Showing 1 - 19 results of 19 for search '"мужская фертильность"', query time: 0.64s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was supported by the state assignment FWNR-2022-0021.

    Source: Vavilov Journal of Genetics and Breeding; Том 28, № 7 (2024); 780-791 ; Вавиловский журнал генетики и селекции; Том 28, № 7 (2024); 780-791 ; 2500-3259 ; 10.18699/vjgb-24-75

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4351/1885; Akbarzadeh Khiavi M., Jalili A., Safary A., Gharedaghchi Z., Mirinezhad S.K., Mehdizadeh A., Rahmani S.A. Karyotypic abnormalities and molecular analysis of Y chromosome microdeletion in Iranian Azeri Turkish population infertile men. Syst. Biol. Reprod. Med. 2020;66(2):140-146. DOI 10.1080/19396368.2019.1682083; Alimardanian L., Saliminejad K., Razi S., Ahani A. Analysis of partial azoospermia factor c deletion and DAZ copy number in azoospermia and severe oligozoospermia. Andrologia. 2016;48(9):890-894. DOI 10.1111/and.12527; Arredi B., Ferlin A., Speltra E., Bedin C., Zuccarello D., Ganz F., Marchina E., Stuppia L., Krausz C., Foresta C. Y-chromosome haplogroups and susceptibility to azoospermia factor c microdeletion in an Italian population. J. Med. Genet. 2007;44(3):205-208. DOI 10.1136/jmg.2006.046433; Bahmanimehr A., Zeighami S., Namavar Jahromi B., Anvar Z., Parsanezhad M.E., Davari M., Montazeri S. Detection of Y chromosome microdeletions and hormonal profile analysis of infertile men undergoing assisted reproductive technologies. Int. J. Fertil. Steril. 2018;12(2):173-177. DOI 10.22074/ijfs.2018.5244; Balanovska E.V., Balanovsky O.P. The Russian Gene Pool on the Russian Plain. Moscow, 2007 (in Russian); Bansal S.K., Gupta G., Rajender S. Y chromosome b2/b3 deletions and male infertility: a comprehensive meta-analysis, trial sequential analysis and systematic review. Mutat. Res. Rev. Mutat. Res. 2016a; 768:78-90. DOI 10.1016/j.mrrev.2016.04.007; Bansal S.K., Jaiswal D., Gupta N., Singh K., Dada R., Sankhwar S.N., Gupta G., Rajender S. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses. Sci. Rep. 2016b;6:19798. DOI 10.1038/srep19798; Barkov I.Yu., Soroka N.E., Popova A.Yu., Gamidov S.I., Belyaeva N.A., Glinkina Zh.I., Kalinina E.A., Trofimov D.Yu., Sukhikh G.T. Diagnosis of male infertility associated with microdeletions at the AZF locus of the Y chromosome. Akusherstvo i Ginekologiya = Obstetrics and Gynecology. 2014;1:59-64 (in Russian); Behulova R., Varga I., Strhakova L., Bozikova A., Gabrikova D., Boronova I., Repiska V. Incidence of microdeletions in the AZF region of the Y chromosome in Slovak patients with azoospermia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2011;155(1): 33-38. DOI 10.5507/bp.2011.006; Beyaz C.C., Gunes S., Onem K., Kulac T., Asci R. Partial deletions of Y-chromosome in infertile men with non-obstructive azoospermia and oligoasthenoteratozoospermia in a Turkish population. In Vivo. 2017;31(3):365-371. DOI 10.21873/invivo.11068; Chernykh V.B., Chukhrova A.L., Beskorovainaya T.S., Grishina E.M., Sorokina T.M., Shileiko L.V., Gogolevsky P.A., Kalugina A.S., Morina G.V., Togobetsky A.S., Tanevsky V.E., Zdanovsky V.M., Gogolevskaya I.K., Kramerov D.A., Polyakov A.V., Kurilo L.F. Types of Y chromosome deletions and their frequency in infertile men. Russ. J. Genet. 2006;42(8):936-941. DOI 10.1134/S1022795406080138; ChernykhV.B., Rudneva S.A., Sorokina T.M., Shileyko L.V., Kurilo L.F., Ryzhkova O.P., Chukhrova A.L., Polyakov A.V. Characteristics of spermatogenesis in infertile men with the AZFc region deletions. Andrologiya i Genitalnaya Khirurgiya = Andrology and Genital Surgery. 2014;2:48-57 (in Russian); Chernykh V.B., Ryzhkova O.P., Kuznetsova I.A., Kazaryan M.S., Sorokina T.M., Kurilo L.F., Schagina O.A., Polyakov A.V. Deletions in AZFc region of Y chromosome in Russian fertile men. Russ. J. Genet. 2022;58(7):850-856. DOI 10.1134/s1022795422070043; Choi J., Song S.H., Bak C.W., Sung S.R., Yoon T.K., Lee D.R., Shim S.H. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men. PLoS One. 2012;7(8): e43550. DOI 10.1371/journal.pone.0043550; Cioppi F., Rosta V., Krausz C. Genetics of azoospermia. Int. J. Mol. Sci. 2021;22(6):3264. DOI 10.3390/ijms22063264; Colaco S., Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018; 16(1):14. DOI 10.1186/s12958-018-0330-5; Deng C.Y., Zhang Z., Tang W.H., Jiang H. Microdeletions and vertical transmission of the Y-chromosome azoospermia factor region. Asian J. Androl. 2023;25(1):5-12. DOI 10.4103/aja2021130; Derenko M., Malyarchuk B., Denisova G., Wozniak M., Grzybowski T., Dambueva I., Zakharov I. Y-chromosome haplogroup N dispersals from south Siberia to Europe. J. Hum. Genet. 2007;52(9):763-770. DOI 10.1007/s10038-007-0179-5; Ferlin A., Tessari A., Ganz F., Marchina E., Barlati S., Garolla A., Engl B., Foresta C. Association of partial AZFc region deletions with spermatogenic impairment and male infertility. J. Med. Genet. 2005;42(3):209-213. DOI 10.1136/jmg.2004.025833; Fu M., Chen M., Guo N., Lin M., Li Y., Huang H., Cai M., Xu L. Molecular genetic analysis of 1,980 cases of male infertility. Exp. Ther. Med. 2023;26(1):345. DOI 10.3892/etm.2023.12044; Ghorbel M., Gargouri S.B., Zribi N., Abdallah F.B., Cherif M., Keskes R., Chakroun N., Sellami A., McElreavey K., Fakhfakh F., Ammar-Keskes L. Partial microdeletions in the Y-chromosome AZFc region are not a significant risk factor for spermatogenic impairment in Tunisian infertile men. Genet. Test. Mol. Biomarkers. 2012;16(7): 775-779. DOI 10.1089/gtmb.2012.0024; Hallast P., Kibena L., Punab M., Arciero E., Rootsi S., Grigorova M., Flores R., Jobling M.A., Poolamets O., Pomm K., Korrovits P., Rull K., Xue Y., Tyler-Smith C., Laan M. A common 1.6 MB Ychromosomal inversion predisposes to subsequent deletions and severe spermatogenic failure in humans. eLife. 2021;10:e65420. DOI 10.7554/eLife.65420; Hucklenbroich K., Gromoll J., Heinrich M., Hohoff C., Nieschlag E., Simoni M. Partial deletions in the AZFc region of the Y chromosome occur in men with impaired as well as normal spermatogenesis. Hum. Reprod. 2005;20(1):191-197. DOI 10.1093/humrep/deh558; Iijima M., Shigehara K., Igarashi H., Kyono K., Suzuki Y., Tsuji Y., Kobori Y., Kobayashi H., Mizokami A. Y chromosome microdeletion screening using a new molecular diagnostic method in 1030 Japanese males with infertility. Asian J. Androl. 2020;22(4):368-371. DOI 10.4103/aja.aja_97_19; Ilumäe A.M., Reidla M., Chukhryaeva M., Järve M., Post H., Karmin M., Saag L., Agdzhoyan A., Kushniarevich A., Litvinov S., Ekomasova N., Tambets K., Metspalu E., Khusainova R., Yunusbayev B., Khusnutdinova E.K., Osipova L.P., Fedorova S., Utevska O., Koshel S., Balanovska E., Behar D.M., Balanovsky O., Kivisild T., Underhill P.A., Villems R., Rootsi S. Human Y chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families. Am. J. Hum. Genet. 