An LC-MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J Pharm Biomed Anal 2018;156:189–98. DOI:10.1016/j.jpba.2018.04.034.; Ahmed T., Gilani A.H. Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res 2014;28(4):517–25. DOI:10.1002/ptr.5030.; Hewlings S., Kalman D. Curcumin: a review of its’ effects on human health. Foods 2017;6(10):pii:E92. DOI:10.3390/foods6100092.; Kotha R.R., Luthria D.L. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019; 24(16). DOI:10.3390/molecules24162930.; Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct 2018;9(2):705–14. DOI:10.1039/c7fo01242j.; Amalraj A., Pius A., Gopi S. et al. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Complement Med 2016;7(2):205–33. DOI:10.1016/j.jtcme.2016.05.005.; Deogade S., Ghate S. Curcumin: therapeutic applications in systemic and oral health. Int J Biol Pharm Res 2015;6(4):281–90. DOI:10.21276/ijbpr.; Kocaadam B., Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 2015;57(13):2889–95. DOI:10.1080/10408398.2015.1077195.; Lopresti A.L. Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies. J Psychopharmacol 2017;31(3):287–302. DOI:10.1177/0269881116686883.; Prasad S., Gupta S.C., Tyagi A.K. et al. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 2014;32(6):1053–64. DOI:10.1016/j.biotechadv.2014.04.004.; Nelson K.M., Dahlin J.L., Bisson J. et al. The essential medicinal chemistry of curcumin. J Med Chem 2017;60(5):1620–37. DOI:10.1021/acs.jmedchem.6b00975.; Chen L., Shi L., Wang W., Zhou Y. ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin. Oncotarget 2017;8(26):43237–47. DOI:10.18632/oncotarget.18018.; Luthra P.M., Lal N. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of glioblastoma. Eur J Med Chem 2016;109:23–35. DOI:10.1016/j.ejmech.2015.11.049.; Hosseini A., Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018;99:411–21. DOI:10.1016/j.biopha.2018.01.072.; Luo Q., Luo H., Fu H. et al. Curcumin suppresses invasiveness and migration of human glioma cells in vitro by inhibiting HDGF/β-catenin complex. Nan Fang Yi Ke Da Xue Xue Bao 2019;39(8):911–6. DOI:10.12122/j.issn.1673-4254.2019.08.06.; Mortezaee K., Salehi E., Mirtavoos-Mahyari H. et al. Mechanisms of apoptosis modulation by curcumin: implications for cancer therapy. J Cell Physiol 2019;234(8):12537–50. DOI:10.1002/jcp.28122.; Zanotto-Filho A., Braganhol E., Klafke K. et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Let 2015;358(2):220–31. DOI:10.1016/j.canlet.2014.12.044.; Carolina Alves R., Perosa Fernandes R., Fonseca-Santos B. et al. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem 2019;49(2):138–49. DOI:10.1080/10408347.2018.1489216.; Dhandapani K.M., Mahesh V.B., Brann D.W. Curcumin suppresses growth and chemoresistance of human glio blastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 2007;102(2):522–38. DOI:10.1111/j.1471-4159.2007.04633.x.; Trotta T., Panaro M.A., Prifti E. et al. Modulation of biological activities in glioblastoma mediated by curcumin. Nutr Cancer 2019;71(8):1241–53. DOI:10.1080/01635581.2019.1604978.; Park K.S., Yoon S.Y., Park S.H. et al. Anti-migration and anti-invasion effects of curcumin via suppression of fascin expression in glioblastoma cells. Brain Tumor Res Treat 2019;7(1):16–24. DOI:10.14791/btrt.2019.7.e28.; Ghosh S., Banerjee S., Sil P.C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 2015;83:111–24. DOI:10.1016/j.fct.2015.05.022.; Meng X., Cai J., Liu J. et al. Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway. Cell Cycle 2017;16(12):1181–92. DOI:10.1080/15384101.2017.1320000.; Saberi-Karimian M., Katsiki N., Caraglia M. et al. Vascular endothelial growth factor: an important molecular target of curcumin. Crit Rev Food Sci Nutr 2019;59(2):299–312. DOI:10.1080/10408398.2017.1366892.; Wang T.Y., Chen J.X. Effects of curcumin on vessel formation insight into the pro- and antiangiogenesis of curcumin. Evid Based Complement Alternat Med 2019. DOI:10.1155/2019/1390795.; Wang X., Deng J., Yuan J. et al. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int J Oncol 2017;51(2):467–77. DOI:10.3892/ijo.2017.4037.; Schnekenburger M., Dicato M., Diederich M.F. Anticancer potential of naturally occurring immunoepigenetic modulators: a promising avenue? Cancer 2019;125(10):1612–28. DOI:10.1002/cncr.32041.; Su C.C., Wang M.J., Chiu T.L. The anti-cancer efficacy of curcumin scrutinized through core signaling pathways in glioblastoma. Int J Mol Med 2010;26(2):217–24. DOI:10.3892/ijmm_00000455.; Maiti P., Scott J., Sengupta D. et al. Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathway in cultured glioblastoma cells. Int J Mol Sci 2019;20(2). DOI:10.3390/ijms20020399.; Sordillo L.A., Sordillo P.P., Helson L. Curcumin for the treatment of glioblastoma. Anticancer Res 2015;35(12):6373–8.; Yin H., Zhou Y., Wen C. et al. Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol Rep 2014;32(4):1610–6. DOI:10.3892/or.2014.3342.; Gersey Z.C., Rodriguez G.A., Barbarite E. et al. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 2017;17(1):99. DOI:10.1186/s12885-017-3058-2.; Hossain M., Banik N.L., Ray S.K., Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells. Neurochem Int 2012;61(7):1102–13. DOI:10.1016/j.neuint.2012.08.002.; Soleimani V., Sahebkar A., Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent(curcumin) as nontoxic and safe substances: review. Phytother Res 2018;32(6):985–95. DOI:10.1002/ptr.6054.; Devassy J.G., Nwachukwu I.D., Jones P.J. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev 2015;73(3):155–65. DOI:10.1093/nutrit/nuu064.; Schneider C., Gordon O.N., Edwards R.L. et al. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem 2015;63(35):7606–14. DOI:10.1021/acs.jafc.5b00244.; Priyadarsini K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 2014;19(12):20091–112. DOI:10.3390/molecules191220091.; Hussain Z., Thu H.E., Ng S.F. et al. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: a review of new trends and state-of-the-art. Colloids Surf B Biointerfaces 2017;150:223–41. DOI:10.1016/j.colsurfb.2016.11.036.; https://umo.abvpress.ru/jour/article/view/252
-
5Academic Journal
Authors: Vasilets Y.D., Arnotskaya N.E., Kudryavtsev I.A., Shevchenko V.E.
Source: Advances in Molecular Oncology; Vol 5, No 4 (2018); 94-103 ; Успехи молекулярной онкологии; Vol 5, No 4 (2018); 94-103 ; 2413-3787 ; 2313-805X
Subject Terms: Wnt-signaling, cancer stem cells, multiform glioblastoma, β-catenin, Wnt-сигнальный путь, опухолевые стволовые клетки, мультиформная глиобластома, β-катенин
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/178/161; https://umo.abvpress.ru/jour/article/view/178
-
6Academic Journal
Authors: Shevchenko V.E., Kovalev S.V., Arnotskaya N.E., Nikiforova Z.N., Kudryavtsev I.A., Savchenko E.A., Bryukhovetskiy I.S.
Source: Advances in Molecular Oncology; Vol 3, No 2 (2016); 50-59 ; Успехи молекулярной онкологии; Vol 3, No 2 (2016); 50-59 ; 2413-3787 ; 2313-805X
Subject Terms: transforming growth factor beta-1, glioblastoma multiforme, proteome, mass-spectrometry, epithelial-mesenchymal transition, focal adhesion, tight cell junctions, трансформирующий фактор роста бета-1, мультиформная глиобластома, протеом, масс-спектрометрия, эпителиально-мезенхимальный переход, фокальная адгезия, плотные межклеточные контакты
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/62/63; https://umo.abvpress.ru/jour/article/view/62
-
7Academic Journal
Source: Advances in Molecular Oncology; Vol 3, No 2 (2016); 26-33 ; Успехи молекулярной онкологии; Vol 3, No 2 (2016); 26-33 ; 2413-3787 ; 2313-805X
Subject Terms: glioblastoma multiforme, cancer stem cell, CD 133+ marker, Notch-signaling pathway, Hedgehog-Gli-signaling pathway, Wnt/ β-catenin-signaling pathway, TGF-β/SMAD-signaling pathway, epithelial – mesenchymal transition, microRNA, мультиформная глиобластома, опухолевая стволовая клетка, маркер CD133+, Notch-сигнальный путь, Hedgehog-Gli- сигнальный путь, Wnt/β-катенин-сигнальный путь, TGF-β/SMAD-сигнальный путь, эпителиально-мезенхимальный переход, микроРНК
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/59/60; https://umo.abvpress.ru/jour/article/view/59
-
8Academic Journal
Authors: БРЮХОВЕЦКИЙ И.С., ДЮЙЗЕН И.В., ШЕВЧЕНКО В.Е., ХОТИМЧЕНКО Ю.С.