2016;99(1): 163-173. DOI 10.1016/j.ajhg.2016.05.025; Johnson M., Raheem A., De Luca F., Hallerstrom M., Zainal Y., Poselay S., Mohammadi B., Moubasher A., Johnson T.F., Muneer A., Sangster P., Ralph D.J. An analysis of the frequency of Y-chromosome microdeletions and the determination of a threshold sperm concentration for genetic testing in infertile men. BJU Int. 2019; 123(2):367-372. DOI 10.1111/bju.14521; Krausz C., Casamonti E. Spermatogenic failure and the Y chromosome. Hum. Genet. 2017;136(5):637-655. DOI 10.1007/s00439-017-1793-8; Krausz C., Cioppi F., Riera-Escamilla A. Testing for genetic contributions to infertility: potential clinical impact. Expert Rev. Mol. Diagn. 2018;18(4):331-346. DOI 10.1080/14737159.2018.1453358; Krausz C., Navarro-Costa P., Wilke M., Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state of the art 2023. Andrology. 2024;12(3):487- 504. DOI 10.1111/andr.13514; Kuroda S., Usui K., Sanjo H., Takeshima T., Kawahara T., Uemura H., Yumura Y. Genetic disorders and male infertility. Reprod. Med. Biol. 2020;19(4):314-322. DOI 10.1002/rmb2.12336; Kuzmanovska M., Noveski P., Terzic M., Plaseski T., Kubelka-Sabit K., Filipovski V., Lazarevski S., Sukarova Stefanovska E., PlaseskaKaranfilska D. Y-chromosome haplogroup architecture confers susceptibility to azoospermia factor c microrearrangements: a retrospective study. Croat. Med. J. 2019;60(3):273-283. DOI 10.3325/cmj.2019.60.273; Lebedev G.S., Golubev N.A., Shaderkin I.A., Shaderkina V.A., Apolikhin O.I., Sivkov A.V., Komarova V.A. Male infertility in the Russian Federation: statistical data for 2000–2018. Eksperimental’naya i Klinicheskaya Urologiya = Experimental and Clinical Urology. 2019; 4:4-12. DOI 10.29188/2222-8543-2019-11-4-4-12 (in Russian); Levkova M., Chervenkov T., Angelova L. The association of gr/gr deletion in the Y chromosome and impaired spermatogenesis in Bulgarian males: a pilot study. Middle East Fertil. Soc. J. 2020;25:10. DOI 10.1186/s43043-020-00020-9; Liu T., Song Y.X., Jiang Y.M. Early detection of Y chromosome microdeletions in infertile men is helpful to guide clinical reproductive treatments in southwest of China. Medicine (Baltimore). 2019; 98(5):e14350. DOI 10.1097/MD.0000000000014350; Lo Giacco D., Chianese C., Sánchez-Curbelo J., Bassas L., Ruiz P., Rajmil O., Sarquella J., Vives A., Ruiz-Castañé E., Oliva R., Ars E., Krausz C. Clinical relevance of Y-linked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Eur. J. Hum. Genet. 2014;22(6):754-761. DOI 10.1038/ejhg.2013.253; Lu C., Jiang J., Zhang R., Wang Y., Xu M., Qin Y., Lin Y., Guo X., Ni B., Zhao Y., Diao N., Chen F., Shen H., Sha J., Xia Y., Hu Z., Wang X. Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol. Hum. Reprod. 2014;20(9):836-843. DOI 10.1093/molehr/gau043; Mikhaylenko D.S., Sobol I.Y., Safronova N.Y., Simonova O.A., Efremov E.A., Efremov G.D., Alekseev B.Y., Kaprin A.D., Nemtsova M.V. The incidence of AZF deletions, CFTR mutations and long alleles of the AR CAG repeats during the primary laboratory diagnostics in a heterogeneous group of infertily men. Urologiia. 2019; 3:101-107. DOI 10.18565/urology.2019.3.101-107 (in Russian); Mokánszki A., Ujfalusi A., Gombos É., Balogh I. Examination of Y-chromosomal microdeletions and partial microdeletions in idiopathic infertility in East Hungarian patients. J. Hum. Reprod. Sci. 2018;11(4):329-336. DOI 10.4103/jhrs.JHRS_12_18; Osadchuk L.V., Shantanova L.N., Troev I.V., Kleshchev M.A., Osadchuk A.V. Regional and ethnic differences in semen quality and reproductive hormones in Russia: a Siberian population-based cohort study of young men. Andrology. 2021;9:1512-1525. DOI 10.1111/andr.13024; Osadchuk L., Vasiliev G., Kleshchev M., Osadchuk A. Androgen receptor gene CAG repeat length varies and affects semen quality in an ethnic-specific fashion in young men from Russia. Int. J. Mol. Sci. 2022;23(18):10594. DOI 10.3390/ijms231810594; Pan Y., Li L.L., Yu Y., Jiang Y.T., Yang X., Zhang H.G., Liu R.Z., Wang R.X. Natural transmission of b2/b3 subdeletion or duplication to expanded Y chromosome microdeletions. Med. Sci. Monit. 2018;24:6559-6563. DOI 10.12659/MSM.911644; Peterlin B., Kunej T., Sinkovec J., Gligorievska N., Zorn B. Screening for Y chromosome microdeletions in 226 Slovenian subfertile men. Hum. Reprod. 2002;17(1):17-24. DOI 10.1093/humrep/17.1.17; Plaseski T., Novevski P., Kocevska B., Dimitrovski C., Efremov G.D., Plaseska-Karanfilska D. AZF deletions in infertile men from the Republic of Macedonia. Prilozi. 2006;27(1):5-16; Repping S., van Daalen S.K., Korver C.M., Brown L.G., Marszalek J.D., Gianotten J., Oates R.D., Silber S., van der Veen F., Page D.C., Rozen S. A family of human Y chromosomes has dispersed throughout northern Eurasia despite a 1.8-Mb deletion in the azoospermia factor c region. Genomics. 2004;83(6):1046-1052. DOI 10.1016/j.ygeno.2003.12.018; Rozen S.G., Marszalek J.D., Irenze K., Skaletsky H., Brown L.G., Oates R.D., Silber S.J., Ardlie K., Page D.C. AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. Am. J. Hum. Genet. 2012;91(5):890-896. DOI 10.1016/j.ajhg.2012.09.003; Sin H.S., Koh E., Shigehara K., Sugimoto K., Maeda Y., Yoshida A., Kyono K., Namiki M. Features of constitutive gr/gr deletion in a Japanese population. Hum. Reprod. 2010;25(9):2396-2403. DOI 10.1093/humrep/deq191; Stepanov V.A., Khar’kov V.N., Puzyrev V.P. Evolution and phylogeography of human Y-chromosomal lineages. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2006;10(1):57-74 (in Russian); Waseem A.S., Singh V., Makker G.C., Trivedi S., Mishra G., Singh K., Rajender S. AZF deletions in Indian populations: original study and meta-analyses. J. Assist. Reprod. Genet. 2020;37(2):459-469. DOI 10.1007/s10815-019-01661-0; WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: World Health Organization, 2010; WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. Geneva: World Health Organization, 2021; Yang Y., Ma M., Li L., Su D., Chen P., Ma Y., Liu Y., Tao D., Lin L., Zhang S. Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int. J. Androl. 2010;33(5):745-754. DOI 10.1111/j.1365-2605.2009.01015.x; Ye J.J., Ma L., Yang L.J., Wang J.H., Wang Y.L., Guo H., Gong N., Nie W.H., Zhao S.H. Partial AZF c duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China. J. Zhejiang Univ. Sci. B. 2013;14(9):807-815. DOI 10.1631/jzus.B1200301; Zhang F., Lu C., Li Z., Xie P., Xia Y., Zhu X., Wu B., Cai X., Wang X., Qian J., Wang X., Jin L. Partial deletions are associated with an increased risk of complete deletion in AZFc: a new insight into the role of partial AZFc deletions in male infertility. J. Med. Genet. 2007;44(7):437-444. DOI 10.1136/jmg.2007.049056; Zobkova G.Yu., Baranova Е.Е., Donnikov А.Е., Mskhalaya G.J., Zaletova V.V., Koshkina Т.Е., Тrofimov D.Yu. Range of azoospermia factor (AZF) deletions in men with normal and disturbed spermatogenesis. Problemy Reproduktsii = Russian Journal of Human Reproduction. 2017;4:109-113. DOI 10.17116/repro2017234109-113 (in Russian).; https://vavilov.elpub.ru/jour/article/view/4351

  2. 2
    Academic Journal

    Contributors: The study was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации.

    Source: Andrology and Genital Surgery; Том 23, № 4 (2022); 64-73 ; Андрология и генитальная хирургия; Том 23, № 4 (2022); 64-73 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/617/489; Agarwal А., Said T.M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003;9(4):331–45. DOI:10.1093/humupd/dmg027; Simon L., Castillo J., Oliva R., Lewis S.E. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 2011;23(6):724–34. DOI:10.1016/j.rbmo.2011.08.010; Muratori M., De Geyter C. Chromatin condensation, fragmentation of DNA and differences in the epigenetic signature of infertile men. Best Pract Res Clin Endocrinol Metab 2019;33(1): 117–26. DOI:10.1016/j.beem.2018.10.004; Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 2015;21:109–22. DOI:10.2119/molmed.2014.00158; Logunov D.Y., Dolzhikova I.V., Zubkova O.V. et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 2020;396(10255):887–97. DOI:10.1016/S0140-6736(20)31866-3; Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous primeboost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397(10275):671–81. DOI:10.1016/S0140-6736(21)00234-8; WHO laboratory manual for the Examination and processing of human semen. 5th edn. WHO, 2010.; Хаят С.Ш., Брагина Е.Е., Арифулин Е.А. и др. Фрагментация ДНК сперматозоидов у мужчин разного возраста. Андрология и генитальная хирургия 2019;20(4):39–44. DOI:10.17650/2070-9781-2019-20-4-39-44; Гржибовский А.М. Анализ количественных данных для двух независимых групп. Экология человека 2008;(2):54–61.; Cardona Maya W.D., Omolaoye T.S., du Plessis S.S. Re: The impact of COVID-19 vaccine on sperm quality. Eur Urol 2022 Sep;82(3):327–8. DOI:10.1016/j.eururo.2022.06.021; Omolaoye T.S., Adeniji A.A., Cardona Maya W.D., du Plessis S.S. SARS-COV-2 (COVID-19) and male fertility: where are we? Reprod Toxicol 2021;99:65–70. DOI:10.1016/j.reprotox.2020.11.012; Maryousef J., Alkandari M.H., Zini A. Case – Sperm DNA fragmentation associated with COVID-19 infection. Can Urol Assoc J 2022;16(5):Е301–Е3. DOI:10.5489/cuaj.7721; Ma L., Xie W., Li D. et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol 2021;93(1):456–62. DOI:10.1002/jmv.26259; Сорокина Т.М., Брагина Е.Е., Сорокина Е.А. и др. Исследование влияния инфекции COVID-19 на фрагментацию ДНК в сперматозоидах. Андрология и генитальная хирургия 2022; 23(3):72–84. DOI:10.17650/2070-9781-2022-23-3-72-84; Chatzimeletiou K., Fleva A., Sioga A. et al. Effects of different drug therapies and COVID-19 mRNA vaccination on semen quality in a man with ankylosing spondylitis: a case report. Medicina (Kaunas) 2022;58(2):173. DOI:10.3390/medicina58020173.; Сорокина Т.М., Брагина Е.Е., Сорокина Е.А. и др. Оценка и сравнительный анализ спермиологических показателей у мужчин до и после вакцинации препаратом «Спутник V» (Гам-КОВИД-Вак). Андрология и генитальная хирургия 2021;22(4): 45–53. DOI:10.17650/1726-9784-2021-22-4-45-53; Barda S., Laskov I., Grisaru D. et al. The impact of COVID-19 vaccine on sperm quality. Int J Gynaecol Obstet 2022 Jul;158(1):116–20. DOI:10.1002/ijgo.14135; Lifshitz D., Haas J., Lebovitz O. et al. Does mRNA SARS-CoV-2 vaccine detrimentally affect male fertility, as reflected by semen analysis? Reprod Biomed Online 2022;44(1):145–9. DOI:10.1016/j.rbmo.2021.09.021; Gonzalez D.C., Nassau D.E., Khodamoradi K. et al. Sperm parameters before and after COVID-19 mRNA vaccination. JAMA 2021;326(3):273–4. 10.1001/jama.2021.9976; https://agx.abvpress.ru/jour/article/view/617