File Description: text/html
-
9Academic Journal
File Description: text/html
-
10Academic Journal
Authors: БРЮХОВЕЦКИЙ ИГОРЬ СТЕПАНОВИЧ
Subject Terms: МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, ТЕМОЗОЛАМИД, СТВОЛОВЫЕ КЛЕТКИ, НЕЙРАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ, ОПУХОЛЕВЫЕ СТВОЛОВЫЕ КЛЕТКИ, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ
File Description: text/html
-
11Academic Journal
Subject Terms: МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, ГЛИОМА ЛИНИИ C6, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ, НЕЙРАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ
File Description: text/html
-
12Academic Journal
Source: Успехи молекулярной онкологии.
Subject Terms: 03 medical and health sciences, МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА,ОПУХОЛЕВАЯ СТВОЛОВАЯ КЛЕТКА,МАРКЕР CD133+,NOTCH-СИГНАЛЬНЫЙ ПУТЬ,HEDGEHOG-GLIСИГНАЛЬНЫЙ ПУТЬ,WNT/β-КАТЕНИН-СИГНАЛЬНЫЙ ПУТЬ,TGF-β/SMAD-СИГНАЛЬНЫЙ ПУТЬ,ЭПИТЕЛИАЛЬНО-МЕЗЕНХИМАЛЬНЫЙ ПЕРЕХОД,МИКРОРНК, 0302 clinical medicine, 3. Good health
File Description: text/html
-
13Academic Journal
Source: Тихоокеанский медицинский журнал.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА,НЕЙРАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ,МЕЗЕНХИМАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ,ОПУХОЛЕВЫЕ СТВОЛОВЫЕ КЛЕТКИ,GLIOBLASTOMA MULTIFORME,NEURAL STEM CELLS,MESENCHYMAL STEM CELLS,TUMOR STEM CELLS
File Description: text/html
-
14Academic Journal
Authors: Брюховецкий, И., Брюховецкий, А., Кумейко, В., Мищенко, П., Хотимченко, Ю.
Subject Terms: МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, КАНЦЕРОГЕНЕЗ, НЕЙРАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ, ГЕМОПОЭТИЧЕ-СКИЕ СТВОЛОВЫЕ КЛЕТКИ, РАКОВЫЕ СТВОЛОВЫЕ КЛЕТКИ
File Description: text/html
-
15
-
16
-
17Academic Journal
Authors: Bentsion, D. L., Demidov, S. M., Shershever, A. S., Бенцион, Д. Л., Демидов, С. М., Шершевер, А. С.
Subject Terms: GLIOBLASTOMA MULTIFORME, ACCELERATED FRACTIONATION, CONFORMAL RADIATION, МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, УСКОРЕННОЕ ФРАКЦИОНИРОВАНИЕ, КОНФОРМНОЕ ОБЛУЧЕНИЕ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2010. T. 77, № 12.; http://elib.usma.ru/handle/usma/16050
Availability: http://elib.usma.ru/handle/usma/16050
-
18Academic Journal
Subject Terms: АНАПЛАСТИЧЕСКАЯ АСТРОЦИТОМА, МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, ЛУЧЕВАЯ ТЕРАПИЯ, ТЕМОДАЛ
File Description: text/html
-
19Academic Journal
Authors: Кубасова, И., Вакуловская, Е., Ермакова, К., Смирнова, З.
Subject Terms: ФОТОДИНАМИЧЕСКАЯ ТЕРАПИЯ, ФЛЮОРЕСЦЕНТНАЯ ДИАГНОСТИКА, МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, ФОТОСЕНСИБИЛИЗАТОР
File Description: text/html
-
20Academic Journal
Source: Гены и клетки.
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, ГЛИАЛЬНЫЕ ОПУХОЛИ ГОЛОВНОГО МОЗГА, МУЛЬТИФОРМНАЯ ГЛИОБЛАСТОМА, СТВОЛОВЫЕ КЛЕТКИ, ОПУХОЛЕВЫЕ СТВОЛОВЫЕ КЛЕТКИ, ГЕНОМИКА, ТРАНСКРИПТОМИКА, ПРО-ТЕОМИКА, 3. Good health
File Description: text/html