  3. 3
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 3 (2023); 33-41 ; Андрология и генитальная хирургия; Том 24, № 3 (2023); 33-41 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/692/542; Phillipps H.R., Yip S.H., Grattan D.R. Patterns of prolactin secretion. Mol Cell Endocrinol 2020;502:10679. DOI:10.1016/j.mce.2019.110679; Rohn R.D. Galactorrhea in the adolescent. J Adolesc Health Care 1984;5(1):37–49. DOI:10.1016/s0197-0070(84)80244-2; Cabrera-Reyes E.A., Limón-Morales O., Rivero-Segura N.A. et al. Prolactin function and putative expression in the brain. Endocrinology 2017;57(2):199–213. DOI:10.1007/s12020-017-1346-x; Paragliola R.M., Binart N., Salvatori R. Prolactin. In: The Pituitary. Ed. by S. Melmed. 5th edn. Academic Press, 2022. P. 131–172. DOI:10.1016/B978-0-323-99899-4.00025-1; Macotela Y., Ruiz-Herrera X., Vázquez-Carrillo D.I. et al. The beneficial metabolic actions of prolactin. Front Endocrinol (Lausanne) 2022;13:1001703. DOI:10.3389/fendo.2022.1001703; Lopez-Vicchi F., De Winne C., Brie B. et al. Metabolic functions of prolactin: Physiological and pathological aspects. Neuroendocrinol 2020;32(11):e12888. DOI:10.1111/jne.12888; Адамян Л.В., Ярмолинская М.И., Суслова Е.В. Синдром гиперпролактинемии: от теории к практике. Проблемы репродукции 2020;26(2):27–33. DOI:10.17116/repro20202602127; Bernard V., Young J., Binart N. Prolactin – a pleiotropic factor in health and disease. Nat Rev Endocrinol 2019;15(6):356–65. DOI:10.1038/s41574-019-0194-6; Pirchio R., Graziadio C., Colao A. et al. Metabolic effects of prolactin. Front Endocrinol (Lausanne) 2022;13:1015520. DOI:10.3389/fendo.2022.1015520; Rastrelli G., Corona G., Maggi M. The role of prolactin in andrology: what is new? Rev Endocr Metab Disord 2015;16(3):233–48. DOI:10.1007/s11154-015-9322-3; Al-Karagholi M.A., Kalatharan V., Ghanizada H. et al. Prolactin in headache and migraine: a systematic review of clinical studies. Cephalalgia 2023;43(2):3331024221136286. DOI:10.1177/03331024221136286; Grattan D.R. Coordination or coincidence? The relationship between prolactin and gonadotropin secretion. Trends Endocrinol Metab 2018;29(1):3–5. DOI:10.1016/j.tem.2017.11.004; Clarkson J., Han S.Y., Piet R. et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 2017; 114(47):E10216–23. DOI:10.1073/pnas.1713897114; Dabbous Z., Atkin S.L. Hyperprolactinaemia in male infertility: clinical case scenarios. Arab J Urol 2017;16(1):44–52. DOI:10.1016/j.aju.2017.10.002; Gonzales G.F., Velasquez G., Garcia-Hjarles M. Hypoprolactinemia as related to seminal quality and serum testosterone. Arch Androl 1989;23(3):259–65. DOI:10.3109/01485018908986849; Firdolas F., Ogras M.S., Ozan T. et al. In vitro examination of effects of hyperprolactinemia and hypoprolactinemia on seminal vesicle contractions. Urol 2013;81(3):557–61. DOI:10.1016/j.urology.2012.11.025; Sengupta P., Dutta S., Karkada I.R., Chinni S.V. Endocrinopathies and male infertility. Life (Basel) 2021;12(1):10. DOI:10.3390/life12010010; Vander B.M., Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem 2018;62:2–10. DOI:10.1016/j.clinbiochem.2018.03.012; Ambulkar S.S., Darves-Bornoz A.L., Fantus R.J. et al. Prevalence of hyperprolactinemia and clinically apparent prolactinomas in men undergoing fertility evaluation. Urology 2022;159:114–9. DOI:10.1016/j.urology.2021.03.007; Samperi I., Lithgow K., Karavitaki N. Hyperprolactinaemia. J Clin Med 2019;8(12):2203. DOI:10.3390/jcm8122203; Corona G., Isidori A.M., Aversa A. et al. Endocrinologic control of men’s sexual desire and arousal/erection. J Sex Med 2016;13(3):317–37. DOI:10.1016/j.jsxm.2016.01.007; Krysiak R., Okopień B. Sexual functioning in hyperprolactinemic patients treated with cabergoline or bromocriptine. Am J Ther 2019;26(4):e433–40. DOI:10.1097/MJT.0000000000000777; Fiala L., Lenz J., Sajdlova R. Effect of increased prolactin and psychosocial stress on erectile function. Andrologia 2021;53(4):e14009. DOI:10.1111/and.14009.; Xu Z.H., Pan D., Liu T.Y. et al. Effect of prolactin on penile erection: a cross-sectional study. Asian J Androl 2019;21(6):587–91. DOI:10.4103/aja.aja_22_19; Corona G., Mannucci E., Jannini E.A. et al. Hypoprolactinemia: a new clinical syndrome in patients with sexual dysfunction. J Sex Med 2009;6(5):1457–66. DOI:10.1111/j.1743-6109.2008.01206.x; Corona G., Rastrelli G., Comeglio P. et al. The metabolic role of prolactin: systematic review, meta-analysis and preclinical considerations. Expert Rev Endocrinol Metab 2022;17(6):533–45. DOI:10.1080/17446651.2022.2144829; Krysiak R., Kowalcze K., Okopień B. Sexual function and depressive symptoms in men with hypoprolactinaemia secondary to overtreatment of prolactin excess: a pilot study. Endocrinol Diabetes Nutr (Engl Ed) 2022:69(4):279–88. DOI:10.1016/j.endien.2021.03.004; Maurya M.R, Munshi R., Zambare S. Melanocortin receptors: emerging targets for the treatment of pigmentation, inflammation, stress, weight disorders and sexual dysfunction. Curr Drug Targets 2023;24(2):151–6. DOI:10.2174/1389450124666221108143006; Rahmani B., Ghasemi R., Dargahi L. et al. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016;225:242–50. DOI:10.1016/j.ygcen.2015.09.030; Goffin V. Prolactin receptor targeting in breast and prostate cancers: new insights into an old challenge. Pharmacol Ther 2017;179:111–26. DOI:10.1016/j.pharmthera.2017.05.009; Karayazi Atıcı Ö., Govindrajan N., Lopetegui-González I., Shemanko C.S. Prolactin: a hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2021;114:159–70. DOI:10.1016/j.semcdb.2020.10.005; Costello L.C., Franklin R.B. Testosterone and prolactin regulation of metabolic genes and citrate metabolism of prostate epithelial cells. Horm Metab Res 2002;34(8):417–24. DOI:10.1055/s-2002-33598; Camargo A.C.L., Constantino F.B., Santos S.A.A. et al. Influence of postnatal prolactin modulation on the development and maturation of ventral prostate in young rats. Reprod Fertil Dev 2018;30(7): 969–79. DOI:10.1071/RD17343; López Fontana G., Rey L., Santiano F. et al. Changes in prolactin receptor location in prostate tumors. Arch Esp Urol 2021;74(4):419–26. PMID: 33942735.; La Vignera S., Condorelli R.A., Russo G.I. et al. Endocrine control of benign prostatic hyperplasia. Andrology 2016;4(3):404–11. DOI:10.1111/andr.12186; Loutchanwoot P., Srivilai P., Jarry H. Effects of the natural endocrine disruptor equol on the pituitary function in adult male rats. Toxicol 2013;304:69–75. DOI:10.1016/j.tox.2012.11.017; Govindaraj V., Arya S.V., Rao A.J. Differential action of glycoprotein hormones: significance in cancer progression. Horm Cancer 2014;5(1):1–10. DOI:10.1007/s12672-013-0164-8; Slaunwhite W.R. Jr., Sharma M. Effects of hypophysectomy and prolactin replacement therapy on prostatic response to androgen in orchiectomized rats. Biol Reprod 1977;17(4):489–92. DOI:10.1095/biolreprod17.4.489; Rui H., Purvis K. Independent control of citrate production and ornithine decarboxylase by prolactin in the lateral lobe of the rat prostate. Mol Cell Endocrinol 1987;52(1–2):91–5. DOI:10.1016/0303-7207(87)90101-8; Zanatelli M., Colleta S.J., Guerra L.H.A. et al. Prolactin promotes a partial recovery from the atrophy of both male and female gerbil prostates caused by castration. Reprod Biol Endocrinol 2021;19(1):94. DOI:10.1186/s12958-021-00777-2; Constantino F.B., Camargo A.C.L., Santos S.A.A. et al. The prostate response to prolactin modulation in adult castrated rats subjected to testosterone replacement. J Mol Histol 2017;48(5–6): 403–15. DOI:10.1007/s10735-017-9738-z; Costello L.C., Franklin R.B. Testosterone, prolactin, and oncogenic regulation of the prostate gland. A new concept: testosterone-independent malignancy is the development of prolactin-dependent malignancy. Oncol Rev 2018;12(2):356. DOI:10.4081/oncol.2018.356; Di Zazzo E., Galasso G., Giovannelli P. et al. Estrogens and their receptors in prostate cancer: therapeutic implications. Front Oncol 2018;8:2. DOI:10.3389/fonc.2018.00002; Dobbs R.W., Malhotra N.R., Greenwald D.T. et al. Estrogens and prostate cancer. Prostate Cancer Prostatic Dis 2019;22(2):185–94. DOI:10.1038/s41391-018-0081-6; Van Coppenolle F., Slomianny C., Carpentier F. et al. Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am J Physiol Endocrinol Metab 2001;280(1):E120–9. DOI:10.1152/ajpendo.2001.280.1.E120; Zhang Y., Gc S., Patel S.B. et al. Growth hormone (GH) receptor (GHR)-specific inhibition of GH-Induced signaling by soluble IGF-1 receptor (sol IGF-1R). Mol Cell Endocrinol 2019;492:110445. DOI:10.1016/j.mce.2019.05.004; Kavarthapu R., Anbazhagan R., Dufau M.L. Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer. Cancers (Basel) 2021;13(18):4685. DOI:10.3390/cancers13184685; Borcherding D.C., Hugo E.R., Fox S.R. et al. Suppression of breast cancer by small molecules that block the prolactin receptor. Cancers (Basel) 2021;13(11):2662. DOI:10.3390/cancers13112662; Sackmann-Sala L., Goffin V. Prolactin-induced prostate tumorigenesis. Adv Exp Med Biol 2015;846:221–42. DOI:10.1007/978-3-319-12114-7_10; Minami H., Ando Y., Tamura K. et al. Phase I study of LFA102 in patients with advanced breast cancer or castration-resistant prostate cancer. Anticancer Res 2020;40(9):5229–35. DOI:10.21873/anticanres.14526; Agarwal N., Machiels J.P., Suárez C. et al. Phase I study of the prolactin receptor antagonist LFA102 in metastatic breast and castration-resistant prostate cancer. Oncologist 2016;21(5):535–6. DOI:10.1634/theoncologist.2015-0502; Carrasco-Ceballos J.M., Barrera-Hernández D., Locia-Espinosa J. et al. Involvement of the PRL-PAK1 pathway in cancer cell migration. Cancer Diagn Progn 2023;3(1):17–25. DOI:10.21873/cdp.10174; Standing D., Dandawate P., Anant S. Prolactin receptor signaling: a novel target for cancer treatment – exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2023;13:1112987. DOI:10.3389/fendo.2022.1112987; Costello L.C. The suppression of prolactin is required for the treatment of advanced prostate cancer. Oncogen (Westerville) 2019;2(3):13. DOI:10.35702/onc.10013; Porcaro A.B., Tafuri A., Sebben M. et al. Low preoperative prolactin levels predict non-organ confined prostate cancer in clinically localized disease. Urol Int 2019;103(4):391–9. DOI:10.1159/000496833; Costello L.C., Franklin R.B. A proposed efficacious treatment with clioquinol (zinc ionophore) and cabergoline (prolactin dopamine agonist) for the treatment of terminal androgen-independent prostate cancer. Why and how? J Clin Res Oncol 2019;2(1): https://asclepiusopen.com/journal-of-clinical-research-in-оncology/ volume-2-issue-1/1.pdf. PMID: 30828702.; Yang T., Liu Y., Chen S. et al. Serum prolactin level as a predictive factor for abiraterone response in patients with metastatic castration-resistant prostate cancer. Prostate 2022;82(13):1284–92. DOI:10.1002/pros.24402; Ma J., Mo Y., Tang M. et al. Bispecific antibodies: аrom research to clinical application. Front Immunol 2021;12:626616. DOI:10.3389/fimmu.2021.626616; Anderson M.G., Zhang Q., Rodriguez L.E. et al. ABBV-176, a PRLR antibody drug conjugate with a potent DNA damaging PBD cytotoxin and enhanced activity with PARP inhibition. BMC Cancer 2021;21(1):681. DOI:10.1186/s12885-021-08403-5; Lemech C., Woodward N., Chan N. et al. A first-in-human, phase 1, dose-escalation study of ABBV-176, an antibodydrug conjugate targeting the prolactin receptor, in patients with advanced solid tumors. Invest New Drugs 2020;38(6):1815–25. DOI:10.1007/s10637-020-00960-z; https://agx.abvpress.ru/jour/article/view/692

  4. 4
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 3 (2023); 56-65 ; Андрология и генитальная хирургия; Том 24, № 3 (2023); 56-65 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/695/545; Tran D., Muesy-Dessole N., Josso N. Anti-Müllerian hormone is a functional marker of foetal Sertoli cells. Nature 1977;269(5627):411–2. DOI:10.1038/269411a0; Josso N., Lamarre I., Picard J.Y. et al. Anti-müllerian hormone in early human development. Early Hum Dev 1993;33(2):91–9. DOI:10.1016/0378-3782(93)90204-8; Скриганюк А.А., Харламова А.Н. Антимюллеров гормон. Universum: медицина и фармакология 2019;1(56). Доступно по: https://7universum.com/ru/med/archive/item/7020/; Aksglaede L., Sørensen K., Boas M. et al. Changes in anti-Müllerian hormone (AMH) throughout the life span: a population-based study of 1027 healthy males from birth (cord blood) to the age of 69 years. J Clin Endocrinol Metab 2010;95(12):5357–64. DOI:10.1210/jc.2010-1207; Chong Y.H., Dennis N.A., Connolly M.J. et al. Elderly men have low levels of anti-Müllerian hormone and inhibin B, but with high interpersonal variation: a cross-sectional study of the sertoli cell hormones in 615 community-dwelling men. PLoS One 2013;8(8):e70967. DOI:10.1371/journal.pone.0070967; Ramezani Tehrani F., Mansournia M.A., Solaymani-Dodaran M. et al. Serum variations of anti-mullerian hormone and total testosterone with aging in healthy adult Iranian men: a population-based study. 2017;12(7):e0179634. DOI:10.1371/journal.pone.0179634; Kolon T.F., Herndon C.D., Baker L.A. et al. Evaluation and treatment of cryptorchidism: AUA guideline. J Urol 2014;192(2):337–45. DOI:10.1016/j.juro.2014.05.005; Fénichel P., Rey R., Poggioli S. et al. Anti-Müllerian hormone as a seminal marker for spermatogenesis in non-obstructive azoospermia. Hum Reprod 1999;14(8):2020–4. DOI:10.1093/humrep/14.8.2020; Sinisi A.A., Esposito D., Maione L. et al. Seminal anti-Müllerian hormone level is a marker of spermatogenic response during long-term gonadotropin therapy in male hypogonadotropic hypogonadism. Hum Reprod 2008;23(5):1029–34. DOI:10.1093/humrep/den046; Xu H.Y., Zhang H.X., Xiao Z. et al. Regulation of anti-Müllerian hormone (AMH) in males and the associations of serum AMH with the disorders of male fertility. Asian J Androl 2019;21(2):109–14. DOI:10.4103/aja.aja_83_18; Young J., Rey R., Couzinet B. et al. Antimüllerian hormone in patients with hypogonadotropic hypogonadism. J Clin Endocrinol Metab 1999;84(8):2696–9. DOI:10.1210/jcem.84.8.5972; Benderradji H., Barbotin A.L., Leroy-Billiard M. et al. Defining reference ranges for serum anti-Müllerian hormone on a large cohort of normozoospermic adult men highlights new potential physiological functions of AMH on FSH secretion and sperm motility. J Clin Endocrinol Metab 2022;107(7):1878–87. DOI:10.1210/clinem/dgac218; Aksglaede L., Olesen I.A., Carlsen E. et al. Serum concentration of anti-Müllerian hormone is not associated with semen quality. Andrology 2018;6(2):286–92. DOI:10.1111/andr.12456; Siow Y., Fallat M.E., Amin F.A., Belker A.M. Müllerian inhibiting substance improves longevity of motility and viability of fresh and cryopreserved sperm. J Androl 1998;19(5):568–72. PMID: 9796616.; Rey R.A., Grinspon R.P. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract Res Clin Endocrinol Metab 2011;25(2):221–38. DOI:10.1016/j.beem.2010.08.013; Völkl T.M., Dörr H.G. McCune-Albright syndrome: clinical picture and natural history in children and adolescents. J Pediatr Endocrinol Metab 2006;19(Suppl 2):551–9. DOI:10.1515/jpem.2006.19.s2.551; Edelsztein N.Y., Grinspon R.P., Schteingart H.F., Rey R.A. Anti-Müllerian hormone as a marker of steroid and gonadotropin action in the testis of children and adolescents with disorders of the gonadal axis. Int J Pediatr Endocrinol 2016;2016:20. DOI:10.1186/s13633-016-0038-2; Stévant I., Kühne F., Greenfield A. et al. Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics. Cell Rep 2019;26(12):3272–83. e3. DOI:10.1016/j.celrep.2019.02.069; Xu H., Zhang M., Zhang H. et al. Clinical applications of serum anti-Müllerian hormone measurements in both males and females: an update. Innovation (Camb) 2021;2(1):100091. DOI:10.1016/j.xinn.2021.100091; Al-Qahtani A., Muttukrishna S., Appasamy M. et al. Development of a sensitive enzyme immunoassay for anti-Müllerian hormone and the evaluation of potential clinical applications in males and females. Clin Endocrinol (Oxf) 2005;63(3):267–73. DOI:10.1111/j.1365-2265.2005.02336.x; Goulis D.G., Iliadou P. K., Tsametis C. et al. Serum anti-Müllerian hormone levels differentiate control from subfertile men but not men with different causes of subfertility. Gynecol Endocrinol 2008;24(3):158–60. DOI:10.1080/09513590701672314; El-Halawaty S., Azab H., Said T. et al. Assessment of male serum anti-Mullerian hormone as a marker of spermatogenesis and ICSI outcome. Gynecol Endocrinol 2011;27(6):401–5. DOI:10.3109/09513590.2010.495433; Tüttelmann F., Dykstra N., Themmen A.P. et al. Anti-Müllerian hormone in men with normal and reduced sperm concentration and men with maldescended testes. Fertil Steril 2009;91(5):1812–9. DOI:10.1016/j.fertnstert.2008.02.118; Al-Chalabi S.S., Al-Wattar Y.T., Algalili I.M. Anti-Mullerian hormone is a significant marker for male infertility. Tikret J Pharm Sci 2012;8(1):1–5. Available at: https://www.iasj.net/iasj/download/6c40eab0268cfb9d; Andersen J.M., Herning H., Witczak O., Haugen T.B. Anti-Müllerian hormone in seminal plasma and serum: association with sperm count and sperm motility. Hum Reprod 2016;31(8):1662–7. DOI:10.1093/humrep/dew121; Appasamy M., Muttukrishna S., Pizzey A. et al. Relationship between male reproductive hormones, sperm DNA damage and markers of oxidative stress in infertility. Reprod Biomed Online 2007;14(2):159–65. DOI:10.1016/s1472-6483(10)60783-3; Isikoglu M., Ozgur K., Oehninger S. et al. Serum anti-Müllerian hormone levels do not predict the efficiency of testicular sperm retrieval in men with non-obstructive azoospermia. Gynecol Endocrinol 2006;22(5):256–60. DOI:10.1080/09513590600624366; Fujisawa M., Yamasaki T., Okada H., Kamidono S. et al. The significance of anti-Müllerian hormone concentration in seminal plasma for spermatogenesis. Hum Reprod 2002;17(4):968–70. DOI:10.1093/humrep/17.4.968; Nery S.F., Vieira M.A.F., Dela Cruz C. et al. Seminal plasma concentrations of Anti-Müllerian hormone and inhibin B predict motile sperm recovery from cryopreserved semen in asthenozoospermic men: a prospective cohort study. Andrology 2014;2(6):918–23. DOI:10.1111/andr.278; Mostafa T., Amer M.K., Abdel-Malak G. et al. Seminal plasma anti-Müllerian hormone level correlates with semen parameters but does not predict success of testicular sperm extraction (TESE). Asian J Androl 2007;9(2):265–70. DOI:10.1111/j.1745-7262.2007.00252.x; Duvilla E., Lejeune H., Trombert-Paviot B. et al. Significance of inhibin B and anti-Müllerian hormone in seminal plasma: a preliminary study. Fertil Steril 2008;89(2):444–8. DOI:10.1016/j.fertnstert.2007.03.032; Muttukrishna S., Yussoff H., Naidu M. et al. Serum anti-Müllerian hormone and inhibin B in disorders of spermatogenesis. Fertil Steril 2007;88(2):516–8. DOI:10.1016/j.fertnstert.2006.11.110; Plotton I., Garby L., Morel Y., Lejeune H. Decrease of anti-Mullerian hormone in genetic spermatogenic failure. Andrologia 2012;44(5):349–54. DOI:10.1111/j.1439-0272.2010.01092.x; Deng C., Liu D., Zhao L. et al. Inhibin B-to-anti-Mullerian hormone ratio as noninvasive predictors of positive sperm retrieval in idiopathic non-obstructive azoospermia. J Clin Med 2023;12(2):500. DOI:10.3390/jcm12020500; Alfano M., Ventimiglia E., Locatelli I. et al. Anti-Mullerian hormone-to-testosterone ratio is predictive of positive sperm retrieval in men with idiopathic non-obstructive azoospermia. Sci Rep 2017;7(1):17638. DOI:10.1038/s41598-017-17420-z; Benderradji H., Prasivoravong J., Marcelli F. et al. Contribution of serum anti-Müllerian hormone in the management of azoospermia and the prediction of testicular sperm retrieval outcomes: a study of 155 adult men. Basic Clin Androl 2021;31(1):15. DOI:10.1186/s12610-021-00133-9; Mitchell V., Boitrelle F., Pigny P. et al. Seminal plasma levels of anti-Müllerian hormone and inhibin B are not predictive of testicular sperm retrieval in nonobstructive azoospermia: a study of 139 men. Fertil Steril 2010;94(6):2147–50. DOI:10.1016/j.fertnstert.2009.11.046; https://agx.abvpress.ru/jour/article/view/695

  5. 5
  6. 6
    Academic Journal

    Contributors: The study was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации.

    Source: Andrology and Genital Surgery; Том 23, № 3 (2022); 72-84 ; Андрология и генитальная хирургия; Том 23, № 3 (2022); 72-84 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/587/475; Agarwal А., Said T.M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003;9(4):331–45. DOI:10.1093/humupd/dmg027; Simon L., Castillo J., Oliva R., Lewis S.E. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 2011;23(6):724–34. DOI:10.1016/j.rbmo.2011.08.010; Muratori M., De Geyter C. Chromatin condensation, fragmentation of DNA and differences in the epigenetic signature of infertile men. Best Pract Res Clin Endocrinol Metab 2019;33(1):117–26. DOI:10.1016/j.beem.2018.10.004; Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 2015;21(1):109–22. DOI:10.2119/molmed.2014.00158; WHO laboratory manual for the Examination and processing of human semen. 5th edn. WHO, 2010.; Хаят С.Ш., Брагина Е.Е., Арифулин Е.А. и др. Фрагментация ДНК сперматозоидов у мужчин разного возраста. Андрология и генитальная хирургия 2019;20(4):39–44. DOI:10.17650/2070-9781-2019-20-4-39-44; Chang Y.H. Biostatistics 101: data presentation. Singapore Med J 2003;44(6):280–5. PMID: 14560857.; Гржибовский А.М. Анализ количественных данных для двух независимых групп. Экология человека 2008;(2):54–61.; Hajizadeh Maleki B., Tartibian B. COVID-19 and male reproductive function: a prospective, longitudinal cohort study. Reproduction 2021;161(3):319–31. DOI:10.1530/REP-20-0382; Holtmann N., Edimiris P., Andree M. et al. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril 2020;114(2):233–8. DOI:10.1016/j.fertnstert.2020.05.028; Fan C., Lu W., Li K. et al. ACE2 expression in kidney and testis may cause kidney and testis infection in COVID-19 patients. Front Med (Lausanne) 2021;7:563893. DOI:10.3389/fmed.2020.563893; Haghpanah A., Masjedi F., Alborzi S. et al. Potential mechanisms of SARS-CoV-2 action on male gonadal function and fertility: current status and future prospects. Andrologia 2021;53(1):e13883. DOI:10.1111/and.13883; Li X., Lu H., Li F. et al. Impacts of COVID-19 and SARS-CoV-2 on male reproductive function: a systematic review and meta-analysis protocol. BMJ Open 2022;12(1):e053051. DOI:10.1136/bmjopen-2021-053051; Moryousef J., Alkandari M.H., Zini A. Case – Sperm DNA fragmentation associated with COVID-19 infection. Can Urol Assoc J 2022;16(5):Е301–Е3. DOI:10.5489/cuaj.7721; Ma L., Xie W., Li D. et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol 2021;93(1):456–62. DOI:10.1002/jmv.26259; Сорокина Т.М., Брагина Е.Е., Сорокина Е.А. и др. Влияние перенесенной инфекции COVID-19 на спермиологические показатели мужчин с нарушением фертильности. Андрология и генитальная хирургия 2021;22(3):25–33. DOI:10.17650/1726-9784-2021-22-3-25-33; Сорокина Т.М., Брагина Е.Е., Сорокина Е.А. и др. Оценка и сравнительный анализ спермиологических показателей у мужчин до и после вакцинации препаратом «Спутник V» (Гам-КОВИД-Вак). Андрология и генитальная хирургия 2021;22(4):45–53. DOI:10.17650/1726-9784-2021-22-4-45-53; https://agx.abvpress.ru/jour/article/view/587

  7. 7
    Academic Journal

    Source: Andrology and Genital Surgery; Том 22, № 2 (2021); 54-65 ; Андрология и генитальная хирургия; Том 22, № 2 (2021); 54-65 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/493/414; Лебедев Г.С., Голубев Н.А., Шадер-кин И.А. и др. Мужское бесплодие в Российской Федерации: статистические данные за 2000—2018 годы. Экспериментальная и клиническая урология 2019;4:4-12. DOI:10.29188/2222-8543-2019-11-4-4-12.; Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reprod Biol Endocrinol 2015;13(1):37. DOI:10.1186/s12958-015-0032-1.; Евдокимов В.В., Жуков О.Б., Бабушкина Е.В. Анализ параметров эякулята у мужчин в различных возрастных группах. Андрология и генитальная хирургия 2016;17(2):39-42. DOI:10.17650/2070-9781-2016-17-2-65-67.; Johnson S.L., Dunleavy J., Gemmell N.J., Nakagawa S. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev 2015;19:22-33. DOI:10.1016/j.arr.2014.10.007.; Рубрикатор клинических рекомендаций по мужскому бесплодию Минздрава РФ. Доступно по: https://cr.minzdrav.gov.ru/recomend/5.; Боровец С.Ю., Рыбалов М.А., Горбачев А.Г. и др. Отдаленные результаты лечения препаратом Простатилен® АЦ больных хроническим абактериаль-ным простатитом с повышенной степенью фрагментации ДНК сперматозоидов. Андрология и генитальная хирургия 2018;19(2):52—7. DOI:10.17650/2070-9781-2018-19-2-52-57.; Жуков О. Б., Брагина Е.Е., Левина А.В. и др. Сравнение эффективности препаратов, содержащих комбинацию аргинина и цинка, в лечении мужского бесплодия. Андрология и генитальная хирургия 2020;21(2):26—35. DOI:10.17650/2070-9781-2020-21-2-26-35.; Цуканов А.Ю., Ляшев Р.В. Нарушение венозного кровотока как причина хронического абактериального простатита (синдрома хронической тазовой боли). Урология 2014;4:33-8.; Жуков О.Б., Капто А.А., Михайленко Д.С., Евдокимов В.В. Варикозная болезнь органов таза мужчины. Андрология и генитальная хирургия 2016;17(4):72—7. DOI:10.17650/2070-9781-2016-17-4-72-77.; Gat Y., Gornish M., Heiblum M., Joshua S. Reversal of benign prostate hyperplasia by selective occlusion of impaired venous drainage in the male reproductive system: novel mechanism, new treatment. Andrologia 2008;40(5):273—81.; Жуков О.Б., Уколов В.А., Жуков А.А. Комплексная терапия патоспермии у больных после рентгенэндоваскулярной склеротерапии тестикулярных вен. Андрология и генитальная хирургия 2012;13(4):70—7.; Гамидов С.И., Попков В.М., Шатылко Т.В. и др. Место медикаментозной терапии в лечении мужчин с варикоцеле. Урология 2018;5:114-21. DOI:10.18565/urology.2018.5.114-121.; Гамидов С.И., Овчинников Р.И., Попова А.Ю. и др. Современный подход к терапии мужского бесплодия у больных с варикоцеле. Терапевтический архив 2012;84(10):56—61.; Евдокимов В.В., Селиванов Т.О. Нарушение сперматогенеза при варикоцеле. Патогенез и прогноз лечения. Андрология и генитальная хирургия 2006;7(3):12—8.; Agarwal A., Rana M., Qiu E. et al. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018;50(11):e13126. DOI:10.1111/and.13126.; Dieamant F., Petersen C.G., Mauri A.L. et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod 2017;21(4):295-301. DOI:10.5935/1518-0557.20170053.; https://agx.abvpress.ru/jour/article/view/493

  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Source: Andrology and Genital Surgery; Том 17, № 3 (2016); 23-37 ; Андрология и генитальная хирургия; Том 17, № 3 (2016); 23-37 ; 2412-8902 ; 2070-9781 ; 10.17650/2070-9781-2016-17-3

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/199/188; Jan S.Z., Hamer G., Repping S. et al. Molecular control of rodent spermatogenesis. Biochim Biophys Acta 2012;1822(12): 1838–50.; Kanatsu-Shinohara M., Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol 2013;29:163–87.; Miller M.P., Amon A., Unal E. Meiosis I: when chromosomes undergo extreme makeover. Curr Opin Cell Biol 2013;25(6): 687–96.; Rathke C., Baarends W.M., Awe S., Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 2014;1839:155–68.; Kotaja N., Kimmins S., Brancorsini S. et al. Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods 2004;1:249–54.; Ruwanpura S.M., McLachlan R.I., Meachem S.J. Hormonal regulation of male germ cell development. J Endocrinol 2010;205(2):117–31.; Guyonnet B., Dacheux F., Dacheux J.L., Gatti J.L. The epididymal transcriptome and proteome provide some insights into new epididymal regulations. J Androl 2011;32(6):651–64.; Rato L., Alves M.G., Socorro S. et al. Metabolic regulation is important for spermatogenesis. Nat Rev 2012;9(6):330–8.; Tilly J.L., Sinclair D.A. Germline energetics, aging, and female infertility. Cell Metab 2013;17(6):838–50.; Chalmel F., Rolland A.D., NiederhauserWiederkehr C. et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci USA 2007;104(20):8346–51.; Laiho A., Kotaja N., Gyenesei A., Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One 2013;8(4):e61558.; Matzuk M.M., Lamb D.J. The biology of infertility: research advances and clinical challenges. Nature Med 2008;14(11): 1197–213.; Kimmins S., Kotaja N., Davidson I., Sassone-Corsi P. Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction 2004;128(1):5–12.; Kimmins S., Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature 2005;434(7033):583–9.; Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81:145–66.; Bao J., Wu J., Schuster A.S. et al. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol Reprod 2013; 89(5):107.; Sun J., Lin Y., Wu J. Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One 2013;8(10):e75750.; Soumillon M., Necsulea A., Weier M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 2013;3(6):2179–90.; Ascano M., Gerstberger S., Tuschl T. Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr Opin Genet Dev 2013;23(1):20–8.; Paronetto M.P., Sette C. Role of RNAbinding proteins in mammalian spermatogenesis. Int J Androl 2010;33(1):2–12.; Idler R.K., Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl 2012;33(3):309–37.; Meikar O., Da Ros M., Korhonen H., Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011;142(2):195–209.; Kotaja N., Bhattacharyya S.N., Jaskiewicz L. et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 2006;103(8):2647–52.; Kotaja N., Sassone-Corsi P. The chromatoid body: a germ-cell-specific RNAprocessing centre. Nat Rev Mol Cell Biol 2007;8(1):85–90.; Ghildiyal M., Zamore P.D. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10(2):94–108.; Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science 2007;318(5858):1931–4.; Zheng H., Fu R., Wang J.T. et al. Advances in the techniques for the prediction of microRNA targets. Int J Mol Sci 2013;14(4):8179–87.; Макарова Ю.А., Крамеров Д.А. Некодирующие РНК. Биохимия 2007;72(11):1427–48. [Маkarovа Yu.А., Kramerov D.А. Noncoding RNA. Biokhimiya = Biochemistry 2007;72(11):1427–48. (In Russ.)].; Lee Y., Kim M., Han J. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23(20):4051–60.; Chen K., Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007;8(2):93–103.; Pratt A.J., MacRae I.J. The RNAinduced silencing complex: a versatile genesilencing machine. J Biol Chem 2009;284(27):17897–901.; Sood P., Krek A., Zavolan M. et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 2006;103(8):2746–51.; Wang Z., Yao H., Lin S. et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 2013;331(1):1–10.; Ishizu H., Siomi H., Siomi M.C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2012;26(21):2361–73.; Siomi M.C., Sato K., Pezic D., Aravin A.A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell biol 2011;12(4):246–58.; Yadav R.P., Kotaja N. Small RNAs in spermatogenesis. Mol Cell Endocrinol 2014;382(1):498–508.; Papaioannou M.D., Nef S. McroRNAs in the testis: building up male fertility. J Androl 2010;31(1):26–33.; Mclver S.C., Roman S.D., Nixon B., McLaughlin E. A. miRNA and mammalian male germ cells. Hum Reprod Update 2012;18(1):44–59.; Yan N., Lu Y., Sun H. et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction 2007;134(1):73–9.; Yan N., Lu Y., Sun H. et al. Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet 2009;26(4):179–86.; Mclver S.C., Stanger S.J., Santarelli D.M. et al. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One 2012;7(4):e35553.; Niu Z., Goodyear S.M., Rao S. et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 2011;108(31):12740–5.; He Z., Jiang J., Kokkinaki M. et al. MiRNA-20 and miRNA-106a regulate spermatogonial stem cell renewal at the posttranscriptional level via targeting STAT3 and Ccnd1. Stem Cells 2013;31(10):2205–17.; Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014;101(6): 1552–62.; Ro S., Park C., Sanders K.M. et al. Cloning and expression profiling of testisexpressed microRNAs. Dev Biol 2007;311(2):592–602.; Smorag L., Zheng Y., Nolte J. et al. MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol Cell 2012;104(11):677–92.; Marcon E., Babak T., Chua G. et al. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res 2008;16(2):243–60.; Ro S., Park C., Young D. et al. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 2007;35(17):5944–53.; Ortogero N., Hennig G.W., Langille C. et al. Computerassisted annotation of murine Sertoli cell small RNA transcriptome. Biol Reprod 2013;88(1):3.; Papaioannou M.D., Pitetti J.L., Ro S. et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 2009;326(1):250–9.; Papaioannou M.D., Lagarrigue M., Vejnar C.E. et al. Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 2011;10(4):M900587MCP200.; Panneerdoss S., Chang Y.F., Buddavarapu K.C. et al. Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One 2012;7(7):e41146.; Nicholls P.K., Harrison C.A., Walton K.L. et al. Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology 2011;152(4):1670–83.; Schwarz D.S., Zamore P.D. Why do miRNAs live in the miRNP? Genes Dev 2002;16(9):1025–31.; Stark A., Brennecke J., Bushati N. et al. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution. Cell 2005;123(6):1133–46.; Lewis B.P., Shih I.H., Jones-Rhoades M. et al. Prediction of Mammalian MicroRNA Targets. Cell 2003;115(7):787–98.; Chen C., Ridzon D.A., Broomer A.J. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33(20):e179.; Shingara J., Keiger K., Shelton J. et al. An optimized isolation and labeling platform; for accurate microRNA expression profiling. RNA 2005;11(9):1461–70.; Nozawa M., Miura S., Nei M. Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2010;2:180–9.; Song R., Hennig G.W., Wu Q. et al. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA 2011;108(32):13159–64.; Ewen K.A., Koopman P. Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol 2010;323(1):76–93.; Wainwright E.N., Jorgensen J.S., Kim Y. et al. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 2013;89(2):34.; Rakoczy J., Fernandez-Valverde S.L., Glazov E.A. et al. MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod 2013;88(6):143.; Matsui Y. The molecular mechanisms regulating germ cell development and potential. J Androl 2010;31(1):61–5.; De Rooij D.G., Russell L.D. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000;21(6): 776–98.; Huszar J.M., Payne C.J. MicroRNA 146(Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod 2013;88(1):15.; Yang Q.E., Racicot K.E., Kaucher A.V. et al. MicroRNAs-221 and -222 regulate the undifferentiated state in mammalian male germ cells. Development 2013;140(2):280–90.; Tong M.H., Mitchell D.A., McGowan S.D. et al. Two miRNA clusters, Mir-17–92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 2012;86(3):72.; Tong M.H., Mitchell D., Evanoff R., Griswold M.D. Expression of Mirlet7 family microRNAs in response to retinoic acidinduced spermatogonial differentiation in mice. Biol Reprod 2011;85(1):189–97.; Mayr F., Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation – a structural and functional perspective. Int J Mol Sci 2013;14(8): 16532–53.; Zheng K., Wu X., Kaestner K.H., Wang P.J. The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 2009;9:38.; Gillis A.J., Stoop H., Biermann K. et al. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int J Androl 2011;34(4 Pt 2):e160–74.; Gaytan F., Sangiao-Alvarellos S., Manfredi-Lozano M. et al. Distinct expression patterns predict differential roles of the miRNA-binding proteins, LIN28 and LIN28b, in the mouse testis: studies during postnatal development and in a model of hypogonadotropic hypogonadism. Endocrinology 2013;154(3):1321–36.; Aeckerle N., Eildermann K., Drummer C. et al. The pluripotency factor LIN28 in monkey and human testes: a marker for spermatogonial stem cells? Mol Hum Reprod 2012;18(10):477–88.; Chakraborty P., Buaas F.W., Sharma M. et al. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 2014;32(4):860–73.; Murchison E.P., Stein P., Xuan Z. et al. Critical roles for Dicer in the female germline. Genes Dev 2007;21(6):682–93.; Platts A.E., Dix D.J., Chemes H.E. et al. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet 2007;16(7):763–73.; Romero Y., Meikar O., Papaioannou M.D. et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 2011;6(10):e25241.; Bouhallier F., Allioli N., Lavial F. et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 2010;16(4):720–31.; Liang X., Zhou D., Wei C. et al. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One 2012;7(3):e33861.; Bao J., Li D., Wang L. et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factorretinoblastoma protein(E2F-pRb) pathway. J Biol Chem 2012;287(26):21686–98.; Meikar O., Da Ros M., Kotaja N. Epigenetic regulation of male germ cell differentiation. Subcell Biochem 2012;61:119–38.; Dai L., Tsai-Morris C.H., Sato H. et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) – null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 2011;286(52):44306–18.; Yu Z., Raabe T., Hecht N.B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 2005;73(3):427–33.; Bjork J.K. Sandqvist A., Elsing A.N. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 2010;137(19):3177–84.; Akerfelt M., Morimoto R.I., Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010;11(8):545–55.; Missirlis P.I., Smailus D.E., Holt R.A. A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. BMC Genomics 2006;7:73.; Landel C.P., Chen S.Z., Evans G.A. Reverse genetics using transgenic mice. Annu Rev Physiol 1990;52:841–51.; Hoess R.H., Ziese M., Sternberg N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 1982;79(11):3398–402.; Kuhn R., Wurst W. Gene Knockout Protocols. 2nd Edition. New-York: Humana Press, 2009. 517 p.; Hayashi K., Chuva de Sousa Lopes S.M., Kaneda M. et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008;3(3):e1738.; Maatouk D.M., Loveland K.L., McManus M.T. et al. Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 2008;79(4):696–703.; Liu D., Li L., Fu H. et al. Inactivation of Dicer1 has a severe cumulative impact on the formation of mature germ cells in mouse testes. Biochem Biophys Res Commun 2012;422(1):114–20.; Korhonen H.M., Meikar O., Yadav R.P. et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One 2011;6(9):e24821.; Wu Q., Song R., Ortogero N. et al. The RNase III enzyme Drosha is essential for microRNA production and spermatogenesis. J Biol Chem 2012;287(30):25173–90.; Greenlee A.R., Shiao M.S., Snyder E. et al. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 2012;7(10):e46359.; Chang Y.F., Lee-Chang J.S., Imam J.S. et al. Interaction between microRNAs and actinassociated protein Arpc5 regulates translational suppression during male germ cell differentiation. Proc Natl Acad Sci USA 2012;109(15):5750–5.; Meunier J., Lemoine F., Soumillon M. et al. Birth and expression evolution of mammalian microRNA genes. Genome Res 2013;23(1):34–45.; Song R., Ro S., Michaels J.D. et al. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 2009;41(4):488–93.; Modzelewski A.J., Holmes R.J., Hilz S. et al. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 2012;23(2):251–64.; Johanson T.M., Lew A.M., Chong M.M. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol 2013;3(10):130144.; Luteijn M.J., Ketting R.F. PIWIinteracting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013;14(8):523–34.; Liu W.M., Pang R.T., Chiu P.C. et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA 2012;109(2):490–4.; Ostermeier G.C., Dix D.J., Miller D. et al. Spermatozoal RNA profiles of normal fertile men. Lancet 2002;360(9335):772–7.; Jodar M., Selvaraju S., Sendler E. et al. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013;19(6):604–24.; Sendler E., Johnson G.D., Mao S. et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 2013;41(7):4104–17.; Krawetz S.A., Kruger A., Lalancette C. et al. A survey of small RNAs in human sperm. Hum Reprod 2011;26(12):3401–12.; Lian J., Zhang X., Tian H. et al. Altered microRNA expression in patients with nonobstructive azoospermia. Reprod Biol Endocrinol 2009;7:13.; Wang C., Yang C., Chen X. et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 2011;57(12):1722–31.; Wu W., Hu Z., Qin Y. et al. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod 2012;18(10):489–97.; Zhang H., Liu Y., Su D. et al. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil Steril 2011;96(1):34–9.; Abu-Halima M., Hammadeh M., Schmitt J. et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 2013;99(5): 1249–55.; Montjean D., De La Grange P., Gentien D. et al. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 2012;29(1):3–10.; Jodar M., Kalko S., Castillo J. et al. Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod 2012;27(5):1431–8.; https://agx.abvpress.ru/jour/article/view/199

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19